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1. Introduction

In this paper the conditions for the bounds of solution for a system of
linear Volterra integral equations are presented. We use certain new variants
of the Volterra inequalites.

Consider the following system of linear integral equations of the Volterra

type
m T
(1) ui(e) = fi(x)+ Y, [ kij(ztyui(t)dt, i=1,2,...,m,
ji=1 0
where f;, 1 =1,2,...,m, kij, 1,7 = 1,2,...,m, are continuous functions in
I=:{z:0<2<o0}and D =:{(z,t): 0 <t <z < oo}, respectively.
It is clear that from (1) we get

®) u(z) < f(&)+ [ Koty

where
m

f(2) =Y (@) 20, u(z) = |ui=)] 20,

i-1
m
k(z,9) =) max |kij(z,9)] 2 0.
i=1 =7

From the theory of linear Volterra integral equations it is well known
that

@) u(z) < f(@)+ [ Rz )f(0)ds
0
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o0
where R(z,t) = > kn(z,t) is the resolvent kernel,

n=0

kn(z,t) = [ k(z,8)kn1(s,t)ds, n=1,2,...,ko(z,t) = k(z,1).
t

2. Various cases

L If k(z,t) = b(t) > 0, then R(z,t) = b(t) exp[ [, b(s)ds] (see [2]) and
(3) can be written in the form

@ u(@) < @)+ [ 6 SO exp | [ W(s)ds] dt.

Introducing the notation F(z) = sup{f(t): 0 <t <z}, we obtain from

4)
(4" u(z) < f(z) + F(z) j b(t) exp [ fz b(s) ds] dt =
0 t
= f(z) + F(:v){ exp [ fx b(t) dt] - 1}.
0

THEOREM 1. If the functions f;,1 = 1,2,...,m and k;;,,5 = 1,2,...,m,
are continuous functions in I and D, respectively, and if

(1) ersr;aggnlku(z,t)l <b(t) in D,
(ii) Y Ifi@) = f(z) in I,
i=1

then the following inequality
(5) > lui@)l < f(z)+ F@){exp | [ bt)ae] -1}
i=1 0

holds, where {u;(z)},i=1,2,...,m, is a solution of the system (1).
Moreover, if f is bounded in I and b is bounded and integrable in I, then
the solution {ui(z)},i =1,2,...,m of the system (1) is bounded as z — oo.

Remark 1. If f is nondecreasing in I, then F(z) = f(z) and we obtain

S lui@)] < fz)exp | [ b(2)d].
i=1 0
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COROLLARY 1. The estimate (5) in Theorem 1 holds, if
m
k(z,t) = ;127?51; |kij(z,t)|

is nonincreasing with respect to variable z or k(z,t) < k(t,t) for z > t.
Then b(t) = k(t,1).

IL. In the case of k(z,t) = a(z)b(t), a(z) > 0 and b(t) > 0, the inequality
(2) leads to

(6) u(z) < £(2) +alz) [ b(O)u() d
or, equivalently, to ’
(6 o(z) < 9(2) + a(@) [ a(b(t)e(t) e,
where ’

u(z) f(z)

"@=2my I @y

Using the inequality (4’), we obtain the following estimate
u(z) < 9(a) + G(@){ exp | [ a(t)p(r) dt] -1},
0

where
G(z) = sup g(?).
0<t<z
Hence

() =) < 1@ +a@CE@ e | [ a0 dt] -1} == pla)
0

If g is nonincreasing, then G(z) = g(z), and we get an inequality of the
Gronwall type

() u(@) < f@)exp [ [ a(vp(e) ).
0

Introduce now the notation
(8) h(z) = max{f(z), a(z)}.

Then we can rewrite inequality (6) in the form

®) u(z) < hz) + h(z) [ b(e)u(t) e,
0
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(10) w(z) <1+ f b(t)h(t)w(t) dt.
0

Using the classical Gronwall inequality, we get

(11) u(z) < h(z)exp [ f b(t)h(t) dt] =: ¢(z)
0

or

11") w(z) gexp[ f b(t)h(t)dt],

where w(z) = % h(z) > 0. In this way the following theorem is proved.

THEOREM 2. Let k;j;, 4,7 =1,2,...,mand f;, i =1,2,...,m be conti-
nous functions in D and I, respectively, and
m

(i) max |kij(z,t)| = a(2)b(1), a(z) >0, b(t) 20,

1<

(ii) Y 1fi@)] = f(=).
i=1

Then a solution {u;(z)} i = 1,2,...,m, of the system (1) is estimated by
m
3 Jui(@)] < min{o(z),a(z)},
i=1
where p(z) and g(z) are right hand sides of inequalities (7) and (11), respec-
tively.
Moreover, if the conditions

. f(t
Ianéof(:zz) < 00, 11m a(z) sup ;%t—) < 00,

*) zh_'rr;o ja(t)b(t)dt < 00,
0

or

T

(B) lim h(z) < oo, lim [ b(r(t)dt < oo

£—00
0

are satisfied, then the solution {ui(z)}, i = 1,2,...,m, of the system (1) is
bounded as z — oc.
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Remark 2, If
(#) a(z) = f(z), then p(z) = ¢(z) and the conditions (A) and (B) reduce to

lim a(z)< oo and lim f a(t)b(t)dt < oo,

r—00
0

respectively,
(##) a(z) < f(z), then for lim a(z) # 0 the conditions (A) and (B) lead to

x

(A*) lim f(z) < oo, Lim J a()b(t)dt < 00
0

and

(B*) lim f(z) <oo, lim [ 1@b)dt < oo,
0

respectively, and (B*) = (A*);
(#4%) a(z) > f(z), then (B) = (A).

