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1. Motivation

Semigroup “dynamical” approach is frequently used to deal with the
wide class of nonlinear problems (e.g. [2], {3], [16]). However, it seems to be
worth pointing out that many of these problems possess their satisfactory
treatment as well in the frame of classical for the theory of differential equa-
tions ideas as in the technique. Hence, the aim of this paper is to prove in a
classical way local solvability of the 2m-th order semilinear parabolic equa-
tions and furthermore, to derive suitable estimate of the W¥'* norm of the
solution, which enables to find a minimal time of its existence. Particularly,
we also want to show that the classical Peano method (used in the existence
theorems for the ordinary differential equations initial value problems) can
be successfully applied in the proof of solvability of higher order semilinear
parabolic equations.

2. Introduction and notation
We shall study the initial boundary value problem

ut = —Pu+ f(t,z,d*™ 'u) =: I'(t,z,u) in DT
(1) Bou=...=Bp_ju=0 ondG
u(0,z) = uo(z) in G

where P is a 2m-th order strongly elliptic differential operator given by
Pu= > (-1)PID?(a, 5(z) D),
el 181Sm

By,...By,_1 are linear and time independent boundary operators, DT
stands for a product (0,7) x G and d*™ 1y (which appears as an argu-
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ment of the nonlinear function f) denotes the vector of the length d =
(2m + n — 1)!((2m — 1)!n!)~? consisted of all partial derivatives of u up to
the order 2m — 1 with respect to the space variable z, i.e.

d2m_1 - ( au au a2u azm_lu)'

u cee S
"0zy’ " Bz, 02T 9gim !

We shall estimate (from below) the life time Tp of the solutions of the
problem (1) and show that the problem possesses, under suitable conditions
on f, aunique solution in the space of Holder functions C2m+“°'1+“°/2m(DT°)
(with certain g € (0,1)).

Generally, the proof of existence is based on the a priori estimates tech-
nique and on the method of continuity. But its inspiration comes from the
Peano concept well known in the theory of ordinary differential equations,
since the range of the arguments of the nonlinear function f is limited to
a (multidimensional) rectangle and then a positive time Tp is determined
in such a way that all these arguments stay inside the fixed rectangle un-
til the time Tp. Equivalently, we limit the W?m~1,° norm of the solution
and next use this fact to obtain better estimate of the same norm, finding
simultaneously the life time of the solution.

The technique we present here was used previously by T. Dlotko (see [5],
[6]) in case of 2-nd and 4-th order equations. It has also been used by myself
[4] to prove the existence of solutions for parabolic problems of the general
type (1) but with the function f depending only on the derivatives of u of
the order not exceeding m.

Notation of Sobolev and Hélder spaces which we use throughout the
paper comes from the monographs [1], [10], [11]; but we denote the spaces
of continuous functions by C instead of H (as in [7], [8]). Space variable z
belongs to the fixed bounded domain G C R™ having sufficiently regular
boundary dG (which is at least of the class C?™+# where pu € (0,1) is fixed
from now on). We also write |G| for the Lebesgue measure of G. Different
positive constants are denoted by C; with various | € R. Whereas the un-
specified integrals are always understood to be taken over G. We also use
(for simplicity of the notation) common letters L and M for (resp.) various
Lipschitz constants and numerous upper bounds constants appearing in our
considerations.

3. Assumptions
The following assumptions are valid throughout the paper:

(I) We consider for the simplicity of calculations only space dimensions
n < 3.
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(IT) Coefficients a, g (of the operator P) belong to the class (resp.)
C4m+|ﬁ|+u(c1 G).

(III) Initial function wup is of the class C®™+#(clG) and satisfies the

following compatibility conditions
Boﬂ.o =...= Bm_luo = 0,
BoF(O,Z,Uo) = ... = Bm—l F(O,.’L',uo) =0.

(IV) In R* x ddG x R? the function f = f(t,z,p1,...pa) has locally
bounded time derivatives up to the third order. Moreover f is 6m-times
ft is 4m-times and f;; is 2m-times differentiable with respect to the space

and functional arguments, (hence also both f and its all first order partial
derivatives are locally Lipschitz continuous in Rt x ¢/G x R? with respect
tot,z,p1,...04)-

(V) The triple (P,{B;},G) forms a "regular elliptic boundary value
problem” in the sense of the definition stated in [14] p. 125 or in [7] p. 76
(i.e. according to [7], it satisfies the root condition, the smoothness condition,
certain complementary condition and the system {B;} is normal).

