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In this paper we treat some problems which arose in [8]. We investigate a semi-
Fredholm operator T acting on a complex Banach space X which satisfies nn>1 ™(X) =

{0} or U5, N(T™) = X.

Throughout this paper let X denote an infinite-dimensional complex Ba-
nach space and let £(X) denote the Banach algebra of bounded linear op-
erators on X. For T' € £(X) set a(T) = dim N(T) and (T) = codim T(X),
where N(T) is the kernel and T(X) the range of T. Define the generalized
kernel K(T') and the generalized range R(T) to be the subspaces

KT = NTY, RT)=[)THX).
n>1 n>1
Write
P, (X)={T € L(X):a(T) < 00 and T(X) is closed},
S_(X)={T € L(X): B(T) < xx}.

Observe that T(X) is closed if T € #_(X) [3, Satz 55.4]. ¢.(X) = $,+(X)U
@_(X) is the set of semi-Fredholm operators on X, while (X) = &,(X)Nn
®_(X) is the set of Fredholm operators in L(X). U T € #4(X), ind(T) =
a(T) — B(T), a finite or infinite integer is called the indez of T

Let T € L(X) be arbitrary. The sequence N(T), N(T?),N(T3),... is

increasing, while T(X),T%(X),T3(X),... is a decreasing sequence of sub-
spaces. Define p(T'), the ascent of T', to be the smallest integer n > 0 such

AMS Classification: 4TA11, 47A53.
Key words and phrases: semi-Fredholm operators, local spectrum.



998 Ch. Schmoeger

that N(T™) = N(T™*!) or oo if no such n exists. Define ¢(T), the descent
of T, to be the smallest integer m > 0 with 7™(X) = T™*(X) or oo if no
such m exists.

ProPoOSITION 1. Let T € @4(X). Then there is m € N such that

(a) N(T)nT™(X) = N(T)NnT™+¥(X) for k = 0,1,2,...,

(b) N(T™)+ T(X) = N(T™F¥) + T(X) for k = 0,1,2,....

Proof. (a) is contained in the proof of [3, Hilfssatz 72.7].

(b) Let m be the integer in (a). We prove by induction that (b) holds. If
k = 0 we are done. Now suppose that N(T™) + T(X) = N(T™*) + T(X)
for some k > 0. Let z € N(T™t*t1)) 4 T(X), thus 2 = Ty+ 2, y€ X, z €
N(T™+¥+1)_ This gives T™+*z € N(T) N T™5(X) = N(T)n T™++1(X).
Hence T™t+*z = T™+E+1y for some u € X. We derive z — Tu € N(T™tF),
therefore z = Ty+2z = (z—Tu)+T(u+y) € N(T™t*)+T(X) = N(T™) +
T(X). n

ProrosiTiON 2. If T is a semi-Fredholm operator on X, then

(a) T™ € ¢4(X) for each n € N and R(T) is closed.
(b) T(R(T)) = R(T)-
Proof. [3, Aufgabe 82.5, Hilfssatz 72.7]. =

Let us review some classical concepts of local spectral theory. These
concepts are due to N. Dunford [1].

An operator T' € £(X) is said to have the single valued eztension property
(SVEP) in Ao € Cif for any analytic function f: D — X, D a neigbourhood
of Ag, with (Al —= T)f(A) = 0 on D, we have f = 0. T is said to have the
SVEP in C, if T has the SVEP in each Ay € C. Let T € L(X) be arbitrary
and fix z € X. The local resolvent set §1(z) is definied by

é7(z) = {X € C: There is a neighbourhood U of A and
an analytic function f: U — X such that
(ul = T)f(u) = = for each p € U}.
The local spectrum yr(z) is given by yr(z) = C\ §7(z). It is immediately
seen that d7(z) is open, yr(z) is closed, p(T') C ér(z) and yr(z) C o(T),
where p(T') denotes the resolvent set and o(7') denotes the spectrum of T.

Observe that y7(0) = 0. It follows from [1] that if T has the SVEP in C,
then

vr(z) # 0 for each z € X \ {0}
and

o(T) = U yr(z).

z€X
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In [4] M. Mbekhta introduced the following concepts:
For T € L(X) define

K(T) ={z € X : There exists ¢ > 0 and a sequence (Z,)n>1
in X such that Tzy =z, TTp41 = T, and
lzn|| < c™|lz|| for all n € N},
Ho(T) = {z € X : lim_ (1T"z||/" = 0}.
Clearly we have K(T) C R(T) and K(T') C Ho(T). It follows from [4] that
for \g € C
K(MI-T)={z € X : XA € ér(2)},
Ho(AoI - T)C {z € X : vr(z) C {Ao}},
(Ml =TYK (I -T))= K(XI-T)
and
(Mol = T)(Ho(MoI —T)) C Ho(MoI = T).
Furthermore, if T has the SEVP in C, we have
Ho(AoI —T) = {z € X : y7(z) C {Ao}}
and
z € Ho(Aol —T)\ {0} & vr(z) = {Xo}-
ProprosITION 3. If T € $4(X) then K(T) = R(T).

