

Nguyen Van Mau, Pham Quang Hung

GENERALIZED $c(R)$ PROPERTY
AND INTERPOLATION PROBLEMS INDUCED
BY RIGHT INVERTIBLE OPERATORS

Dedicated to Professor Janina Wolska-Bochenek

Introduction

The general interpolation problem induced by a right invertible operator with initial operators possessing the property (c) was introduced and investigated by Przeworska-Rolewicz [7]. In [5], we give some new general conditions for the general classical interpolation problem to be well-posed and we present its unique solution in a closed form. A necessary and sufficient condition for the general interpolation problem to have unique solution was found in [3], [4]. The above listed results are based on the so-called property $c(R)$ of a given system of initial operators [7]. However, for a right invertible operator D with $\dim \ker D \geq 2$, not all the initial operators possess the property (c) (see [2]-[7]).

In this paper, we introduce the generalized $c(R)$ -property of a given system of initial operators for a right inverse R of D . Then we give the general interpolation formula for a system of initial operators possessing the generalized $c(R)$ -property.

1. Some characterizations of initial operators

Let X be a linear space over a field \mathcal{F} of scalars, where $\mathcal{F} = \mathbb{R}$ or $\mathcal{F} = \mathbb{C}$. Denote by $R(X)$ the set of all right invertible operators acting in X . For a $D \in R(X)$ we write

$$\mathcal{R}_D = \{R \in L_0(X) : DR = I\},$$

$$\mathcal{F}_D = \{F \in L_0(X) : FX = \ker D, F^2 = F \text{ and } \exists R \in \mathcal{R}_D, FR = 0\}.$$

In the sequel we assume that $\dim \ker D > 0$, i.e. D is not invertible.

DEFINITION 1. (i) Every operator $R \in \mathcal{R}_D$ is said to be a right inverse of D . (ii) Every operator $F \in \mathcal{F}_D$ such that $FR = 0$ for an $R \in \mathcal{R}_D$ is said to be an initial operator of D corresponding to R .

Let $R \in \mathcal{R}_D$. Then

$$\ker D^m = \{z_0 + Rz_1 + \dots + R^{m-1}z_{m-1}, z_k \in \ker D, k = 0, 1, \dots, m-1\}.$$

Elements of the form $z_0 + Rz_1 + \dots + R^n z_n$ are called D -polynomials of degree n if $z_n \neq 0$.

DEFINITION 2 [7]. Let $R \in \mathcal{R}_D$. An operator $F_0 \in \mathcal{F}_D$ possesses the property $c(R)$ if there exists scalars c_k such that

$$(1) \quad F_0 R^k z = \frac{c_k}{k!} z \quad \text{for all } z \in \ker D, k \in \mathbb{N}.$$

The set of all initial operators possessing the property $c(R)$ will be denoted by $\mathcal{F}_{D,R}$.

For $N \in \mathbb{N}^+$ we denote by

$$(2) \quad P_N(R) = \text{lin}\{R^k z : z \in \ker D, k = 0, 1, \dots, N-1\}.$$

The following result has been proved by Przeworska-Rolewicz in [7].

THEOREM 1. $\mathcal{F}_{D,R} = \mathcal{F}_D$ if and only if $\dim \ker D = 1$.

We now characterize initial operators having the property $c(R)$.

LEMMA 1. Let $\dim \ker D < \infty$. Then an initial operator F_0 for D has the property $c(R)$ for a right inverse R if and only if $F_0 R^k e_j = d_k e_j$, $d_k \in \mathcal{F}$, $k \in \mathbb{N}$, $j = 1, 2, \dots, s$, where (e_1, \dots, e_s) is a basis of $\ker D$.

The proof is an immediate consequence of Definition 2.

DEFINITION 3. Let $R \in \mathcal{R}_D$ and let $F_k \in \mathcal{F}_D$ ($k = 1, 2, \dots, n$). Then the system (F_1, \dots, F_n) is said to have the generalized $c(R)$ -property if there are nontrivial subspaces Z_1, \dots, Z_s of $\ker D$ such that

$$(3) \quad \ker D = \bigoplus_{j=1}^s Z_j$$

and $F_k R^j z_\nu = c_{kj\nu} z_\nu$ for all $z_\nu \in Z_\nu$, $c_{kj\nu} \in \mathcal{F}$ ($\nu = 1, 2, \dots, s$; $k = 1, 2, \dots, n$; $j = 0, 1, 2, \dots$).