(VI) Forall we D(P) = {p € W>™*(G): Bpp=...= Bju_19p =0o0n
0G} connected with the operator P bilinear form p, given by

p(u,v) = Z aa’ﬁ(z)D“uDﬁv,
lals|8I<m
satisfies the following conditions

— coerciveness inequality
(i) J plw,w)dz + Callwllg ; > Crllwll7

— Green’s Identity
(ii) f (Pw)wdz = f p(w,w)dz.

The operator P and boundary operators {B;} are given in general form
but in our considerations any particular form of them would beé superfluous.

We only note that in spite of certain complicity of the above assumptions
there are number of examples fulfilling all of them (comp. [4], [6], [7], [13],

[14)).

4. Preliminaries
Instead of (1) we consider

vt = —Pv + g(t,z,d>™ o) in DT
(2) Byv=...=Bph_1v=0 on G
v(0,z) =0 inG
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with g(¢,z,d>™1v) = f(t,z,d*™ v + d*™lug) — Pug. It is clear that if
f is locally Lipschitz continuous in Rt x cI G x R%, then g is bounded and
globally Lipschitz continuous in a compact set Y which we define as

d
Y:= {(t,x,Pl,---,Pd):te [OaT]a (L‘EC]G, lezl SR},

i=1

where R, T are fixed positive numbers (R will be taken sufficiently large,
2

see (29)). Moreover the same occurs for the derivatives %—‘tl, Tg—-"m, %g,
(D= S;a(Dﬁ'u)’ 6t8(D° e which as long as v staysin Y (i.e. as long as for each
z € clG the full vector (¢,z,d>™ 1v(t,z)), belongs to Y) can be regarded as
bounded by the common constant M which is taken relatively to Y. Thus
in particular, in the set Y (for all e, 8 with |a|,|8| < 2m — 1) the following

inequalities

3)

hold.

It is well known that linear theory is necessary in order to deal suc-
cessfully with the nonlinear problems. We will make use of it to derive the
following two estimates:

(4) ”Davt(t")lloo < C37

(3) 1D (2, Moo < Ci,s

which are valid for all & with |a| < 2m — 1 as long as v remains inside Y
(constants C'3, Cy depends in particular on the choice of R in the definition
of V).

To obtain (4) let us note that since boundary operators {B;} are time
independent then time derivative v; solve

wy = —Pw + g:(t,z,v) + ElcxlSZm—l 9a(t,z,v)Dw
(6) =: L(t,z,v,w) in DT

Byw=...=B,,_1w=0 ondG

w(0,z) = I'(0,z,u0) in G,

0%g
‘ 8(D=0)d(Dv) |

0%g
<
’Bta(D“v) <M

) ‘8(D°‘v) o |

with
g:(t,z,v) = (Z—'(t](t, z, d2m'1v(t, z))
and

go(t,z,v) = a(ga )(t z,d*™o(t, 7)),
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Applying to (6) the estimate for the linear 2m-th order parabolic equations
given in [11] (see Th. 10.4, Chapt. VII, §10 cited here with ! = 0, s = 0,
t=2m,p=-2m,q=2n+2+6, and any O € (0,1)) we get (as long as v
stays inside Y)

(1) lwillpanszropy + Y [1D°w||L2ns2+0(pr)
lal<2m

< {M(IGIT)=F78 4 ||T(0, -, %)l 2m- }.

2n +2+’é (G)

Next by differentiation we obtain from (6) the initial boundary value prob-
lem for w; (w; corresponds to vy)

(We)t = =Pwi + 314 <am—1 9a(t, 2,0) D%wi + A(t, z,v,0) in DT
(8) Bo(wt) =...= Bm_l(wt) =0on 0G
we(0,2) = L(0,z,0,I'(0, z,up)) in G,
where
— 9’9 2m—1 a
A(t,z,v,w) = E (Do )m(t,x,d v(t,z))D%v,(t, z)
|aj<2m -1
d%g -
2m—1 2m-—1 o
(t z,d o(t, a:))+| I;ﬂ 1 3t9(Dv )(t ,z,d v(t,z))D%w(t, z)

2
+ Z Z 6(Dﬁ’l()9)(;](Dav) (t,z, d2m—1,v(t, z))D%w(t, a:)Dﬁvt(t, z).

la|<2m -1 |8|<2m-1

According to (7) (w corresponds to v;) as long as v stays in Y, the above
function A is estimated independently of ¢ in the space L"+11€/2(D?). Thus
using again Th. 10.4, Chapt. VII, §10 from [11] we find L™*+'+®/2( D*)-bound
for D*vy (with |a] < 2m — 1) and consequently, since for each a with
Ial S 2m — 19

aiD (€ LM E(DY),
then, thanks to Sobolev Embedding Theorem in n + 1 dimensional space,
we come immediately to (4).

