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1. Introduction
In this paper differential operators of the form

(1) O ... 8™ + P(D,,...,0.,),

are investigated, where P(d,,,...,0,,)is a polynomial in 8,,, ..., 0, having
holomorphic coefficients with degree lower than m; +...+m, and the expo-
nent of the power of the differential operator 8, occurring in P(8,,,...,0:,)
is at most m;. On the complex hyperplanes {(z1,...,2,) € C*|z; = w;}
holomorphic functions are given. We look for a holomorphic solution F' of
of the partial differential equation
(2) opr...00 + P(0:,,...,0.,)f = u,
where u is holomorphic. To the solution the initial conditions
aij(zl,...,zn) [2j=w; = cpf(zl,...,zj_l,sz,...,zn)
are given. In a simply connected domain, existence and uniqueness will
be proved, if these functions satisfy some compatibility conditions. In this
case we will call these functions the Goursat conditions at the point w =
(w1,...,wy,) of the solution F. Existence and uniqueness seems to be rea-
son enough to study Goursat problems. But also in many other contexts,
Goursat problems play an important role. For example Vekua described in
[1] general representations of solutions of elliptic differential equations in
the plane by solving Goursat problems in C%. The author proved that the
construction of fundamental solution of certain elliptic differential opera-
tors in the plane can be reduced to solve initial value problems of ordinary
differential equations, which can be regarded as special Goursat problems
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of differential equations described above in C. This fundamental solutions
occur in representations of the solutions by boundary integrals, which are
a very useful tool to study boundary value problems. See (2], [3], [4]. Also
a generalized Pompiu formula in C” related to the differential operator (1)
can be derived by solving the Goursat problem, see [5]. In studying formal
hyperbolic differential equations, the Vekua—Riemann function plays a very
important role (see [1]). The author has generalized the Vekua-Riemann
function for the differential operator (1) in [6]. For this generalization, ex-
istence and uniqueness of the solution of the Goursat problem is very im-
portant. By the generalized Vekua-Riemann function a represantation of
holomorphic functions by integrals over a Cartesian product of curves can
be obtained. As a result one obtains a method of solving Goursat prob-
lems, if the Vekua—Riemann function of the considered differential operator
is known. See [6]. Also how to solve an inhomogeneous differential equation
in C? with homogeneous Goursat conditions is shown by the author in [2].
Among others this result will be generalized. We will solve the differential
equation (2) with homogeneus Goursat conditions at a point w.

First special differential operators are considered, namely operators of
the form Py(0;,)...P.(0;,), where the P;(3;;) are polynomials with holo-
morphic coefficients, depending only on z;. We will write the differential
operator (1) in the form

Pi(3s)- .. Pa(3;,) + P(8sy, ..., ;).

The reason is, that this form can be reduced to the first case by an integro-
differential operator. By well known methods of functional analysis the ho-
mogeneous Goursat problem can be solved. In the last section we will con-
sider the inhomogeneous equation

Pi(0;,)...Pa(0;,) + P(0z,...,0:,)f =g

with arbitrary holomorphic right side. It is shown, that a solution of the
inhomogeneous equation with homogeneous Goursat conditions can be ob-
tained by solving a special, recursively defined Goursat problem of the ho-
mogeneous equation.

2. A special Goursat problem
We will solve Goursat problems for the differential operators of the form

Py(0,,)P2(0,,) ... Pa(0;,).
The differential operator P;(d,,) is defined by

Pi(8;,) =Y Ay,i(2;)0%..
k=0
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That means, we seek for a holomorphic solution F of the equation
P1(0:,)P3(0z,) - . . Pu(0:,)f(215 .., 20) = 0
with the initial conditions
ijF(zl, ooy Zn) |z = = c,o;-‘(zl,.. 321y Zjd1ye s 2n)

forj=1,...,nand k =0,...,m;, where m; = deg(P;(9,,)). The functions
% are holomorphic functions, defined in a cylindrical domain, which should
fulfil some compatibility conditions. Because, if a solution F of the Goursat
problem exists, one has

k !
aii 05, F(z1,...,24) IZ,‘=W,',2.'=w.‘ = afz.- P | z=w, = 85, ¥i lzj=w,~ ’
the functions cp;? should satisfy the relation

k l
ai.-(Pj |zi=wi= afj‘roi Iz,'=w,- .
One easily shows, that every solution of the equation

Pi(8:)Py(3s,) - .. Pa(8:,)f (21, -y 20) = 0

is a sum of solutions of the equations P;(d,,)f = 0. Every solution of
P;(0.;)f = 0 can be written in the form

mj;—1

Y Abfk,
k=0

where for k = 0,...,m; — 1 the functions f}‘ are a fundamental system of
the ordinary differential equation Pj(%) f = 0 and the functions A;? are
holomorphic functions, depending only on n — 1 variables with the property
9, A% =0.

