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In this paper we treat some problems which arose in [8]. We investigate a semi-
Fredholm operator T acting on a complex Banach space X which satisfies f*)n >j T" (X) = 

{0} or = 

Throughout this paper let X denote an infinite-dimensional complex Ba-
nach space and let C(X) denote the Banach algebra of bounded linear op-
erators on X. For T <E £(X) set a(T) = dim N(T) and 0(T) = codimT(X), 
where N(T) is the kernel and T(X) the range of T. Define the generalized 
kernel JC(T) and the generalized range TZ(T) to be the subspaces 

K(T) = ( J N(Tn), H{T) = p | Tn(X). 
n > l n > l 

Write 

<f+(X) = {T e C{X): a(T) < oo and T(X) is closed}, 

Observe that T(X) is closed if T G $-(X) [3, Satz 55.4], tf>±(X) = <f+(X)U 
<£_(X) is the set of semi-Fredholm operators on X, while $(X) = 
i>_(X) is the set of Fredholm operators in C(X). If T € $±(X), ind(T) = 
a(T) — P(T), a finite or infinite integer is called the index of T. 

Let T e £(X) be arbitrary. The sequence N(T),N(T2),N(T3),... is 
increasing, while T(X),T2(X),T3(X),... is a decreasing sequence of sub-
spaces. Define p(T), the ascent of T, to be the smallest integer n > 0 such 
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that N(Tn) = N(Tn+1) or oo if no such n exists. Define q(T), the descent 
of T, to be the smallest integer m > 0 with Tm(X) = Tm+1(X) or oo if no 
such m exists. 

P R O P O S I T I O N 1. Let T G $±(X). Then there ism 6 N such that 

(a) N(T) D Tm(X) = N(T) n Tm+k(X) for k = 0 , 1 , 2 , . . . , 
(b) iV(Tm) + T ( X ) = N(Tm+k) + T(A') /or A; = 0 ,1 ,2 

P r o o f , (a) is contained in the proof of [3, Ililfssatz 72.7]. 
(b) Let m be the integer in (a). We prove by induction that (b) holds. If 

k = 0 we are done. Now suppose that N(Tm) + T(X) = N(Tm+k) + T(X) 
for some k > 0. Let x G N(Tm+k+1) + T(X), thus x = Ty + z, y e X , z € 
N(Tm+k+1). This gives Tm+kz e N(T) n Tm+k(X) = N(T) n Tm+k+1(X). 
Hence Tm+kz = Tm+k+1u for some u g X. We derive z-Tue N(Tm+k), 
therefore x = Ty + z = (z-Tu) + T(u + y) € N(Tm+k) + T(X) = N(Tm) + 
T(X). m 

P R O P O S I T I O N 2 . I f T is a semi-Fredholm operator on X, then 

(a) Tn € $±(X) for each n € N and Tl{T) is closed. 
(b) T(1Z(T)) = K(T). 

P r o o f . [3, Aufgabe 82.5, Hilfssatz 72.7]. • 

Let us review some classical concepts of local spectral theory. These 
concepts are due to N. Dunford [1]. 

An operator T £ £ ( X ) is said to have the single valued extension property 
(SVEP) in Ao G C if for any analytic function / : D —> A", D a neigbourhood 
of Ao, with (XI — T ) f ( X ) E 0 on Z), we have / = 0. T is said to have the 
SVEP in € , if T has the SVEP in each A0 € C. Let T € C(X) be arbitrary 
and fix x G X. The local resolvent set 6T(X) is definied by 

6 t (x) = {A € C : There is a neighbourhood U of A and 
an analytic function f : U X such that 
(¿t/ - T ) f ( p ) = x for each fi G U}. 

