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In this paper we investigate continuous solutions of some integral equa-
tions in sequentially complete locally convex spaces containing a compact
barrel. Moreover, we prove a Kneser-type theorem for the Darboux problem
in this class of spaces.

1. Introduction
Consider the following initial value problem

(1) ' = f(t,z), =z(0)=zo,

where f is a bounded continuous function with values in a quasi-complete
locally convex space E. Million§¢ikov {9] and Hukuhara [4] proved that the
problem (1) has a solution if the function f is compact or it satisfies the
Kamke condition. Later many authors have studied the existence of solutions
of (1) under diffrent assumptions on E or f (e.g. see [1], [8], {10]). Moreover,
in recent years there have appeared papers concerning integral equations in
locally convex spaces (e.g. see [5], [11]).
In this paper we shall assume that the considered locally convex Haus-
. dorff space over R is sequentially complete and contains a compact barrel.
We shall prove a Kneser-type theorem for continuous solution set of the
nonlinear Volterra integral equation

(2) z(t)=gt)+ [ f(t,s,2(s))ds, teA
A(t)

and an existence theorem for continuous solutions of the Urysohn integral
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equation

(3) z(t) = g(t)+ A f f(t,s,z(s))ds, te A, AeR,
A

considered in the space E, where A = [0,a;]X[0,a2] X ... X [0, a,], (a; > 0,
t=1,...,n)and A(t) ={s€R*":0<s;<t;, i=1,...,n}. In the above
equations the sign “[” stands for the Riemann integral.

Moreover, in Section 3 we obtain a Kneser-type theorem for the Darboux
problem as a corollary from the corresponding result for the equation (2).

2. Volterra integral equation
A useful tool in our considerations will be the following

LEMMA 1 (Astala [1]). E is sequentially complete locally convez space
containing a compact barrel iff

E=(X"71),
where X' is the dual of a barrelled normed space X and 7 is a locally convez

topology of X' that is stronger than the w*-topology but weaker than the
topology of precompact convergence; briefly

o(X', X) < T < MX', X).

By the above lemma we can use in the space E the notion of the norm.

Consider the equation (2). We assume that the functions g : A — E
and f : A x E — FE are continuous. Now we shall prove the following
Kneser-type theorem which is the main result of our paper.

THEOREM 1. Under the above assumptions there exists a set
J =1[0,d1] x[0,d2] x ...x [0,d,] C A

such that the set S of all continuous solutions of (2), defined on J, is
nonempty, compact and connected in the space C(J, E) of all continuous
functions J — E with the topology of untform convergence.

The above result extends Th. 3.1 from [2].

Proof. Let r be any positive number. Since the ball B, = {z € E :
llz]| < r} is convex, ballanced, closed, bounded and sequentially complete,
so in view of the Banach-Mackey theorem ([6], p.91) it is absorbing by the
barrel and therefore it is compact. Hence for every number r > 0 there exists
a number m, > 0 such that

| f(t,s,2)|| £ m, fort,s€A and z€B,.

Let ¢ = sup,c4 [|9(?)|| and p = sup,5o(r — ¢)/(m;). Choose a number e < p.
Then there exists b > 0 such that ¢+ mye < b. Choose numbers d;, 1 <1< n
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in such a way that 0 < d; < ¢; for i = 1,...,n and did;...d, < e. Let

J =[0,d;] x [0,d2] X ... X [0,dy]). In the space R™ we introduce the norm
defined by the formula

d d
lI¢]l = max (|t1|, d—;|t2|, e, —d—lltn|) for t = (t1,12,...,tn).

Then J = {t € R*: ¢t > 0, ||¢|| < d1}. Denote by B the set of all continuous
functions J — Bj,. We shall consider B as a subspace of C(J, E). Put

Gz)(t)=g(t)+ [ f(t,s,2(s))ds t€J, z€B.

A(t)
Since
G(z)(t) - G(z)(r)=g(t) —g(r) + [ f(t,s,2(s))ds— [ f(r,s,2(s))ds =
A(t) A(r)
= g(t) - g(1)+ [ (f(t,5,2(s)) = f(7,5,2(s))) ds+
A()
+ f f(rys,2(s))ds — f f(r,s,2(s)) ds,
A(\A(T) A(TI\A()

f l£(r,s,2(s)|| ds < p(A(t)—A(7))my < mpdads ... dy||t — 7|
A(D)=A(7)

and

IGE)ON < le@ll + [ 11£(2,s,2(s))ll ds < ¢+ p(A(t))ms <
A(t)