In the following, we will denote by f}‘ a solution of the ordinary differ-
ential equation P;(0,;)f = 0 with the initial conditions

ffw) = ... = 05 fF(w;) = 0
and
05 fF(w;) = 1.
The functions f¥ can be regarded as a fundamental system of the differen-
tial operator P1(8,,)... Px(0;,) bePause every solution of the homogeneous
equation has the form
n mj—1

> 2 Al

i=1 k=0
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First we will prove the uniqueness of the solution of Goursat’s problem.
For this sake, we assume, that the Goursat conditions at a point w are
homogeneous. That means the functions go;? are all zero and we will prove,
that the function, which is identically zero, is the only solution. This can
be proved by induction. If the considered differential operator has only one
factor, that means it has the form P(%), then according the theory of
ordinary differential equations only the function f = 0 is a solution with
homogeneous initial conditions.

Now let F(z,...,2,) be a solution of the differential equation

Pl(azl)P2(322) .o .Pn(az" )f(zl, e ,Zn) =0

with homogeneous Goursat conditions at a point w. Since

n mj;j—1
F=2 2 4%
i=1 k=0
for{=0,...,m; — 1 we have
n mj—-1
0= ailF IZ1=W1= Z Z ail (A_’;fjk) |21=w1=

i=1 k=0

n mj;—1

Ai + Z Z ail(A‘l;) |z1=w1= ]{c’
=2 k=0

because the functions Al forl =0,...,m;~1 and the functions f}‘ forj>1
don’t depend on z;. So we get
n mj—1
Ay ==Y > 3(AD) l=u= fF.
i=2 k=0
Because the right hand side of the equation is a solution of the differential
equation

Py(0,,)...Pn(0,,)f =0

also for I = 0,...,m; — 1 the functions A} are solutions of the differential
equation

Py(0,,)...Pp(0,,)f =0.

Therefore the solution F' of the homegeneous Goursat problem is also a
solution of this differential equation, having only n—1 factors. By assumption
for each z; the solution F is identically zero.

Now we will prove the existence of the solution of Goursat problem. This
proof gives also a method of computing the solution recursively. The proof
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will be done by induction with respect to the number n of the factors of the
differential operator Pi(8,,)P2(0;,) ... Pn(0;, ). If n = 1, the Goursat prob-
lem is the problem of finding a solution of a ordinary differential equation
with initial conditions. So we assume n > 1. Let

(,9_’;(21, cee9Z5—19%541y .,Zn)

be the Goursat conditions at a point w of the solution. First we will look
for a solution F of the equation

Pl(()zl )P2(622) . .P.n(az'l )f(Zl, ey Zn) =0
with the property
Of F(z1,...,20) lsy=wy = WXz, .0y 20)

for 0 < k < my — 1. Of course, the solution F is not uniquely determined,
because we have not yet specified the Goursat conditions to

aij(zl,...,zn) |zj=w; forj>1.

For example a solution of this uncompleted initial value problem is given by

m1—1

F(Zl,"‘azn) = Z ‘pf(zlv""zj—lazj+1,'"azn)flk(zl)’
k=0

where for 0 < k < m; — 1 the functions ff(z;) are a fundamental system of
the ordinary differential operator P;(0,,) with the property

fiw) = .= dm=2fF(wy) = 0
and
Ol ff(wy) = 1.
Now let be
W] = 0,5 F |1z,
for ¢ >1and 0 < j < m; — 1. Then we have
agl"plk Izl:wlz af.()oi 'Z;=w,< .

By assumption of induction, we can find the uniquely determined solution
G of the differential equation

Py(8,,)...Py(0.,)f =0
with the Goursat conditions
3f,~G |2 =w; = 9’; - 111;5.

The function F = F + G is the solution of the Goursat problem.