Definition 3 and Lemma 1 together imply that every system (F_1, \dots, F_n) possessing the property $c(R)$ has the generalized $c(R)$ -property.

The following example shows that there are systems of initial operators with the generalized $c(R)$ -property which do not have the $c(R)$ -property.

EXAMPLE. Let $X = C(\mathbb{R})$, $D = d^2/dt^2$, $R = \int_0^t \int_0^s$. A basis of $\ker D^2$ is $\{1, t\}$, i.e. $e_1(t) \equiv 1$, $e_2(t) \equiv t$. Consider operators F_k given by

$$(F_k x)(t) = x(0) + tx'(0) + \frac{1}{2}(1+t)x''(k) + \frac{1}{2}(1-t)x''(-k) \quad (k = 0, 1).$$

It is easy to check that $F_k \in \mathcal{F}_D$, $\ker D = Z_1 \oplus Z_2$, where $Z_1 = \text{lin}\{e_1\}$, $Z_2 = \text{lin}\{e_2\}$ and

$$F_k R^j e_1 = \frac{k^{2j-2}}{(2j-2)!} e_1, \quad F_k R^j e_2 = \frac{k^{2j-1}}{(2j-1)!} e_2, \quad j = 1, 2, \dots$$

Hence, the system (F_1, F_2) possesses the generalized $c(R)$ -property but does not have the $c(R)$ -property.

Let (F_1, F_2, \dots, F_n) be a system possessing the generalized $c(R)$ -property with respect to a system of nontrivial subspaces (Z_1, \dots, Z_s) of $\ker D$, i.e.

$$(4) \quad F_k R^j z_\nu = c_{kj\nu} z_\nu \quad \text{for all } z_\nu \in Z_\nu, \quad c_{kj\nu} \in \mathcal{F} \\ (\nu = 1, \dots, s; k = 1, \dots, n; j = 0, 1, \dots).$$

Denote by

$$(5) \quad V_n^{(\nu)} = \det(c_{kj-1\nu})_{k,j=1}^n,$$

$$(6) \quad \widehat{F}_i = (F_1, F_1 R, \dots, F_1 R^{n-1}), \quad i = 1, \dots, n,$$

$$(7) \quad c_i^{(\nu)} = (c_{i0\nu}, c_{i1\nu}, \dots, c_{in-1\nu}), \quad i = 1, \dots, n.$$

LEMMA 2. For every $\nu \in \{1, 2, \dots, s\}$, the system of vectors $\widehat{F}_1, \dots, \widehat{F}_n$ defined by (6) is linearly independent on Z_ν if and only if every system $\{c_1^{(\nu)}, \dots, c_n^{(\nu)}\}$, $\nu = 1, 2, \dots, s$, where $c_i^{(\nu)}$ are defined by (7), is linearly independent.

Proof. Let $\{\widehat{F}_1, \dots, \widehat{F}_n\}$ be linearly independent on Z_ν , i.e. the equality

$$\sum_{i=1}^n \alpha_i \widehat{F}_i z_\nu = 0 \quad \text{for all } z_\nu \in Z_\nu, \quad \alpha_i \in \mathcal{F} \quad (i = 1, 2, \dots, n)$$

implies $\alpha_1 = \alpha_2 = \dots = \alpha_n = 0$. Let ν be fixed ($1 \leq \nu \leq s$) and let $\sum_{i=1}^n \beta_i c_i^{(\nu)} = 0$, i.e. $\sum_{i=1}^n \beta_i c_{ij\nu} = 0$ for $j = 0, 1, \dots, n-1$. Then

$$\sum_{i=1}^n \beta_i c_{ij\nu} z_\nu = 0 \quad \text{for all } z_\nu \in Z_\nu, \quad j = 0, 1, \dots, n-1,$$

i.e.

$$\sum_{i=1}^n \beta_i \widehat{F}_i z_\nu = 0 \quad \text{for all } z_\nu \in Z_\nu.$$

Hence $\beta_i = 0$ for $i = 1, 2, \dots, n$.