< ¢+ mydads .. . dnllt]

for z € B, t,7 € J (u denotes here the Lebesgue measure in R”), so G(B) C

B and the family G(B) is equiuniformly continuous. Moreover, in view of the

Krasnoselskii-Krein-type lemma (cf. [7]) we deduce that G is continuous.
For any ¢ > 0 denote by S, the set of all z € B such that ||z(¢) —

G(z)(t)]| < € for every t € J. Before passing to further considerations, we
shall quote the following

LEMMA 2 ([3]). For every € > 0 such that e < b — ¢ — mydyd, . ..d,, the
set S, is nonempty and connected.
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Now we return to the proof of Th. 1. First, we shall show that the set §
is nonempty. By Lemma 2, there exists a sequence (u;) such that u, € B

for kK € N and
(4) k]jm sup|lux(t) — G(u)(t)|| = 0.
— 00 iEJ

Let V = {ur : k€N}. Since ur = (ux — G(ux)) + G(ui) for k € N, so
V is equiuniformly continuous. As E contains a compact barrel, so by the
Banach—Mackey theorem every bounded subset of F is relatively compact.
Hence V(t) = {ux(t) : k € N} is relatively compact for every ¢t € J. In view
of Ascoli’s theorem ([6], pp. 80-81) we conclude that the sequence (uj) has
a limit point u. From (4) and the continuity of G it is clear that u = G(u),
sou€S.

Further, since G is continuous, so § is closed in C(J, E). As § = G(5),
therefore using similar arguments as above, we deduce that § is compact in
C(J,E).

To prove that S is connected it is enough to apply standard arguments
as for example in [3]. The proof is completed.

3. Darboux problem

Let B ={z € E : |z|| < b}, A =10,a1] X [0,a2] (a1,a2 > 0) and let
f:AX B — E be a continuous function. By the Banach-Mackey theorem
there exists a number M > 0 such that || f(z,y, 2)|| < M for (z,y,z) € AxB.
Choose positive numbers dy,d; such that d; < a1, dy < a3 and Md d; < b.
Put J = [0,d1] X [0,d5]. Let us consider the following problem

0%z

(%) 959, = f@w2), @yel,

2(z,0)=0, 0<z<d;, 20,9)=0, 0<y<d,,

where 6‘972;5 denotes the mixed second derivative of z.
We shall prove the following

THEOREM 2. Under the above assumptions the set S of all solutions of
(5), defined on J, is nonempty, compact and connected in C(J, E).

Proof. As FE is sequentially complete and f is continuous, so the problem
(5) is equivalent to the following integral equation

(6) z(z,y) = ff f(&m, (& m))dEdn, (z,y) €,

where the sign “[[” stands for the Riemann integral.
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In the space R? we introduce the norm defined by the formula
dy
litll = max { |24, Eltzl for t = (t1,12).

Then J = {t e R?:¢ >0, ||t|| < d1}. Putting A(t) = {s € R?2:0< s <t}
for t € J, we can write the equation (6) in the form

(7) a)= [ f(s,2(s))ds,

D(1)

Applying now Th. 1 we see that the set S is nonempty, compact and con-
nected in C(J, E), because it coincides with the set of all continuous solutions

of (7) on J.

4. Urysohn integral equation

In this section we shall consider the equation (3). As in the Section 2
assume that the functions g : A = F and f: A2 — F are continuous. Now
we shall prove the following

THEOREM 3. Under the above assumptions there exists n > 0 such that
for A € R with |A\| < 7, the equation (3) has a continuous solution defined
on A.

Proof. Similarly as in Section 2 we deduce that for any number 7 > 0
there exists a number m, > 0 such that

|f(t,s,2)]| <m, fort,s€ Aand |z <.

Let ¢ = sup;c 4 ||g(t)ll and 5 = sup,5o(r — ¢)/(am,). Choose A € R with
|A] < 1. Hence there exists a number b > 0 such that ¢+ |A|am; < b. Denote

by B the set of all continuous functions A — B,. We shall consider B as a
topological subspace C(A4, E). Define

G(z)(t)=g(t)+ A [ f(t,s,2(s))ds, t€ A, z€B.
A

It can be easily verified that G is a continuous mapping of ~§ into itself.
Again, by the Krasnoselskii-Krein-type lemma the family G(B) is equiuni-
formly continuous. Let V = WG(E). Then V is also equiuniformly contin-
uous and V(t) = {z(t) : = € V} is relatively compact for every t € A. By As-
coli’s theorem we deduce that V' is compact. From the Schauder-Tychonoff
theorem it follows that the mapping G|y has a fixed point. Obviously this
completes the proof of Th. 3.
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