990 J. Witte

3. Another way of solving a Goursat problem
Here we will learn, how to solve the Goursat problem in another way. Let
us remember, that a solution of the differential equation Py(8,,)...P,(0.,)
has the form
n m;—1

(3) > D A

j=1 i=0

where for each j € {1,...,n} and all i = 0,...m; — 1 the functions f} are
a fundamental system of the ordinary differential equation P;(0;,)f = 0. In
the following, we assume, that these fundamental systems have the property
8;‘,, f;-'|zj=w,. = 0k, where the delta is the Kronecker delta. Of course the

functions Aj. don’t depend on z;. So we have

m;—1
—A Y S 0 b,
i=1,i#5 k=0
or
m;—1
(4) Z Y 0 AF | imu,
i=1,i#j k=0

THEOREM 3.1. Choose functions a'r j» which do not depend on z, and z;
and which fulfil the relation

mg—1

S l — 31‘ l,S
0z pi =t aj + }: Z AL kkaZr-w""J-“’J

k=1,k#j, k#r i=0
If we set

mi—1

i

-y e
k=1,k#j =0

then the function defined by (3) is a solution of the Goursat problem.

= o’
Wy — ar,ja

Proof. By this choice of the functions Ag- we have 6;’rA§ z,=
because

mp—1

n
! ! Li piy _
05 Mlluymu, = 05,05~ > D 02 (clifi) =
k=1, k#j i=0

my—1

_ ] l,s i piy _ 8,0
- a:rso] - ajv"' - Z Z .1kfk) - a"'v.’l

k=1,k#j, k#r =0
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Therefore in (4) the expression 3;)_ A¥|,,=w, can be substituted by a;"’f. So
the Goursat conditions are fulfilled.

Generally it does not seem to be very easy to find functions a;’,’f, but if

one solves Goursat problems in C?, the problem of finding such functions is
reduced to find constants satisfying a very easy relation.

4. A special inhomogeneous Goursat problem

THEOREM 4.1. Let P(%) be a linear ordinary differential operator with
holomorphic coefficients, which are defined in a simply connected domain
G containing the origin. We assume, that the leading coefficient is equal to
one. Let f : GXG — C be a holomorphic solution of the differential equation
P(0,)f = 0 with the initial conditions 0% f(w,w) = 8,1k, where 8,1 x is
the Kronecker delta. If u: G — C is a holomorphic function then

U= [ f0u0)dc

is a special solution of the differential equation P(9,)U = u with homoge-
neous initial conditions at z = 0.

Proof. In consideration of the initial conditions of f, we have
0.0 = f(e, W)+ [ 05 OUQUC = [ 0.2, OulQ) .
By complete induction, oneogets 0
0K = 951 (5, 2 u(2) + [ 08 f(= Qu()C = [ 0Ff(5, Cu(C) e,
if k < n, where n is the degreeo of the operator P(a,)o, and
01U = 071 (2, 2Yu()+ [ O f(= OuQ)dC = w()+ [ 07 F(z, Cu(C) dC.
So, we get the result 0 0

P(8.)U(2) = w(z)+ [ P(3:)f(z,¢)u(¢)d¢ = u(2).
]

THEOREM 4.2. Let G; C C be simply connected domains with 0 € G;
and P;(0,;) differential operators with holomorphic coefficients, defined on
G;. As above we assume, that the leading coefficient is equal one. The prod-
uct P1(0,,) ... Py(8;,) is defined on the cylindrical domain G; X ... x Gy,.
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Let be f; : G; x G; — C a holomorphic solution of the differential equa-
tion Pj(,;)f; = O with the initial conditions 07, f;(w,w) = én—1k- If the
function v : Gy X ... X G, — C is holomorphic, then

U(streerzn)i= [ oo [ 71(21560) o fa(oms Ca)ul(Gre o or G G .G
0 0

is a special solution of the differential equation P1(d,,)...Pn(08:,)f = u
with homogeneous Goursat conditions.

Proof. This theorem is an easy conclusion of Theorem 4.1.

5. The general homogeneous Goursat problem

Now we will solve the general Goursat problem for the differential equa-
tion

Py(0,,)...Pn(0,,) + P(8:,,...,0.)f = 0.

First we will solve it locally. Afterwards we will think about analytic continu-
ation. Locally the existence and uniqueness of a solution of Goursats problem
will be proved by an integro—differential equation and Banach’s fixed point
theorem. For this purpose a Banach space is needed. For i = 1,...,n let be
K; C C compact circles. On K; X K3 X...x K, we consider all holomorphic
functions f for which all derivatives ij for1<j<mnandfor0 <k <m;
are defined on K} X K3 X ... X K,. This means, that the derivatives also
exist on the boundary. With the norm

n n
”f“ = sup {6511 . 6f:f(z) l z € K1X...XI(,,,, 0 S k,‘ S m;, Zk,‘ < zm,}
i=1 i=1
this function space becomes a Banach space. We will denote this Banach
space by B and apply Banach’s fixed point theorem in it.