The proof of the inequality (5) is entirely analogous to given above evi-
dence of (4), and we will omit it. We end this section by formulating a lemma
making possible to estimate both the solution v and its time derivative v; in
a certain flexible manner which will be useful in our further considerations.

0
o a o
D V¢, D Vity _(92? D Viy -
1

PRELIMINARY LEMMA. As long as the solution v of the problem (2) stays
inside Y, there ezist positive constants vo and 0y such that for allv € (0, 1)
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and each 6 € (0,6p] (respectively) the following estimates
(9) ot Mim-1,n42 < vlloet, G 2 + Cs) + Cullv(t, ) 2,

and
(10) ”vt(t7 ) - F(O’ K uO)”gm—l,n+2

< 0(”vtt(t’ )”(2),2 + CG) + Cellvt(t7 ) - F(t’ '?uo)”(z),r
hold.

Since the proof of the above lemma is rather technical, it will be left
until the Appendix.

5. Local existence

MAIN THEOREM. Under conditions (I)-(VT) there erists a positive time
To and a constant py € (0,1) such that the solution v of the problem (2) is
estimated a priori in the Holder space C¥™+rod+uo/(2m) (] pTo),

Before we deal with the Holder norms stated in the above theorem, we
will first derive the estimates of the “weaker” norms of the solution.

LeMMA 1 (First a priori estimate). As long as v remains inside Y
(17) lo(t, M < Crtexp (Cat),
where C7 = M?|G| and Cs = 2C3 + 1.

Proof. Multiplying (2) by v and integrating over G we have

(12) 2dt f v d:z:_-—f (Pv) vdz-}-f g(t,z,d*™ 1) dz.

Because of the assumptions (i), (ii) equality (12) gives

1d _
(13) 54 J v*de < =Cilloll} 2 + Callolll s + [ lg(t,2,d* ™ )| [o] e

Since g is bounded on compact sets, then increasing the right-hand side of
(13) we come out to the inequality

(19) £ [ o de < MGI+ (200 + Dol e,
which leads directly to (11). The proof of Lemma 1 is finished.
Now we give the L? estimate of the time derivative v;.
LEMMA 2 (Second a priori estimate). As long as v remains inside Y
(15) ll0e(t, ) = T(0,,uo)|f5,2 < Cotexp (Ciot),
with Cy = |G|(M? + M} + M2C3d?) and C1o = 2C2 4+ 3 (I as in (1)).
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Proof. Substitute in (6), v: = w = z 4+ I'(0,z,up). We get

zg = =Pz + g:(t,2,9) + Xj01<am-1 a(ts2,v)D*2 + H(t, z,v)
(16) Boz =...= Bm_lz =0

2(0,z) =0,
where H(t,z,v) = —PI'(0,2,%) + ¥|aj<2m—19a(t, 2, v)D(I(0, 2, u0)).
Multiplying the first equation in (16) by z and next integrating it over
G we get
17) 1d 2de= - f(Pz)zda:-i—fg,(t,z,v)zda:

2 dt
+[ Y galtiz,v)(D%2)zdz + [H(t,z,v)zdz.

jaj<2m-1

Next from (17), (4), (3), making use of the assumptions (i), (ii) and of the
boundedness of I' (My denotes upper bound for H') we find that

1d
(18) 5z [ de < = Cilleling + Callzlli s + M f12] dz
+ MCs Z flzld:z:+MHf|z|d:c.
Ja|<2m -1

Applying both Holder and Cauchy inequalities, we obtain from (18) the
estimate

d 2 2
(19) Efzz dz < M?|G|+ My|G| + M2C3d®|G| + (2C2 + 3)|2I13 2,

and from that we get immediately condition (15). Lemma 2 is thus proved.

So far we have done two important steps in the proof of the Main The-
orem having obtained a priori bounds for ||v(t,-)||o,2 and ||ve(t,-)|lo,2. Next
we shall derive analogous estimate for v.

LEMMA 3 (Third a priori estimate). As long as v stays inside Y
(20) ”vit(t’ )”(2),2 < (“L(O’ -0, F(01 K "0))”(2),2 + C”t) exp (Cl?t)v
where Cu = ((1 + C3d)4 + C42d2)M2|G| and C]2 = 202 + 2.