The case (++*) was considered by Butlewski in [1). Our results are better,
because the condition (A) is sufficient for the bounds of solutions of the
system (1) at infinity.

Remark 3. If 5 is nondecreasing in I, then the condition (A) leads to
(A*).

COROLLARY 2. If k is nonincreasing with respect to t or k(z,t) < k(z,z)
for t < z and assumptions of Theorem 2 are satisfied, then we get the result
with a(z) = k(z,z), b(t) = 1.

IIL. Let be k(z,t) = > ;_, ax(z)bi(t), where ay, by, k = 1,2,...,n, are
nonnegative continuous functions in D and Y ;_, ax(z) > 0.
Consider two following cases:

(a) If Ai(z) = sup ai(z), then k(z,t) < A;(z)By(2),
1<k<n
where
Bi(t) = ) bk(t),
k=1
(b) If By(z) = 1211:27; bi(z), then k(z,t) < As(z)B2(t),

where

Ay(z) =) ai().
k=1
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In both cases the inequality (2) reduces to
(12) u(z) < f(z) + A-(2) f B.(t)u(t)dt, r=1,2.
0

Using Theorem 2 (A,(z) > 0, B.(t) > 0for r = 1,2), we obtain the following
result.

THEOREM 3. If f;, i = 1,2,...,m and k;;, 4,5 = 1,2,...,m, are con-
tinuous in I and D, respectively, and

k(z,t) =) ar(@)be(t), Y ax(z) # 0,
k=1 k=1

ak(‘v)’bk(t) >0, Z Ifl(z)l = f(.’l:),
i=1
then .
3 iz < min{a(2), (), (), ()}

i=1
where {u;(z)}, i =1,2,...,m, is a solution of the system (1) and

po(0) = (@) + A0 sup L {exp [ [ 4B at] - 1),

0<s<z Ar(S)

4-(2) = max{f(2), Ar(@)exp { [ B.(&) max(f(2), A(t)] dt}.

Moreover, if one of conditions
; : f(t
Jim_f(z) < o0, [lim Ar(“’)oz‘:gzm% < oo,

(49 Jim f A(O)B, (1) dt < o,
0
Jim max(f(z), Ar(z)] < oo,
B9 Jim. f B(6) max{ (1), A (D) de < oo,

for r =1 or r = 2 is fulfilled, then a solution of the system (1) is bounded
at infinity.

Remark 4. If 7{7 is nondecreasing in I, then the condition (A’) is
reduced to

T
(A")  lim f(z) < oo, xlirrgo f A (t)B.(t)dt <00, rT=1lorr=2.
0
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IV. Introduce the notation

K(z)= 0i1t11<) k(z,t)

for every z € 1.1t is clear that k(z,t) < K'(z) for 2 > t. Then the inequality
(2) can be replaced by

(13) u(z) < f(z) + K(z) f u(t) dt.

Let us notice that (13) is a particular case of inequality (6), where a(z) =
K(z) and b(t) = 1. By the similar way as in Theorem 2 the following results
were obtained.

THEOREM 4. If f;, i = 1,2,...,m and k;;, 1,5 = 1,2,...,m, are con-
tinuous functions in I and D, respectively, and

0;122 k(z,t)+ K(z)> 0, ; | fi(z)] = f(=),

then a solution {u;(z)}, ¢ = 1,2,...,m, of the system (1) satisfies the fol-
lowing inequality

; jui(2)| < min[P(z),Q(=)],

where

P(z) = f(z) + K(z) it;pz }f’((s)) { exp [ f K(t) dt] - 1}
0

Q@) = maxif(), K(@)exp [ K(t) .
0

Moreover, if one of conditions

i f(t)
z]gréof(z)< 00, hm Ix(z) sup 75 < 00,

AI"

(&%) lim_ f K(t)dt < oo,

(B") zh_’néorila.x[f(ar:) K(z)] < oo, Jim_ jK(t)dt < 00,
0

is satisfied, then a solution of the system (1) is bounded at infinity.
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Remark 5. If f(z) < K(z) and 'I'\; is nondecreasing in I, then condi-
tions (A”’) and (B"') are reduce to

r—00

lim f(z) < o0, lim f K(t)dt < oo.
0

The above results can be extendend on the classes L and L2.
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