The local spectrum 7 T ( X ) is given by 7 T { X ) = C \ S T ( X ) . It is immediately 
seen that 6 X ( X ) is open, 7 r ( x ) is closed, p(T) C S T ( X ) and 7 T { X ) C <r(r), 
where p(T) denotes the resolvent set and a (T) denotes the spectrum of T. 
Observe that 7 T (0) = 0. It follows from [1] that if T has the SVEP in C, 
then 

7T(X) ^ 0 for each x G X \ {0} 
and 

° { T ) = ( J 7 T ( X ) . 
x€X 
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In [4] M. Mbekhta introduced the following concepts: 
For T G £(X) define 

K{T) ={x € X : There exists c > 0 and a sequence (xn)n>i 
in X such that Tx\ = x, Txn+j = xn and 
||xn|| < cn||x|| for all n e N}, 

H0(T) = {xeX: lim W^x^'" = 0}. 
n—>oo 

Clearly we have K{T) C 7 l (T) and K(T) C H0(T). It follows from [4] that 
for A0 G C 

K(X0I -T) = {x eX : A0 G iT(®)}, 
Ho(X0I -T)C{xeX: lT{x) C {A0}}, 
(X0I-T)(K(X0I-T)) = K(XoI-T) 

and 
(AoJ - T){H0{X0I - T)) C H0(X0I - T). 

Furthermore, if T has the SEVP in C, we have 
H0(X0I -T) = {xeX: 7 t(X) C {A0}} 

and 
x € ff0(X0I - T) \ { 0 } 7 T ( X ) = { A 0 } . 

PROPOSITION 3. If Te then K(T) = 7Z(T). 
P r o o f . By Proposition 2, K(T) is closed and T{Tl{T)) = K(T). From 

[7, Proposition 2] we derive K(T) C K{T). Since K(T) C K(T), we get 
K(T) = K(T). u 

PROPOSITION 4 . Suppose that T E The following assertions are 
equivalent: 

(a) T /ias the SVEP in 0. 
(b) p(T) < oo. 
(c) JC(T) fl Tl(T) = {0}. 
(d) N(T)r\TZ(T) = {0}. 

If one — and thus each — of the above assertions is valid, we have 
Te$+(X), a(T)<[3(T), K(T) = iV(Tp(T)) 

and 
p(T — XI) = a(T — XI) = 0 in a deleted neighbourhood of 0. 

P r o o f . The equivalence of (a) and (b) follows from [2, Theorem 15]. If 
(a) (and thus (b)) holds, we have a(T) < (3(T) by [2, Corollary 11] and 
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therefore T G The equivalence of (b) and (c) follows now from [8, 
Proposition 2.6]. For (b)-^(d) use [3, Satz 72.8]. To complete the proof, use 
again [8, Proposition 2.6]. • 

Notation. X* denotes the dual space of X and T* the adjoint operator 
of T € £(X). 

P R O P O S I T I O N 5 . Suppose that T G $±(X). The following assertions are 
equivalent: 

(a) T* has the SVEP in 0. 
(b) q(T) < oo. 
(c) K{T) + H(T) = X. 
(d) K{T) + T(X) = X. 

If one of these assertions is valid, we have 

T e $-(X), j3(T) < a(T), 7Z(T) = T"(t)(X) 

and 

q(T - XI) = /3(T - XI) = 0 in a deleted neighbourhood of 0. 

P r o o f . [2, Corollary 16] shows that (a) and (b) are equivalent. If (a) (and 
thus (b)) holds, [2, Corollary 12] gives ¡3(T) < a(T), hence T G $-(X). Now 
use [8, Proposition 2.7] to derive the equivalence of (b) and (c). That (c) 
implies (d) is clear. Suppose that (d) holds. By Proposition 1, there is m £ N 
such that 

N(Tm) + T(X) = N(Tm+k) + T(X) for k = 0 ,1 ,2 , . . . 

Since IC(T)+T(X) = X this gives X = N(Tm)+T(X). Let y G Tm(X), thus 
y = Tmx for some x G X. x has a decomposition x = u + v with Tmu = 0 
and v G T(X). Hence y = Tmv G Tm+1(X). Hence we have proved that 
Tm(X) = Tm+1(X), therefore q(T) < m < oo. Thus (d) implies (b). To 
complete the proof, use [8, Proposion 2.7]. • 

Some more concepts are useful at this point. Let T G £(X). The set 

S(T) = {XeC-.XI-Te <f±(X)} 

is called the semi-Fredholm region of T. Write 

sP(T) = {A G € : XI - T e $(X)} 

for the Fredholm region of T and 

Pw(T) = {A G *(T) : ind(A/ - T) = 0}. 
The Weyl spectrum <tw(T) of T is defined by aW(T) = C \ pw(T). 

