

Dariusz Bugajewski

**ON DIFFERENTIAL AND INTEGRAL EQUATIONS
IN LOCALLY CONVEX SPACES**

Dedicated to Professor Janina Wolska-Bochenek

In this paper we investigate continuous solutions of some integral equations in sequentially complete locally convex spaces containing a compact barrel. Moreover, we prove a Kneser-type theorem for the Darboux problem in this class of spaces.

1. Introduction

Consider the following initial value problem

$$(1) \quad x' = f(t, x), \quad x(0) = x_0,$$

where f is a bounded continuous function with values in a quasi-complete locally convex space E . Millionščikov [9] and Hukuhara [4] proved that the problem (1) has a solution if the function f is compact or it satisfies the Kamke condition. Later many authors have studied the existence of solutions of (1) under different assumptions on E or f (e.g. see [1], [8], [10]). Moreover, in recent years there have appeared papers concerning integral equations in locally convex spaces (e.g. see [5], [11]).

In this paper we shall assume that the considered locally convex Hausdorff space over \mathbb{R} is sequentially complete and contains a compact barrel.

We shall prove a Kneser-type theorem for continuous solution set of the nonlinear Volterra integral equation

$$(2) \quad x(t) = g(t) + \int_{A(t)} f(t, s, x(s)) ds, \quad t \in A$$

and an existence theorem for continuous solutions of the Urysohn integral

equation

$$(3) \quad x(t) = g(t) + \lambda \int_A f(t, s, x(s)) ds, \quad t \in A, \lambda \in \mathbb{R},$$

considered in the space E , where $A = [0, a_1] \times [0, a_2] \times \dots \times [0, a_n]$, ($a_i > 0$, $i = 1, \dots, n$) and $A(t) = \{s \in \mathbb{R}^n : 0 \leq s_i \leq t_i, i = 1, \dots, n\}$. In the above equations the sign “ \int ” stands for the Riemann integral.

Moreover, in Section 3 we obtain a Kneser-type theorem for the Darboux problem as a corollary from the corresponding result for the equation (2).

2. Volterra integral equation

A useful tool in our considerations will be the following

LEMMA 1 (Astala [1]). *E is sequentially complete locally convex space containing a compact barrel iff*

$$E = (X', \tau),$$

where X' is the dual of a barrelled normed space X and τ is a locally convex topology of X' that is stronger than the w^* -topology but weaker than the topology of precompact convergence; briefly

$$\sigma(X', X) \leq \tau \leq \lambda(X', X).$$

By the above lemma we can use in the space E the notion of the norm.

Consider the equation (2). We assume that the functions $g : A \rightarrow E$ and $f : A^2 \times E \rightarrow E$ are continuous. Now we shall prove the following Kneser-type theorem which is the main result of our paper.

THEOREM 1. *Under the above assumptions there exists a set*

$$J = [0, d_1] \times [0, d_2] \times \dots \times [0, d_n] \subset A$$

such that the set S of all continuous solutions of (2), defined on J , is nonempty, compact and connected in the space $C(J, E)$ of all continuous functions $J \rightarrow E$ with the topology of uniform convergence.

The above result extends Th. 3.1 from [2].

Proof. Let r be any positive number. Since the ball $B_r = \{x \in E : \|x\| \leq r\}$ is convex, balanced, closed and sequentially complete, so in view of the Banach–Mackey theorem ([6], p.91) it is absorbing by the barrel and therefore it is compact. Hence for every number $r > 0$ there exists a number $m_r > 0$ such that

$$\|f(t, s, x)\| \leq m_r \quad \text{for } t, s \in A \text{ and } x \in B_r.$$

Let $c = \sup_{t \in A} \|g(t)\|$ and $\rho = \sup_{r > 0} (r - c)/(m_r)$. Choose a number $e < \rho$. Then there exists $b > 0$ such that $c + m_b e < b$. Choose numbers d_i , $1 \leq i \leq n$

in such a way that $0 < d_i \leq a_i$ for $i = 1, \dots, n$ and $d_1 d_2 \dots d_n < e$. Let $J = [0, d_1] \times [0, d_2] \times \dots \times [0, d_n]$. In the space \mathbb{R}^n we introduce the norm defined by the formula

$$\|t\| = \max \left(|t_1|, \frac{d_1}{d_2} |t_2|, \dots, \frac{d_1}{d_n} |t_n| \right) \quad \text{for } t = (t_1, t_2, \dots, t_n).$$

Then $J = \{t \in \mathbb{R}^n : t \geq 0, \|t\| \leq d_1\}$. Denote by \tilde{B} the set of all continuous functions $J \rightarrow B_b$. We shall consider \tilde{B} as a subspace of $C(J, E)$. Put

$$G(x)(t) = g(t) + \int_{A(t)} f(t, s, x(s)) ds \quad t \in J, x \in \tilde{B}.$$