Proof. By Proposition 2, R(T') is closed and T(R(T')) = R(T). From
{7, Proposition 2] we derive R(T) C K(T). Since K(T') C R(T), we get
R(T)=K(T). =

PRrROPOSITION 4. Suppose that T € ®4(X). The following assertions are
equivalent:

(a) T has the SVEP in 0.

(b) p(T) < .

(c) K(T)nR(T) = {0}.

(d) N(T)nR(T) = {0}.
If one — and thus each — of the above assertions is valid, we have

Teoy(X), oT)<AT), K(T)=NT"D)
and
P(T — AI) = o(T — AI) = 0 in a deleted neighbourhood of 0.

Proof. The equivalence of (a) and (b) follows from [2, Theorem 15]. If
(a) (and thus (b)) holds, we have a(T) < B(T) by [2, Corollary 11] and
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therefore T € &,. The equivalence of (b) and (c) follows now from [8,
Proposition 2.6). For (b)<(d) use [3, Satz 72.8]. To complete the proof, use
again [8, Proposition 2.6). w

Notation. X* denotes the dual space of X and T* the adjoint operator
of T € L(X).

PRrROPOSITION 5. Suppose that T € $4.(X). The following assertions are
equivalent:

(a) T* has the SVEP in 0.

(b) o(T) < oo.

KT+ R(T)=X.

(KM +T(X)=X.
If one of these assertions is valid, we have

Te®_(X), B(T)<aT), R(T)=T'N(X)
and
q(T — AXI) = B(T — AI) = 0 in a deleted neighbourhood of 0.

Proof.[2, Corollary 16] shows that (a) and (b) are equivalent. If (a) (and
thus (b)) holds, [2, Corollary 12} gives 3(T') < a(T), hence T € #_(X). Now
use [8, Proposition 2.7} to derive the equivalence of (b) and (c). That (c)
implies (d) is clear. Suppose that (d) holds. By Proposition 1, there is m € N
such that

N(T™)+T(X)= N(T™*) + T(X) for k = 0,1,2,...

Since K(T)+T(X) = X this gives X = N(T™)+T(X). Let y € T™(X), thus
y = T™z for some z € X. z has a decomposition 2 = u + v with T™u = 0
and v € T(X). Hence y = T™v € T™1(X). Hence we have proved that
T™(X) = T™+(X), therefore ¢(T) < m < oo. Thus (d) implies (b). To
complete the proof, use [8, Proposion 2.7]. =

Some more concepts are useful at this point. Let T € £(X). The set
ET)={AeC:AI-T e d.:(X)}
is called the semi-Fredholm region of T. Write
(T)={AeC:AI-T € $(X)}
for the Fredholm region of T and
pw(T) = {A € &(T) :ind(A - T) = 0}.

The Weyl spectrum ow(T) of T is defined by ow(T) = C\ pw(T).
It is well known that X'(T'), &(T), pw(T) are open and ow (T) C o(T).
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THEOREM 1. Let T € L(X) be given and suppose that R(T) = {0}. Then

(a) K(T) = {0}.
(d) N(AMI -T) = {0} for all X # 0.

(c) T has the SVEP in C.

(d) For each z # 0: 0 € y7(z) and yr(z) is connected.
(e) Ho(A ~ T) = {0} for each A # 0.

(f) o(T) = ow(T) is connected.

(8) ¢(T — A\I) = oo for all X € o(T)\ {0}.

(h) T is nilpotent if and only if ¢(T) < oo.

Proof. (a) is clear since K(T) C R(T).

(b) For A # 0 we have N(AI - T) C R(T).

(c) follows from (b).

(d) I 0 € 67(z) then z € K(T) = {0}, thus 0 € y7(z) for each z # 0.
If z #0, put F = yp(z). Assume that F = Fy U F; with Fy, F; closed,
F,F, #0, FNF, = (. The local Riesz decomposition theorem [6, Theorem
2.3] shows that

z =1z + 2, with yp(z;) C F; (i=1,2).

We have z; # 0. Indeed, suppose that z; = 0, thus z = z,. This gives
F = vp(z) = y7(z2) C F3, hence F} = @, a contradiction. Similarly z; # 0.
It follows that

0 € vr(z1) Nyr(z2) C O = 0.
This contradiction shows that yr(z) is connected.

(e) Let A # 0 and let ¢ € Ho(AI — T). Assume that z # 0. Since T
has the SVEP in C, this yields yr(z) = {A}. By (d) we derive 0 € {)A}, a
contradiction.

(f) We first show that o(T’) is connected. By (d), 0 € vr(z) and y7(z) is
connected for each z # 0. Thus (1, 77(2) # 0, hence o(T) = U, 40 17(2)
is connected. Next we show that 0 € ow(T'). To this end assume that 0 €
pw(T). Denote by 2 the connected component of $(T) which contains 0.
Apply [3, Satz 104.1] to obtain ind(A] — T) = 0 for all A € 2. (b) shows
that p(AI —-T) = 0 for A € 22\ {0}. By [3, Satz 104.6] we get 2\ {0} C p(T),
hence 0 is an isolated point of o(T'). This yields o(T) = {0}, since o(T) is
connected. But then we have C\ {0} C p(T) C &(T) and 0 € pw(T) C
®(T), consequently C = $(T'). From [3, Satz 104.9] we get dim X < oo, a
contradiction, hence 0 € ow(T).