Conversely, if $\{c_1^{(\nu)}, \dots, c_n^{(\nu)}\}$ is linearly independent for some $\nu \in \{1, 2, \dots, s\}$, then $\{\widehat{F}_1, \dots, \widehat{F}_n\}$ is linearly independent on Z_ν .

COROLLARY 1. *Let $\{F_1, \dots, F_n\}$ be a system of initial operators on D having the generalized $c(R)$ -property with respect to subspaces Z_1, \dots, Z_s of $\ker D$. Let $\nu \in \{1, 2, \dots, s\}$. Then $V_n^{(\nu)} \neq 0$ if and only if the system $\{F_1 R^k, \dots, F_n R^k\}$ is linearly independent on Z_ν for every $k \in \{0, 1, \dots, n-1\}$.*

In the sequel, we assume that the system of initial operators $\{F_1, \dots, F_n\}$ possesses generalized $c(R)$ -property with respect to $Z_1, \dots, Z_s \subset \ker D$.

THEOREM 2. *$V_n^{(\nu)} \neq 0$ if and only if the system $\{F_1, \dots, F_n\}$ is linearly independent on $P_{n\nu}(R)$, where $P_{n\nu}(R) = \text{lin}\{z_\nu, Rz_\nu, \dots, R^{n-1}z_\nu\}$, $z_\nu \in Z_\nu$.*

Proof. By Corollary 1, $V_n^{(\nu)} \neq 0$ if and only if for every $k \in \{0, 1, \dots, n-1\}$ the system $\{F_1 R^k, \dots, F_n R^k\}$ is linearly independent on Z_ν , i.e. the equality

$$\sum_{i=1}^n \alpha_i F_i R^k z_\nu = 0 \quad \text{for all } z_\nu \in Z_\nu, \alpha_i \in \mathcal{F}$$

implies $\alpha_i = 0$ for $i = 1, 2, \dots, n$. It means that

$$\sum_{k=0}^{n-1} \lambda_{k\nu} \sum_{i=1}^n \alpha_i F_i R^k z_\nu = 0 \quad \text{for all } \lambda_{k\nu} \in \mathcal{F}$$

if and only if

$$\sum_{i=1}^n \alpha_i F_i \left(\sum_{k=0}^{n-1} \lambda_{k\nu} R^k z_\nu \right) = 0,$$

i.e.

$$\sum_{i=0}^n \alpha_i F_i y_\nu = 0 \quad \text{for all } y_\nu \in P_{n\nu}(R).$$

2. General interpolation problem

We shall consider the following problem:

Given n finite sets I_i of non-negative integers with powers $\#I_i = r_i$, and let $r_1 + r_2 + \dots + r_n = N$.

Find a D -polynomial u of degree $N - 1$ satisfying N conditions

$$(8) \quad F_i D^k u = u_{ik} \quad (k \in I_i, i = 1, 2, \dots, n),$$

where $u_{ik} \in \ker D$ are given.

The above problem we shall call general interpolation problem.

Since

$$(9) \quad u = z_1 + Rz_2 + \dots + R^{N-1}z_N, \quad z_j \in \ker D, \quad R \in \mathcal{R}_D,$$

we have to determine all elements z_j .

DEFINITION 4. The general interpolation problem is said to be well-posed if it has a unique solution for every $u_{ik} \in \ker D$. If either there exists u_{ik} such that the problem has no solutions or the corresponding problem with $u_{ik} = 0$ ($k \in I_i, i = 1, \dots, n$) has at least one nontrivial solution then this problem is said to be ill-posed. By the assumption, the system of initial operators F_1, \dots, F_n possesses the generalized $c(R)$ -property with respect to subspace Z_ν , i.e.

$$(10) \quad F_i R^k z_{m\nu} = c_{ikm\nu} z_\nu \quad \text{for all } z_{m\nu} \in Z_\nu$$

($i = 1, \dots, n; k \in I_i, m = 1, \dots, N; \nu = 1, \dots, s$). We assume that elements of sets I_i are ordered r_i -tuples (k_1, \dots, k_{r_i}) with $0 \leq k_1 \leq k_2 \dots \leq k_{r_i}$.