Proof. Multiplying the first equation in (8) by w; and integrating it
over G we get
21) 55 [ (@) ds

= —f (Pw¢)w: dz + Z fga(t,:c,v)Da(wt)wtdz

la|<2m -1

+ fA(t,x,v,w)wt dz.
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As long as v stays inside Y then applying the estimates, (3), (5), (21)

and the assumptions (i), (ii), we find from (4) that
1d
(22) 53 (W) dz < = Chllwillfa s + Callwilld s + dCs M [l dz

+(2C3dM + M + C3d* M) [|w,| da.

Similarly as in the proof of Lemmas 1 and 2 we further obtain

d 2
(23) - [ ()t de
< ((2C3d + 1+ C3d*)? + Cd*)M?|G| + (2C2 + 2) f (wy)? dz,

and also (since w; corresponds to v;) we come out to (20). Lemma 3 is
proved.

Now we are fully prepared to determine the time 7y and Hélder constant
fo introduced in the formulation of the Main Theorem and complete its
proof.

Proof of the Main Theorem. First we shall estimate (from be-
low) a time Tp until which each classical solution of the problem (2) remains
inside Y. Let us note that as long as v is in Y, then Calderon-Zygmund
estimate gives
(24) llv(t, l2m,nt2 < Cra(llve(t, ) = gt ™7 0)lo,ni2 + 0(2 llo,ns2)

< Casllve(t, Mlo,nsz + Casllg(t, - d*™710)lo ma2
+ Ci3L Z I D*vljo,n+2 + Crallv(t, -)llo,ns2)-
laj<2m -1
where (3 is the constant in Calderon-Zygmund estimate.
Denoting by
Cua = Cuo|GI™ sup {lg(t,2, ™ '0)]},  Cis = Cro(L +1)
cdDr
we can increase the right side of (24), and then by using Sobolev Inequality
we obtain (C1g = d X (embedding constant))
(25) vt Ml2m-1,00 < Crsllv(E, Hl2m,nte
< C13Cr6||ve(t, o n+2
+ C14C16 + C15Cr6]|v(2s Hl2m—1,n+2-

Taking square of the both sides of (25) we get

(26) v(t, M3 m—1.00 < 3CTaCellve(t, MG ns2
+3C3,Cls + 3C3Clsllv(2, ')||§m—1,n+2-
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From estimates (9), (10), (26) we conclude that
27) vt M3m-1,00
< 6C3HCL0(]lvue(t, )52 + Cs)

+ 6CECLCollve(t, ) — T(0, -, wo)l13 2 + 6CHCI6IT(0, -, u0) 13 nt2

+3CE,Cls + 3CH Clav(l|ue(2, )||t2)2 +Cs) + 3C35CHCullu(t, )”(2)2
Because of the inequalities (11), (15) condition (27) gives
(28) "v(ta ')“gm—l.oo

< 60%301269“1’(07 0, F(O’ B) uO))”(2),2 exp (Cl2t)
+ 6C1C1e0(Critexp (Crat) + Cs) + 6CoC33CisCot exp (Ciot)

+6C%LC sup 2{|I'(0,z,u0)|}|G|7¥ + 3C3,Ck
r€clG

+3C35CEv(2(|1(0, -, uo)ll3 » + 2Cot exp (Ciot) + Cs)
+3C1C3,C?C texp (Cst).

Let us note, that the right side of (28) increases exponentially with respect
to t and its value in the initial moment ¢t = 0 is equal to

6C1,Cls sup HIP(0,2,u0)}IGI™ +3CHCle
rec

+6C3C26(11L(0, -, 0, (0, -, u0))||5 2 +Ce)0+3CEC 1 (211 1(0, -, uo)||5 2 +Cs ).

Moreover, the constants C;3, Ch14, Cie are independent of the choice of R
in Y. Hence, if we choose in the definition of Y sufficiently large constant R
such that

(29) R? > 36C%,C%, suII)G2{|I’(O,z,uo)|}|G|"_3‘7 + 18C2,C%,,
T €C

then the right-hand side of (28) for stated below values of parameters 8 and
v with

. L R
¢ = min {(3C%3CfG(IIL(0’ -0, F(O’ "uo))”g# + CS)) 1?, 90}
and

. L R
v = min {GCHCHAIT O, w0l + C o,

will increase from the value not exceeding R?/2 for t = 0 to the value R?
which will be reached in a positive time 7;. Hence taking

(30) To = min{T, Tl}
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we are sure that the solution v of the problem (2) will remains inside Y at
least until the time Tp (thus all the estimates which have been derived so
far hold almost until the time 7). In particular, obtained estimates ensure

that
(31) D*v iD% —a—D% 9 Dy e L™3(DT) Jo|<2m -1
Yot oz T Oz, alsem=1

thus in consequence of (31) and Sobolev Inequality (in n + 1 dimensional
space)

(32) D e C*0 743 (dl D) |a| < 2m - 1.