Since

$$\begin{aligned} G(x)(t) - G(x)(\tau) &= g(t) - g(\tau) + \int_{A(t)} f(t, s, x(s)) ds - \int_{A(\tau)} f(\tau, s, x(s)) ds = \\ &= g(t) - g(\tau) + \int_{A(t)} (f(t, s, x(s)) - f(\tau, s, x(s))) ds + \\ &\quad + \int_{A(t) \setminus A(\tau)} f(\tau, s, x(s)) ds - \int_{A(\tau) \setminus A(t)} f(\tau, s, x(s)) ds, \\ &\int_{A(t) \setminus A(\tau)} \|f(\tau, s, x(s))\| ds \leq \mu(A(t) \setminus A(\tau)) m_b \leq m_b d_2 d_3 \dots d_n \|t - \tau\| \end{aligned}$$

and

$$\begin{aligned} \|G(x)(t)\| &\leq \|g(t)\| + \int_{A(t)} \|f(t, s, x(s))\| ds \leq c + \mu(A(t)) m_b \leq \\ &\leq c + m_b d_2 d_3 \dots d_n \|t\| \end{aligned}$$

for $x \in \tilde{B}$, $t, \tau \in J$ (μ denotes here the Lebesgue measure in \mathbb{R}^n), so $G(\tilde{B}) \subset \tilde{B}$ and the family $G(\tilde{B})$ is equiuniformly continuous. Moreover, in view of the Krasnoselskii–Krein-type lemma (cf. [7]) we deduce that G is continuous.

For any $\varepsilon > 0$ denote by S_ε the set of all $x \in \tilde{B}$ such that $\|x(t) - G(x)(t)\| < \varepsilon$ for every $t \in J$. Before passing to further considerations, we shall quote the following

LEMMA 2 ([3]). *For every $\varepsilon > 0$ such that $\varepsilon < b - c - m_b d_1 d_2 \dots d_n$, the set S_ε is nonempty and connected.*

Now we return to the proof of Th. 1. First, we shall show that the set S is nonempty. By Lemma 2, there exists a sequence (u_k) such that $u_k \in \tilde{B}$ for $k \in \mathbb{N}$ and

$$(4) \quad \lim_{k \rightarrow \infty} \sup_{t \in J} \|u_k(t) - G(u_k)(t)\| = 0.$$

Let $V = \{u_k : k \in \mathbb{N}\}$. Since $u_k = (u_k - G(u_k)) + G(u_k)$ for $k \in \mathbb{N}$, so V is equiuniformly continuous. As E contains a compact barrel, so by the Banach–Mackey theorem every bounded subset of E is relatively compact. Hence $V(t) = \{u_k(t) : k \in \mathbb{N}\}$ is relatively compact for every $t \in J$. In view of Ascoli's theorem ([6], pp. 80–81) we conclude that the sequence (u_k) has a limit point u . From (4) and the continuity of G it is clear that $u = G(u)$, so $u \in S$.

Further, since G is continuous, so S is closed in $C(J, E)$. As $S = G(S)$, therefore using similar arguments as above, we deduce that S is compact in $C(J, E)$.

To prove that S is connected it is enough to apply standard arguments as for example in [3]. The proof is completed.

3. Darboux problem

Let $B = \{z \in E : \|z\| \leq b\}$, $A = [0, a_1] \times [0, a_2]$ ($a_1, a_2 > 0$) and let $f : A \times B \rightarrow E$ be a continuous function. By the Banach–Mackey theorem there exists a number $M > 0$ such that $\|f(x, y, z)\| \leq M$ for $(x, y, z) \in A \times B$. Choose positive numbers d_1, d_2 such that $d_1 \leq a_1$, $d_2 \leq a_2$ and $M d_1 d_2 < b$. Put $J = [0, d_1] \times [0, d_2]$. Let us consider the following problem

$$(5) \quad \frac{\partial^2 z}{\partial x \partial y} = f(x, y, z), \quad (x, y) \in J,$$

$$z(x, 0) = 0, \quad 0 \leq x \leq d_1, \quad z(0, y) = 0, \quad 0 \leq y \leq d_2,$$

where $\frac{\partial^2 z}{\partial x \partial y}$ denotes the mixed second derivative of z .

We shall prove the following

THEOREM 2. *Under the above assumptions the set S of all solutions of (5), defined on J , is nonempty, compact and connected in $C(J, E)$.*

P r o o f. As E is sequentially complete and f is continuous, so the problem (5) is equivalent to the following integral equation

$$(6) \quad z(x, y) = \iint_0^x \int_0^y f(\xi, \eta, z(\xi, \eta)) d\xi d\eta, \quad (x, y) \in J,$$

where the sign “ \iint ” stands for the Riemann integral.