LeEMMA 5.1. Let fi(z:,(;) be a holomorphic solution of the differential
equation P;(0,;)f = 0 with the initial conditions

[ilG, G) = fi(¢,¢) = .. = T3¢, G) = 0 and 771Gy ) = 1.
We assume, that the functions fi(2;,(;) are defined in a neighbourhood of
circles K;. On Ky X ... x K, we define the operator

H(g)(z1y...,20) =

[ oo [ 2016) - Falzns Ca) P8y 582 ) o o

w Wn
The operator H : B — B is a linear and bounded operator. If the circles
K; are small enough, then the norm of the operator H is smaller than one.
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Proof. One easily computes, that H(g) € B. Obviously H : B — B
is linear. If one applies differential operators Bfll .. .35: for 0 < k; < my,
Yo ki < Y7o, mi to H(g) one sees, that there exists a constant M with
|H(g)] < M|g|. The constant M depends on the diameters of the circles
K;. So if the diameters of the circles K’; are small enough, the constant M
is smaller than one.

THEOREM 5.2. To the Goursat conditions ¢! at the point w = (wy,...
.oy Wy), locally in a neighbourhood K1 X ...x K, of the point w there erists
in the Banach space B a uniquely determined solution of the differential
equation

P1(0z,). .. Pu(8z,) + P(0z,...,0:,)f = 0.
Proof. The differential equation can be written in the form

P1(8:,) - Pa(3:){f + H(f)} = 0.
Let G be a solution of the differential equation P1(3,,)...Pn(0:,)f = 0
with the Goursat conditions ¢, then F, which is a solution of the integro—
differential equation
f+H(f)=G

is a solution of the differential equation
Py(8.,)...Pn(0;,) + P(0,,,...,0.,)f = 0.

Because 3fjH(f) |zj=w;=0,if 0 < k < mj —1, F fulfils the desired Goursat
conditions. According the Banach fixed point theorem, the solution F exists
and is uniquely determined in the Banach space B.

THEOREM 5.3. If the domain D, on which the differential operator is
defined, is simply connected, then there ezists a unique determined solution
of the Goursat problem.

Proof. Because such a solution exists locally, it can be analytically
continued along any path. Since the domain is simply connected, the con-
tinuation is unique.

6. The general inhomogeneous Goursat problem
Now we will solve a Goursat problem for the inhomogeneous equation

‘ Pi(0;,)...Py(8;.,) + P(8zy,..-,0,)f = g.

Because we can solve Goursat problems for the homogeneous equation, it
is enough to find a solution of the inhomogeneous equation with homoge-
neous Goursat conditions. In this context the solution of a special Goursat
problem of the homogeneous equation is very important. The Goursat con-
ditions of this special Goursat problem are defined recursively at a point
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w = (wy,...wy). It should be remarked, that the solution of the Goursat
problem depends holomorphicaly on w. Now let us define the Goursat con-
ditions. If the differential operator is an ordinary differential operator, then
we look for a solution F with the initial conditions

Fw)=F(w)=...= F("'2)(w) =0 and F("_l)(w) =1.
Let be n>1 and the differential operator P;(0,,)... P,(0,, )+ P(0,,,...,0;,)

written in the form

my My

Yoo a0 0

11=0 in=0
By F(z,w) we denote the uniquely determined solution of the homogeneous
equation with following Goursat conditions. For 0 < 7 < my — 2

6ng Izk:wk: 0 and a;r:k—lF |2k=wk: Pk

where ¢y, is a solution of the differential equation
Mig—~1 Mgy

i tk—1 glk+1 in f —
Z >y . Za,l, ke vy vitp1oin O - O YOS L0 f = 0.

11-0 tk 1-0 1k+1—0 1,.—0

Because the differential operator
ME—1 Mk41 Mp ) )
. i ik-1 gik41 i

Z Z Z Z a’ll,...lk_‘,‘lmk slk41.0ln azi e 821:—1 241 o 3z:

11=0 tx—1=014x41=0 i,=0
is a differential operator of the form 1 in C*~1, the Goursat conditions of
¢ are known by recursion.