Then (8) is of the form

$$(11) \quad F_i D^{k_i} u = u_{ik_i} \in Z_\nu.$$

Rewrite (9) in the form

$$(12) \quad u = \sum_{\nu=1}^s \sum_{m=1}^N R^{m-1} z_{m\nu}, \quad z_{m\nu} \in Z_\nu.$$

Then

$$\begin{aligned} F_i D^{k_i} u &= \sum_{\nu=1}^s \sum_{m=1}^N F_i D^{k_i} R^{m-1} z_{m\nu} \\ &= \sum_{\nu=1}^s \sum_{m=k_i-1}^N c_{i(m-k_i-1)m\nu} z_\nu. \end{aligned}$$

These equalities and (11) together imply

$$(13) \quad \sum_{m=k_i-1}^N c_{i(m-k_i-1)m\nu} z_{m\nu} = u_{ik_i\nu}.$$

Write: $u_{ik_i\nu} = u_{l\nu}$ for $l = r_0 + r_1 + \dots + r_i + k_i - 1$, $r_0 = 0$. Then (13) is of the form

$$\sum_{m=1}^N d_{lm}^{(\nu)} z_{m\nu} = u_{l\nu},$$

where $d_{im}^{(\nu)}$ are determined by coefficients $c_{i(m-k_i-1)m\nu}$ from (13).

LEMMA 3. Let $G^{(\nu)} = (d_{lm}^{(\nu)})_{l,m=1}^N$, where $\nu \in \{1, 2, \dots, s\}$. Then the system of vectors

$$\widehat{F}_i^{(k_i)} = (F_i D^{k_i}, F_i D^{k_i-1}, \dots, F_i, F_i R, \dots, F_i R^{N-1-k_i}),$$

$$i = 1, \dots, n; j = 1, \dots, r_i$$

is linearly independent on Z_ν if and only if $\text{Rank } G^{(\nu)} = N$.

Proof. Suppose that $\text{Rank } G^{(\nu)} = N$, i.e. the system $d_{lm}^{(\nu)}$ is linearly independent and

$$\sum_{i=1}^n \sum_{j=1}^{r_i} a_{ij} \widehat{F}_i^{(k_i)} z_{m\nu} \quad \text{for all } z_{m\nu} \in Z_\nu, a_{ij} \in \mathcal{F}.$$

Hence, we have for a fixed m ($1 \leq m \leq N$)

$$\sum_{i=1}^n \sum_{j=1}^{r_i} a_{ij} F_i D^{k_i} R^{m-1} z_{m\nu} = 0 \quad \text{for all } z_{m\nu} \in Z_\nu.$$

By (10), this implies

$$\begin{aligned} \sum_{m=1}^N b_m \sum_{i=1}^n \sum_{j=1}^{r_i} a_{ij} F_i D^{k_i} R^{m-1} z_{m\nu} &= \sum_{i=1}^n \sum_{j=1}^{r_i} a_{ij} F_i \sum_{m=1}^N b_m D^{k_i} R^{m-1} z_{m\nu} \\ &= \sum_{i=1}^n \sum_{j=1}^{r_i} a_{ij} F_i \sum_{m=k_j-1}^N b_m R^{m-k_j-1} z_{m\nu} \\ &= \sum_{i=1}^n \sum_{j=1}^{r_i} a_{ij} \sum_{m=k_j-1}^N b_m F_i R^{m-k_j-1} z_{m\nu} \\ &= \sum_{i=1}^n \sum_{j=1}^{r_i} a_{ij} \sum_{m=k_j-1}^N b_m c_{i(m-k_j-1)m\nu} z_{m\nu}. \end{aligned}$$

The arbitrary choice both $z_{m\nu} \in Z_\nu$ and $b_m \in \mathcal{F}$ imply that

$$\sum_{i=1}^n \sum_{j=1}^{r_i} a_{ij} d_{lm}^{(\nu)} = 0,$$

i.e. $a_{ij} = 0$ for $i = 1, 2, \dots, n; j = 1, 2, \dots, r_i$.