In the space \mathbb{R}^2 we introduce the norm defined by the formula

$$\|t\| = \max \left(|t_1|, \frac{d_1}{d_2} |t_2| \right) \quad \text{for } t = (t_1, t_2).$$

Then $J = \{t \in \mathbb{R}^2 : t \geq 0, \|t\| \leq d_1\}$. Putting $A(t) = \{s \in \mathbb{R}^2 : 0 \leq s \leq t\}$ for $t \in J$, we can write the equation (6) in the form

$$(7) \quad z(t) = \int_{D(t)} f(s, z(s)) ds,$$

Applying now Th. 1 we see that the set S is nonempty, compact and connected in $C(J, E)$, because it coincides with the set of all continuous solutions of (7) on J .

4. Urysohn integral equation

In this section we shall consider the equation (3). As in the Section 2 assume that the functions $g : A \rightarrow E$ and $f : A^2 \rightarrow E$ are continuous. Now we shall prove the following

THEOREM 3. *Under the above assumptions there exists $\eta > 0$ such that for $\lambda \in \mathbb{R}$ with $|\lambda| < \eta$, the equation (3) has a continuous solution defined on A .*

P r o o f. Similarly as in Section 2 we deduce that for any number $r > 0$ there exists a number $m_r > 0$ such that

$$\|f(t, s, x)\| \leq m_r \quad \text{for } t, s \in A \text{ and } \|x\| \leq r.$$

Let $c = \sup_{t \in A} \|g(t)\|$ and $\eta = \sup_{r > 0} (r - c)/(am_r)$. Choose $\lambda \in \mathbb{R}$ with $|\lambda| < \eta$. Hence there exists a number $b > 0$ such that $c + |\lambda|am_b < b$. Denote by \tilde{B} the set of all continuous functions $A \rightarrow B_b$. We shall consider \tilde{B} as a topological subspace $C(A, E)$. Define

$$G(x)(t) = g(t) + \lambda \int_A f(t, s, x(s)) ds, \quad t \in A, x \in \tilde{B}.$$

It can be easily verified that G is a continuous mapping of \tilde{B} into itself. Again, by the Krasnoselskii–Krein-type lemma the family $G(\tilde{B})$ is equiuniformly continuous. Let $V = \overline{\text{conv}} G(\tilde{B})$. Then V is also equiuniformly continuous and $V(t) = \{x(t) : x \in V\}$ is relatively compact for every $t \in A$. By Ascoli's theorem we deduce that V is compact. From the Schauder–Tychonoff theorem it follows that the mapping $G|_V$ has a fixed point. Obviously this completes the proof of Th. 3.

References

- [1] K. Astala, *On Peano's theorem in locally convex spaces*, Studia Math., 73 (1982), 213–223.
- [2] D. Bugajewski, *On the Volterra integral equation in locally convex spaces*, Demonstratio Math., 25 (1992), 747–754.
- [3] D. Bugajewski and S. Szufla, *Kneser's theorem for weak solutions of the Darboux problem in Banach spaces*, Nonlinear Analysis 20(2) (1993), 169–173.
- [4] M. Hukuhara, *Théorems fondamentaux de la théorie des équations différentielles ordinaires dans l'espace vectorial topologique*, J. Fac. Sci. Univ. Tokyo, Sec. I, 8(1) (1959), 111–138.
- [5] J. Januszewski and S. Szufla, *On the Urysohn integral equation in locally convex spaces*, Publ. Inst. Math., 51(65) (1992), 77–80.
- [6] J. L. Kelley and I. Namioka, *Linear topological spaces*, Van Nostrand, Princeton, 1963.
- [7] M. A. Krasnoselskii and S. G. Krein, *K teorii obyknovennych differencialnykh uravnenij v banachovych prostranstvach*, Trudy Semin. Funkc. Anal. Voronež. Univ., 2 (1956), 3–23.
- [8] R. Lemmert, *On ordinary differential equations in locally convex spaces*, 10(12) (1986), 1385–1390.
- [9] W. Millionscikov, *K teorii obyknovennych differencialnykh uravnenij v lokalno vypuklych prostranstvach*, Dokl. Akad. Nauk SSSR, 131 (1960), 510–513.
- [10] S. Szufla, *On the equation $x' = f(t, x)$ in locally convex spaces*, Math. Nachr., 118 (1984), 179–185.
- [11] S. Szufla, *On the Kneser–Hukuhara property for integral equation in locally convex spaces*, Bull. Austral. Math. Soc., 36 (1987), 353–360.

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE
 A. MICKIEWICZ UNIVERSITY
 ul. Matejki 48/49
 60-769 POZNAŃ, POLAND

Received May 6, 1994.