It is well known that £(T), $(T), pw{T) are open and aw{T) C cr(T). 
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THEOREM 1. Let T € C ( X ) be given and suppose that 7 Z ( T ) = { 0 } . Then 

(a) K(T) = {0} . 
(b) N(XI - T ) = {0} for all X ± 0. 
( c ) T has the SVEP in C . 

( d ) For each i / 0 : 0 € 1T(X) and 7 j ( x ) is connected. 

( e ) H0(XI ~ T ) = { 0 } for each X ± 0 . 

( f ) cr{T) = aw(T) is connected. 

(g) q(T - X I ) = 00 for all X e a{T) \ {0}. 
(h) T is nilpotent if and only if q(T) < 00. 

P r o o f , (a) is clear since K(T) C Tl(T). 
( b ) For A # 0 w e h a v e N(XI - T ) C 7 l ( T ) . 

(c) follows from (b). 
(d) If 0 e ST(x) then x G K(T) = {0}, thus 0 e 7T ( z ) for each x ^ 0. 

If x 0, put F = 7 t (^) - Assume that F = Fi U F2 with Fiy F2 closed, 
Fi,F2 ± 0, FiC\F2 = 0. The local Riesz decomposition theorem [6, Theorem 
2.3] shows that 

x = xi + x2 with 7 T ( i i ) Q Fi (i = 1,2). 

We have xi ^ 0. Indeed, suppose that x\ = 0, thus x = x2. This gives 
F = 7 T ( X ) = 1T(X2) Q F2, hence F\ = 0, a contradiction. Similarly x2 / 0. 
It follows that 

0 € 7T(z i ) n J t ( X 2 ) C Fi n F2 = 0. 

This contradiction shows that 7 y ( x ) is connected. 
(e) Let A ± 0 and let x £ H0(XI - T). Assume that x ^ 0. Since T 

has the SVEP in C, this yields 7 T ( x ) = {A}. By (d) we derive 0 6 {A}, a 
contradiction. 

( f ) We first show that cr(T) is connected. By (d), 0 € 1T(X) and 7 T { X ) is 
connected for each x ^ 0. Thus fla^o 7 T ( x ) ^ hence cr(T) = Ua^o 7T(X) 
is connected. Next we show that 0 € &w(T). To this end assume that 0 6 
pw(T). Denote by ft the connected component of £ ( T ) which contains 0. 
Apply [3, Satz 104.1] to obtain ind(A/ - T) = 0 for all X e ft. (b) shows 
that p(XI — T) = 0 for A € i 2 \ { 0 } . By [3, Satz 104.6] we get i 2 \ { 0 } C p(T), 
hence 0 is an isolated point of c (T) . This yields c ( T ) = {0} , since <r(T) is 
connected. But then we have C \ {0} C p(T) C <P(T) and 0 € pw{T) C 
<P(T), consequently C = <f(T). From [3, Satz 104.9] we get d i m X < 00, a 
contradiction, hence 0 6 &w(T)-

It remains to show that pw(T) C p(T). Let A € pw(T), therefore A ^ 0. 
By (b), we conclude 
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0 = ind(AJ - T ) = a(XI - T ) - f3(XI - T ) - -/3(\I - T), 

thus ¡3{XI - T ) = a(XI - T) = 0, therefore 0 € p(T). 
( g ) If ¡1 ̂  0 and q(fil — T) < oc, then, making use of [3, Satz 72.3] and 

(b ) , we see that 

0 = p(flI-T) = q(fiI-T), 

consequently fi G p(T). 
(h ) If q = q(T) < oo, then { 0 } = 7Z(T) = T'(X), thus Tg = 0. Con-

versely, if T is nilpotent, then it is clear that T has finite descent. • 

Now we are in a position to state the main result of this paper. 