It remains to show that pw(T) C p(T). Let X € pw(T), therefore A 5# 0.
By (b), we conclude
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0 =ind(M = T) = a(M = T) - B(M = T) = —B(A\[ - T),

thus (A — T') = a(M — T) = 0, therefore 0 € p(T).
(g) If p # 0 and gq(pl — T') < oo, then, making use of [3, Satz 72.3] and
(b), we see that
0=p(pl -T)=q(pl -T),
consequently pu € p(T).
(h) If ¢ = ¢(T) < o0, then {0} = R(T) = T(X), thus T? = 0. Con-
versely, if T is nilpotent, then it is clear that 7 has finite descent. m

Now we are in a position to state the main result of this paper.

THEOREM 2. Let T € $4(X) and let £2 denote the connected component
of ¥(T) which contains 0. Then

R(T) = {0} if and only if p = p(T) < o0 and N2 C ﬂ yr(z).
z@gN(T?)

In this case T has the properties (a) to (g) of Theorem 1, and the following
assertions are valid:

(i) g(AI = T) = 00 and B(T — AI) > 0 for all A € o(T).
(ii) T € 4(X) and ind(AI - T) < 0 for all A € X(T)n o(T).
(iii) T* does not have the SVEP in C.

Proof. Suppose that R(T) = {0}. Proposition 4 shows that p = p(T) <
oo and K(T') = N(T?). [5, Theorem 4.2] gives

NTP)=K(T)=K(T)+R(T)=KM -T)+R(M -T)
for all A € £2. We get by Theorem 1(b) and Proposition 3
N(TP)=RAI-T)= KM -T) = {z € X : X € b7(z)}

for each A € 22\ {0}. Thus, if ¢ ¢ N(T?), we have 2\ {0} C yr(z). Since
0 € yr(z) for each z # 0 (Theorem 1(d)), we therefore derive

(*) 2 (_3 n 'yT(:v).
z@N(TP)

Conversely, suppose that p = p(T') < oo and that (x) holds. Thus 0 € yr(z)
for each ¢ ¢ N(T?). Let us assume that there exists z € R(T) with = # 0.
Since p(T) < 00, Proposition 4 gives z ¢ N(T?), thus 0 € yr(z). But this
is a contradictions, since

te€R(T)=K(T)={z € X:0¢€ 6r(z)}.
Hence R(T) = {0}.
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It remains to show that (i) to (iii) are valid. To prove (i), assume that
¢(T) < oco. Theorem 1(h) gives o(T) = {0}. Use 3, Satz 72.5] and Proposi-
tion 4 to conclude that 0 € ¢(T). Hence we have ¢(T') = C, a contradiction
since dim X = oo, thus ¢(T") = oo. Use Theorem 1(g) to complete the proof
of (i).

(i) T € &4(X) follows from Proposition 4. Since N(AI - T) = 0 for
A # 0 and o(T) < B(T) (Proposition 4), we get ind(AI —T) < 0 for all
A € Z(T) N o(T). Assume that ind(£I — T') = 0 for some £ € Z(T) N o(T).
This gives £ € pw(T) = p(T) (Theorem 1(f)), a contradiction. So we have
ind(M — T) < 0 for each A € X(T) no(T).

(ili) Suppose that 7* has the SVEP in C, then by [2, Corollary 13] we
get

2 C pw(T) = o(T),

a contradiction, since 2 C (), gy (1) 17(7) € 0(T). =

If T € £(X) it is well known that
Ted (X) & T"ed_(X),
Ted (X)) & T* e d,(X)
and
Ted(X)= a(T)=p(T"), B(T)=a(T*), ind(T)=-ind(T*)
(see [3, § 82]). If T™(X) is closed for each integer n, it is easy to check that
LR(T*) = K(T) and +K(T*) = R(T),

where LR(T*) (resp. +K(T*)) denotes the pre-annihilator of R(T™*) (resp.
K(T*))in X.

These results and the results of J.K. Finch [2] concerning semi-Fredholm
operators allow us to deduce the dual statement to Theorem 2 omitting its
proof.

THEOREM 3. Let T € &4(X) and let 2 denote the connected component
of X(T) which contains 0. Then
K(T)= X ifand only if g = ¢(T) < 00 and 2 C n 1+ (z*).
z*gN(T*9)
In this case T has the following properties:
(a) N(T* — AI*) = {0} for all X # 0.
(b) T* has the SVEP in C.
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(1]
(2)

(3]
(4]

(5]
(€]
7]
(8]

(c) T does not have the SVEP in C.

(d) For each z* € X*\ {0}: 0 € yr-(z*) and y7-(z*) is connected.
(e) o(T) = ow(T) is connected.

(f) T € $_(X) and ind(A - T) > 0 for all A € Z(T) N o(T).
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