Conversely, suppose that the system $\{\widehat{F}_i^{(k_i)}\}$ ($i = 1, 2, \dots, n; j = 1, 2, \dots, r_i$) is linearly independent on Z_ν and that

$$\sum_{i=1}^n \sum_{j=1}^{r_i} a_{ij} d_{lm}^{(\nu)} = 0, \quad a_{ij} \in \mathcal{F}.$$

This means that

$$(14) \quad \sum_{i=1}^n \sum_{j=1}^{r_i} a_{ij} c_{i(m-k-1)m\nu} = 0, \quad m = 1, 2, \dots, N.$$

Since $\dim Z_\nu \neq 0$, (14) is equivalent to

$$\sum_{i=1}^n \sum_{j=1}^{r_i} a_{ij} c_{i(m-k-1)m\nu} z_{m\nu} = 0, \quad \text{for all } z_{m\nu} \in Z_\nu.$$

According to (10), these equalities can be written as follows

$$\sum_{i=1}^n \sum_{j=1}^{r_i} a_{ij} \widehat{F}_i^{(k_j)} z_{m\nu} = 0, \quad \text{for all } z_{m\nu} \in Z_\nu.$$

Now our assumption implies that $a_{ij} = 0$ ($i = 1, 2, \dots, n$; $j = 1, 2, \dots, r_i$), which was to be proved.

THEOREM 3. *Let ν be fixed ($\nu \in \{1, 2, \dots, n\}$). Then $V_n^{(\nu)} := \det G^{(\nu)} \neq 0$ if and only if the system $\{F_{ik_j}; i = 1, \dots, n; j = 1, \dots, r_i\}$, where*

$$\widehat{F}_i^{(k_j)} = (F_{ik_j}, F_{ik_j} R, \dots, F_{ik_j} R^{N-1})$$

is linearly independent on $P_{N\nu}(R)$.

Proof. Suppose that $\det G^{(\nu)} \neq 0$. By Lemma 3, the vector operators $\{\widehat{F}_i^{(k_j)}\}$ ($i = 1, \dots, n$; $j = 1, \dots, r_i$) are linearly independent on Z_ν . Hence, for every fixed index m ($1 \leq m \leq N$) the operators $F_{ik_j} R^{m-1}$ ($i = 1, \dots, n$; $j = 1, \dots, r_i$) are linearly independent on Z_ν . This means that the system of operators $F_{ik_j} = F_i D^{k_j}$ ($i = 1, \dots, n$; $j = 1, \dots, r_i$) is linearly independent on $P_{N\nu}(R)$.

Conversely, suppose that F_{ik_j} ($i = 1, \dots, n$; $j = 1, \dots, r_i$) are linearly independent on $P_{N\nu}(R)$. By Lemma 3, in order to prove that $\det G^{(\nu)} \neq 0$ it is enough to show that the system $\{\widehat{F}_i^{(k_j)}\}$ is linearly independent on Z_ν . Let

$$\sum_{i=1}^n \sum_{j=1}^{r_i} a_{ij} \widehat{F}_i^{(k_j)} z_{m\nu} = 0, \quad \text{for all } z_{m\nu} \in Z_\nu; \quad a_{ij} \in \mathcal{F},$$

i.e.

$$\sum_{i=1}^n \sum_{j=1}^{r_i} a_{ij} F_i D^{k_j} R^{m-1} z_{m\nu} = 0$$

for every fixed m ($1 \leq m \leq N$) and for all $z_{m\nu} \in Z_\nu$. Hence

$$\sum_{m=1}^N b_m \sum_{i=1}^n \sum_{j=1}^{r_i} a_{ij} F_i D^{k_j} R^{m-1} z_{m\nu} = 0,$$

so

$$\sum_{i=1}^n \sum_{j=1}^{r_i} a_{ij} F_i D^{k_j} \sum_{m=1}^N b_m R^{m-1} z_{m\nu} = 0 \quad \text{for all } z_{m\nu} \in Z_\nu, b_m \in \mathcal{F}.$$

