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In this paper we investigate continuous solutions of some integral equa-
tions in sequentially complete locally convex spaces containing a compact 
barrel. Moreover, we prove a Kneser-type theorem for the Darboux problem 
in this class of spaces. 

1. Introduction 
Consider the following initial value problem 

(1) x' = f(t,x), x(0) = x0, 

where / is a bounded continuous function with values in a quasi-complete 
locally convex space E. Millionscikov [9] and Ilukuhara [4] proved that the 
problem (1) has a solution if the function / is compact or it satisfies the 
Kamke condition. Later many authors have studied the existence of solutions 
of (1) under diffrent assumptions on E or / (e.g. see [1], [8], [10]). Moreover, 
in recent years there have appeared papers concerning integral equations in 
locally convex spaces (e.g. see [5], [11]). 

In this paper we shall assume that the considered locally convex Haus-
dorif space over R is sequentially complete and contains a compact barrel. 

We shall prove a Kneser-type theorem for continuous solution set of the 
nonlinear Volterra integral equation 

(2) x(t) = g(t)+ J f(t,s,x(s))ds, t e A 
A(t) 

and an existence theorem for continuous solutions of the Urysohn integral 
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equation 

(3) x(t) = g(t) + X f f(t,s,x(s))ds, t 6 A, A G R, 
A 

considered in the space E, where A — [0,di]x[0,a2] X . . . X [0,an], (a,- > 0, 
i = 1 , . . . , n) and A(t) = {i £ K" : 0 < s,- < f,-, i = 1 , . . . , n}. In the above 
equations the sign " f " stands for the Riemann integral. 

Moreover, in Section 3 we obtain a Kneser-type theorem for the Darboux 
problem as a corollary from the corresponding result for the equation (2). 

2. Volterra integral equation 
A useful tool in our considerations will be the following 

LEMMA 1 (Astala [1]). E is sequentially complete locally convex space 
containing a compact barrel i f f 

E = (X',r), 

where X' is the dual of a barrelled normed space X and r is a locally convex 
topology of X' that is stronger than the w*-topology but weaker than the 
topology of precompact convergence; briefly 

(t(X',X) <T< X(X',X). 

By the above lemma we can use in the space E the notion of the norm. 
Consider the equation (2). We assume that the functions g : A —> E 

and / : A2 x E —> E are continuous. Now we shall prove the following 
Kneser-type theorem which is the main result of our paper. 

THEOREM 1. Under the above assumptions there exists a set 

J = [0,di] X [0,d2] X . . . X [0,rf„] C A 

such that the set S of all continuous solutions of (2), defined on J, is 
nonempty, compact and connected in the space C(J,E) of all continuous 
functions J —E with the topology of uniform convergence. 

The above result extends Th. 3.1 from [2]. 

P r o o f . Let r be any positive number. Since the ball Br = {x £ E : 
||x|| < r} is convex, ballanced, closed, bounded and sequentially complete, 
so in view of the Banach-Mackey theorem ([6], p.91) it is absorbing by the 
barrel and therefore it is compact. Hence for every number r > 0 there exists 
a number mr > 0 such that 

| | / ( i , s,®)|| < mT for t,s£A and x£Br. 

Let c = sup t £ j 4 ||if(i)ll a n d P = s u Pr>o( r — c ) / ( m r) - Choose a number e < p. 
Then there exists b > 0 such that c + nibe < b. Choose numbers cij, 1 < i < n 
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in such a way that 0 < di < a,i for i = 1 , . . . ,n and d\d2 .. .dn < e. Let 
J = [0,di] X [0, d2] X . . . X [0,dn]. In the space R n we introduce the norm 
defined by the formula 

\\t\\ = max ( if i l , ^-\t2\,j-\tn\^j iovt = (t1,t2,..., tn). 

Then J = {f G R n : t > 0, ||i|| < di}. Denote by B the set of all continuous 
functions J —• Bb. We shall consider B as a subspace of C(J, E). Put 

G(x)(t) = g(t) + f f(t, s, x(s)) ds t e J , x eB. 
A(t) 

Since 

G(x)(t) - G(X)(T) = g(T) - g(R) + f f(t,s,x(s))ds - J f{T,s,x{s))ds = 
A(t) A(T) 

= g(t)-g(r)+ f (f(t,s,x(s))-/(r,s,x(s)))ds+ 
A(t) 

+ / f(T,s,x($))ds- J f(T,s,x(s))ds, 
A(t)\A(r) A(r)\A(t) 

J | | / ( r ,5 ,x( 5 ) ) | | ds < fi(A(t)-A(T))mb < mbd2d3 ...dn\\t- r | | 
A (t)-A(r) 

and 

\\G(x)(t)\\ < ||5(/)|| + J || f(t, s, z(*))|| ds < c + n(A{t))mb < 
A(t) 

< c + mbd2d3 .. .¿„||<|| 

for x 6 B, t, T € J (/x denotes here the Lebesgue measure in R n ) , so G(B) C 
B and the family G(B) is equiuniformly continuous. Moreover, in view of the 
Krasnoselskii-Krein-type lemma (cf. [7]) we deduce that G is continuous. 