THEOREM 2. Let T G <P± (X ) and let Q denote the connected component 
of S(T) which contains 0. Then 

TZ(T) = { 0 } if and only if p = p(T) < oo and iî Ç |°| ~/T(X). 

xiN(Tf) 

In this case T has the properties (a) to (g) of Theorem 1, and the following 
assertions are valid: 

( i ) q(XI - T ) = 00 and fi(T - XI) > 0 for all X G a(T). 
( i i ) T e $+(X) and ind(A/ - T) < 0 for all X € S[T) n <r(T). 

( i i i ) T* does not have the SVEP in C. 

P r o o f . Suppose that H(T) = { 0 } . Proposition 4 shows that p = p(T) < 
oo and IC(T) = N(TP). [5, Theorem 4.2] gives 

N(Tp) = K{T) = /C(T) + TZ(T) = IC(XI - T ) + TZ(XI - T) 

for all A 6 Q. We get by Theorem 1(b) and Proposition 3 

N(TP) = n(XI - T ) = K(XI - T) = {x € X : A € i T ( ® ) } 

for each A G Q \ { 0 } . Thus, if x N(TP), we have Q \ { 0 } Ç 7 T ( x ) . Since 
0 G 7T(X) for each x 0 (Theorem 1(d) ) , we therefore derive 

w n t too . 
x£N(T<>) 

Conversely, suppose that p = p(T) < 00 and that ( • ) holds. Thus 0 G 7 t ( z ) 
for each x £ N(TP). Let us assume that there exists x G 7Z(T) with 1 / 0 . 
Since p(T) < 00, Proposition 4 gives x ^ N(TP), thus 0 G 7 t (z ) - But this 
is a contradictions, since 

x G K(T) = K(T) = {x G X : 0 G « r ( x ) } -

Hence TZ(T) = { 0 } . 
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It remains to show that (i) to (iii) are valid. To prove (i), assume that 
g(T) < oo. Theorem 1(h) gives cr(T) = {0}. Use [3, Satz 72.5] and Proposi-
tion 4 to conclude that 0 G $(T). Hence we have = C, a contradiction 
since dim X = oo, thus q(T) = oo. Use Theorem 1(g) to complete the proof 
of (i). 

(ii) T G $+(X) follows from Proposition 4. Since N(XI - T) = 0 for 
A / 0 and a(T) < (3(T) (Proposition 4), we get ind(AI - T) < 0 for all 
A G S(T) n a{T). Assume that ind(£J - T) = 0 for some f G S(T) n a(T). 
This gives £ G Pw{T) — p(T) (Theorem 1(f)), a contradiction. So we have 
ind(AI - T) < 0 for each A G £{T) n a(T). 

(iii) Suppose that T* has the SVEP in C, then by [2, Corollary 13] we 
get 

ii Ç Pw(T) = p(T), 
a contradiction, since Q Ç Plxg^T") — • 

If T G C{X) it is well known that 

T G < M X ) T* € * _ ( * ) » 

T G i»_(X) <=> T* G 

and 

T G *±(X) => a(T) = j3(T*), /3(T) = a(T*), ind(T) = - ind(T*) 

(see [3, § 82]). If Tn(X) is closed for each integer n, it is easy to check that 
x f t (T*) = JC(X) and X/C(T*) = 7Z(T), 

where LTZ(T*) (resp. LIC(T*)) denotes the pre-annihilator of H(T*) (resp. 
£(T*)) in X. 

These results and the results of J.K. Finch [2] concerning semi-Fredholm 
operators allow us to deduce the dual statement to Theorem 2 omitting its 
proof. 

THEOREM 3. Let T G #±(X) and, let Q denote the connected component 
of S(T) which contains 0. Then 

/C(T) = X if and only if q = q(T) < oo and Q Ç P | 7 T - ( Z * ) -

x'ÎN(T"<) 

In this case T has the following properties: 
(a) N{T* - XI*) = {0} for all A ^ 0. 
(b) T* has the SVEP in C. 
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(c) T does not have the SVEP in C. 
(d) For each x* 6 X* \ {0}: 0 6 7 t - ( X * ) and ~fT'(x*) is connected. 
(e) <T(T) = (TW(T) is connected. 
( f ) T € $ - ( X ) and ind(A I - T) > 0 for all A € 27(T) n o(T). 
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