This means that

$$\sum_{i=1}^n \sum_{j=1}^{r_i} a_{ij} F_i D^{k_j} R^{m-1} x = 0 \quad \text{for all } x \in P_{N\nu}(R).$$

Thus, by the assumption on the system $\{F_i D^{k_j}\}$ we get $a_{ij} = 0$ ($i = 1, \dots, n$; $j = 1, \dots, r_i$).

Lemma 3 and Theorem 3 together imply the following

THEOREM 4. *The general interpolation problem is well-posed if and only if the system of vectors $\{F_i D^{k_j}; i = 1, \dots, n; j = 1, \dots, r_i\}$ is linearly independent on every set $P_{N\nu}(R)$ ($\nu = 1, \dots, s$).*

THEOREM 5. *If $V_N^{(\nu)} = \det G^{(\nu)} \neq 0$ for all $\nu \in \{1, \dots, s\}$, then the unique solution of the general interpolation problem is of the form*

$$(15) \quad u = u^{(1)} + \dots + u^{(s)},$$

where

$$u^{(\nu)} = \sum_{j=1}^N V_{Nj}^{(\nu)}(R) u_{j\nu},$$

$$V_{Nj}^{(\nu)}(R) = \frac{1}{V_N^{(\nu)}} \sum_{k=1}^N (-1)^{k+j} V_{Njk}^{(\nu)} R^{k-1}$$

and $V_{Njk}^{(\nu)}$ is the minor determinant obtained by cancelling in $V_N^{(\nu)}$ the $(j-1)$ -st row and $(k-1)$ -st column.

Proof. Every solution of the general interpolation problem is of the form

$$u = \sum_{\nu=1}^s \sum_{m=1}^N R^{m-1} z_{m\nu},$$

where $z_{1\nu}, \dots, z_{N\nu}$ ($\nu = 1, 2, \dots, s$) are to be determined by the system (13). By the assumption, the determinant $V_N^{(\nu)}$ of the system (13) is different from zero. Thus, by the Cramer formulae, the unique solution of (13) is of the form (15).

As applications of Theorems 3-5, we shall give classical interpolation problems for right invertible operators

(a) *Hermite interpolation problem.* If $I_i = \{0, 1, \dots, r_i - 1\}$, then we have the following interpolation problem: Find a D -polynomial u of degree $N - 1$ which for given n ($n \leq N$) different initial operators F_1, \dots, F_n admits given values together with $D^k u$ up to order $r_j - 1$, i.e. find a solution of the Hermite interpolation problem:

$$F_i D^j u = u_{ij}, \quad i = 1, \dots, n; \quad j = 1, \dots, r_j - 1,$$

where $r_1 + r_2 + \dots + r_n = N$; $u_{ij} \in \ker D$ are given, $u = z_1 + Rz_2 + \dots + R^{N-1}z_N$ for $R \in \mathcal{R}_D$ and z_1, \dots, z_N are to be determined.

THEOREM 6. Suppose that $D \in R(X)$ and the system of initial operators $\{F_1, \dots, F_n\}$ possesses the generalized $c(R)$ -property with respect to subspaces Z_1, \dots, Z_s of $\ker D$. Then the Hermite interpolation problem has a unique solution if and only if the system of operators $\{F_i D^j\}$ ($i = 1, \dots, n$; $j = 1, \dots, r_i - 1$) is linearly independent on every $P_{N,\nu}(R)$. If this condition is satisfied, then the unique solution is determined by

$$u = \sum_{\nu=1}^s \sum_{j=1}^{N-1} V_{Nj}^{(\nu)}(R) u_{j\nu}.$$

Here

$$V_{Nj}^{(\nu)}(R) = \frac{1}{V_N^{(\nu)}} \sum_{k=0}^{N-1} (-1)^{k+j} V_{Njk}^{(\nu)} R^k$$