For any e > 0 denote by Se the set of all x € B such that ||x(i) — 
<j(x)(i)|| < e for every t £ J. Before passing to further considerations, we 
shall quote the following 

L E M M A 2 ( [ 3 ] ) . For every e > 0 such that e < b — c — mbd\d2 ... dn, the 
set Se is nonempty and connected. 
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Now we return to the proof of Th. 1. First, we shall show that the set S 
is nonempty. By Lemma 2, there exists a sequence (u^) such that UK (E B 
for k € N and 

(4) lim s u p | M 0 - G K X O H = 0. 

Let V = {uk : fceN}. Since Uk = — G(uk)) + G(uk) for k 6 N, so 
V is equiuniformly continuous. As E contains a compact barrel, so by the 
Banach-Mackey theorem every bounded subset of E is relatively compact. 
Hence V(t) = {Uk(t) : k G N} is relatively compact for every t € J. In view 
of Ascoli's theorem ([6], pp. 80-81) we conclude that the sequence (Uk) has 
a limit point u. From (4) and the continuity of G it is clear that u = G(u), 
so u € S. 

Further, since G is continuous, so S is closed in C( J, E). As 5 = G(S), 
therefore using similar arguments as above, we deduce that S is compact in 
C(J,E). 

To prove that S is connected it is enough to apply standard arguments 
as for example in [3]. The proof is completed. 

3. Darboux problem 
Let B = {z € E : ||z|| < 6}, A = [0,aj] x [0,a2] (a i , a 2 > 0) and let 

/ : A x B —> E be a continuous function. By the Banach-Mackey theorem 
there exists a number M > 0 such that | | / (x , y,z)|| < M for (x , y,z) € AxB. 
Choose positive numbers di,d,2 such that d\ < a l 5 d2 < «2 and Md\d2 < b. 
Put J = [0, di] x [0, <¿2] - Let us consider the following problem 

d2z 
(5) dxdy= 

z(x, 0) = 0, 0 < a; < <ii, z(0,y) = 0, 0<y<d2, 

where QxQv denotes the mixed second derivative of z. 
We shall prove the following 

THEOREM 2. Under the above assumptions the set S of all solutions of 
(5), defined on J, is nonempty, compact and connected in C(J,E). 

P r o o f . As E is sequentially complete and / is continuous, so the problem 
(5) is equivalent to the following integral equation 

x y 
(6 ) z(x, y)= f f /(£, 77, z((, T])) d£ dr), (x,y)E J, 

0 0 

where the sign " / / " stands for the Riemann integral. 
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In the space R2 we introduce the norm defined by the formula 

||i|| = max for t = (tut2). 

Then J = {t G R2 : t > 0, ||i|| < di}. Putting A(t) = {s G R2 : 0 < s < t} 
for t G J, we can write the equation (6) in the form 

(7) z(t)= J f(s,z(s))ds, 
D(t) 

Applying now Th. 1 we see that the set S is nonempty, compact and con-
nected in C(J, E), because it coincides with the set of all continuous solutions 
of (7) on J. 

4. Urysohn integral equation 
In this section we shall consider the equation (3). As in the Section 2 

assume that the functions g : A —• E and / : A2 —• E are continuous. Now 
we shall prove the following 

THEOREM 3. Under the above assumptions there exists TJ > 0 such that 
for A € R with |A| < 77, the equation (3) has a continuous solution defined 
on A. 

P r o o f . Similarly as in Section 2 we deduce that for any number r > 0 
there exists a number mr > 0 such that 

| | / ( i ,5,x) | | < mT for t,s 6 A and ||x|| < r. 

Let c = supiG>4 ||5(i)ll a n d V = supr>0 (r — c)/(amr). Choose A G R with 
|A| < T). Hence there exists a number b > 0 such that c + |A|aTO(, < b. Denote 
by B the set of all continuous functions A —• Bb- We shall consider B as a 
topological subspace C(A,E). Define 

G(x)(t) = g(t) + A f f(t,s,x(s))ds, t e A, x e B. 
A 

It can be easily verified that G is a continuous mapping of B into itself. 
Again, by the Krasnoselskii-Krein-type lemma the family G(B) is equiuni-
formly continuous. Let V = convG(B). Then V is also equiuniformly contin-
uous and V(t) = {x(0 : x G V} is relatively compact for every t G A. By As-
coli's theorem we deduce that V is compact. From the Schauder-Tychonoff 
theorem it follows that the mapping G\v has a fixed point. Obviously this 
completes the proof of Th. 3. 
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