Some abbriavations are useful. Let be

Zry 2k,
Iil,...,i,.f = f f fdzkl ...dzkr,
wkl Wi,
if ig, = ... = 4, = 1 and all the other indices are zero. Furthermore if
exclusively ¢, = ... =1, = 0 let be
(5) Pirrin = Oy 050 T F(2,0) oy =ty e, =1, -

Corresponding with the recursively defined Goursat conditions of F', the
functions defined by (5) satisfies the differential equation

Qi iying =19y ik 4100 kg = 1)Mig ik g1 reeeriky — 1My 1bkym +1eerin ¥
1 1% 2 2:%k2

i tky~1 Qlky+1 thg—1 nikg+1 ir
03 ...62,,1_182,,1“ ...8zk2_182k2+1 0 f=0
and have Goursat conditions defined above. That means, if iy = 1

mg -1
aZk Sozly ﬂn Izk—wk (’9]11 1.7n’
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k], ’

where j; = i, if | # k and jx = 0. We define functions g; """} by
S CO RS RN SO L TR EN QY (9]
gtl, in Z) = 1 5e0in zy "t Y2y 80111"'111! ’ g zll=(ll »---,Zl,=C1,
for 0 < k; < m;, where 4;,,...4;, are all those indices, which are zero.
LEMMA 6.1. Forz=1,...,n k; < m; we have
k k [ v —_— k k —_— klv k
0211 ° a "gll, dn 111 v‘na ! 6 nwily oin gi], ,’tn (Z)
and
m;, mj . kl,...,kjl_1,0,kj1+1,...,k,. _
azjl e azjm gilv"-yjl_1v11j1+1|-'-)£n -
1
+ E kl v-")kjl-lvjl(mjl _jl)vkj1+1 1'"1ku
gil!"‘ljl_lljl |j1+1""vin L
15y 1eeerij,, =0
Moreover
0,..0 _
9,.0~9-

Proof. By complete induction.

THEOREM 6.2. Let F(2q,...,2n,(1,...(n) be a solution of the homoge-

neous equation
my My
. 1 i —
E E . a,l,__,,,naz; ...a,;f =0

11=0 1,=0

fulfilling the recursively defined Goursat conditions, described above. Then
Glz1,..yzm)= [ oo [ Flz1yoyzn,Ciyen Ga)g(Crre e Cn) da .. . dCn)

is a solution of the inhomogeneous differential equation

mi Ma
PORED DETIR: PO-:Y E)

1,=0 1, =0
which fulfils homogeneous Goursat conditions at z = w.

Proof. According Lemma 6.1 the function G has homogeneous initial
conditions at the point w.
If one applies the differential operator

M],yeeyMy

Y i
Z aiy,..i, 03 ... 05"

il,...,i,. =0

to the function

G(Zla“-,zn): f fF(zla-'-’Zn’Cl’-°°Cn)g(Cl,°°°Cn)d<1-“an
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one receives

(1
(2]
(3]
[4]
(5]
(6]

MiyeesyMyg
Z i . ah in 4040000 _
allvn'ﬂnazl M 'az,.gl,...,l -
114000y =0
M1yeeesTly) =11 Mk 4119000y Tp

a; ) . ] ety —1,000e
1eeslhky =12k 1tk 410009ln gl,,,.,l,o,,,,

References

I. N. Vekua, New Methods For Solving Elliptic Equations, Amsterdam, 1967.

J. Witte, Polynomiale Differentialoperatoren in den Ableitungen nach der kom-
plexen Variablen z und der komplex konjugierten Variablen Z, Dissertation Freie
Universitat Berlin, Berlin, 1991.

J. Witte, Linear Partial Differential Operators with Holomorphic Coefficients,
Berlin 1992, to appear in ’Complex Variables’, Delaware, USA.

J. Witte, Systems of Linear Partial Differential Equations with Holomorphic Coef-
ficients, Berlin 1992, to appear in ’Complex Variables’, Delaware, USA.

J. Witte, A Generalized Pompiu Formula Related to Differential Eugations in C"
with Higher Order, Berlin 1993, submitted.

J. Witte, Integral Represantation in C* by a Generalized Riemann Function, Berlin
1994, submitted.

FREIE UNIVERSITAT BERLIN
FACHBEREICH MATHEMATIK
1. INSTITUTE

ARNIMALLEE 3

14195 BERLIN, GERMANY

Received June 8, 199).