and $V_{Njk}^{(\nu)}$ is the minor determinant obtained by cancelling in $V_N^{(\nu)}$ the j -th row and the k -th column and elements $u_{0\nu}, \dots, u_{N-1\nu}$ are defined by the equalities

$$\begin{aligned} u_{q\nu} &= u_{1q\nu} \quad \text{for } q = 0, 1, \dots, r_1 - 1, \\ u_{(r_1+q)\nu} &= u_{2q\nu} \quad \text{for } q = 0, 1, \dots, r_2 - 1, \\ &\dots \\ u_{(r_1+\dots+r_{n-1}+q)\nu} &= u_{nq\nu} \quad \text{for } q = 0, 1, \dots, r_n - 1. \end{aligned}$$

(b) *Lagrange interpolation problem.* If $I_i = \{0\}$ for $i = 1, \dots, n$, then we obtain the Lagrange interpolation problem: Find a D -polynomial of degree $n - 1$ which for given different initial operators F_1, \dots, F_n admits given values

$$F_i u = u_i, \quad u_i \in \ker D \text{ are given, } u = z_1 + Rz_2 + \dots + R^{n-1}z_n$$

for $R \in \mathcal{R}_D$ and z_1, z_2, \dots, z_n are to be determined.

THEOREM 7. Suppose that $D \in R(X)$ and the system $\{F_1, \dots, F_n\}$ possesses the generalized $c(R)$ -property with respect to subspaces Z_1, Z_2, \dots, Z_s of $\ker D$. Then the Lagrange interpolation problem has a unique solution if

and only if the system $\{F_1, \dots, F_n\}$ is linearly independent on $P_n(R)$. If this condition is satisfied, then the unique solution is of the form

$$u = \sum_{\nu=1}^s \sum_{j=1}^{n-1} V_{nj}^{(\nu)}(R) u_{j\nu},$$

where

$$V_{nj}^{(\nu)}(R) = \frac{1}{V_N^{(\nu)}} \sum_{k=0}^{n-1} (-1)^{k+j} V_{njk}^{(\nu)} R^k$$

and $V_{njk}^{(\nu)}$ is the minor determinant obtained by cancelling in $V_n^{(\nu)}$ the j -th row and k -th column.

Acknowledgement. The authors wish to thank Professor Przeworska-Rolewicz for her helpful comments.

References

- [1] Ch. Hermite, *Sur la formule d'interpolation de Lagrange*, J. Reine Angew. Math. 84 (1978), 70–79.
- [2] W. Karwowski, D. Przeworska-Rolewicz, *Green operators for linear boundary value problems with a right invertible operator D^N* , Math. Nachrichten, 152 (1991), 21–34.
- [3] Nguyen Van Mau, *Interpolation problems induced by right and left invertible operators and its applications to singular integral equations*, Demonstratio Math., 20 (1990), 191–212.
- [4] Nguyen Van Mau, *Boundary value problems and controllability of linear systems with right invertible operators*, Dissertationes Math., CCC XVI, Warszawa 1992.
- [5] Nguyen Van Mau and Pham Quang Hung, *On the general classical interpolation problem*, Journal of Science, special issue on Mathematics, Hanoi University -1993, 2–6.
- [6] D. Przeworska-Rolewicz, *Algebraic Analysis*, PWN - Polish Scientific Publishers and D. Reidel Publishing Company, Warszawa/Dordrecht, 1988.
- [7] D. Przeworska-Rolewicz, *Property (c) and interpolation formulae induced by right invertible operators*, Demonstratio Math., 21 (1988), 1023–1044.
- [8] D. Przeworska-Rolewicz and S. Rolewicz, *Equations in linear spaces*, Monografie Matematyczne 47, PWN - Polish Scientific Publishers, Warszawa 1968.
- [9] M. Tasche, *A unified approach to interpolation methods*, J. Integral Equations, 4 (1982), 55–75.

UNIVERSITY OF HANOI
DEPARTMENT OF MATHEMATICS
90 Nguyen Trai, Dong da,
HANOI, VIETNAM

Received June 6, 1994.