Since g is Holder continuous with respect to z (Holder exponent is denoted
by p) and Lipschitz continuous with respect to both ¢ and all functional
arguments, then applying condition (32) we find that

(33) g* € C”Ovﬂo(cl DTO)’

where
. 1 x L me
po = min {N, n—+2}’ g*(t,z) = g(t,2,d’ ™" 1o(t, z)).

Finally, making use of the linear theory stated in [11] (see Th. 10.1,
Chapt. VII; with [ = pp, s = 0, t = 2m) we come out to the required

property
(34) v € C¥mHuol+ 58 (o pTo),
The proof of the Main Theorem is completed.

Estimates of the solution derived in the Main Theorem are sufficient to
justify local solvability of (2). Since the proof of existence (based on the
method of continuity) is very standard will be given here only an outline
of it.

EXISTENCE THEOREM. Under conditions (I)-(VI) there erists a unique
classical solution of the problem (2) which belongs to the Hélder space

C2m+uo,1+ﬂo/(2m)(cl DTO).

Proof. For the proof of uniqueness let us come back to the problem (1)
and assume that uy, u; are two different solutions of (1). It is clear that
U = u; — uy solves

Us = —PU + f(t,z,d®™uy) — f(t,z,d*™ Lu,) in DT
(35) BU=...=B,1U=0 on 0G
U(0,z)=10 in G.
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We can write the first equation in (35) as

_ Ouq 32""1U1
U= "PU+f(t,$’d2m lul)—f<t’x’u2’3:v1’”" dzim-1

Ou 9*m1y m—
+f(t’x’u2’ azi,“', azZm—ll) +... —f(tvz,d2 1”2)'

Further, making use of the differentiability of the function f and the mean
value theorem we can transform the last equation into "linear” form

U=-PU+ ) ba(t,z)DU
laj<2m -1

where the coefficients b, are given by

Zm—-lu
bo(t,z) = Tg’;?)(t,z,ul,...,ca(t,z),...%szf)
(o in the line above is on the place which has a number a). Since (what
follows from obtained estimates) until Ty each D*u with |a] < 2m — 1 is
bounded, we are sure that all functions b, (Ja| < 2m — 1) are bounded
in DT, Thus using again Th. 10.4 Chapt. VII of [11] we obtain required
uniqueness property.
For the proof of existence let us define the Banach space =

E:= {99 D™ — Ry Y (1Dl ke < °°}
lal<2m -1

and the nonlinear operator $ : = x [0,1] — Z, such that v = ¢(w, A) iff v is
a unique solution of

v = —Pv + Ag(t,z,d®™ 1w) in DTo
B()’UZ...=Bm_1‘U=0 on 0G
v(0,z)=0 inG.

Solvability of the equation &(v, A) = v is equivalent to solvability of the prob-
lem (2). Also, since the parameter A belongs to the interval [0, 1], the Main
Theorem which guarantees necessary a priori estimate of Holder norms of
the solution remains true for the whole family of parabolic problems

vy = —Pv + Mg(t,z,d*™ 'v) in DTo
Bywv=...=B,_;v=0 ondG
v(0,z) =0 in G.
(let us note that because ) is limited to [0, 1] the constants in the estimates
will not increase). Thus existence of a fixed point of the operator &(-,1)
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can be justified by the standard use of the Leray—Schauder Principle. The
theorem is thus proved.

6. The final example
We use the above theory to justify solvability of the problem

Ut + EUrzzy + VUzrz + Uls =0,0<t<T,0<2z<1,¢ev>0,
{ g;:z}(t’o) = %{(t?l) ] = 0’172v3,
u(0,z) = uo(z) 0<z<l
which is known as the parabolic regularization of the celebrated KdV’s
problem (cf [13], p. 363). Using our notation we shall specify the opera-
tor P appearing in (36) as Pw = ¢D?(D?w) and the bilinear form p as
p(w,v) = eD*wD?v. Note that if the data of the problem (36) are suffi-
ciently regular the assumptions (II)-(IV) are satisfied. Hence we need only
to check Calderon-Zygmund estimate and stated in VI properties (i), (ii).
Because of the boundary conditions we can easily verify that

1
(37 [ Diu(t,x)de = DI7tu(t,1) - DIMu(t,0)=0 j=1,2,3,4.
0

Moreover, Poincaré inequality ensures us that the expression

(38) lwll. = /[ (Diw)? do + [ da

defines on {w € W% :D*w(0) = D*w(1), k=0,...,5—1} the norm
which is equivalent to the standard W42-norm. Thanks to (38) both co-
erciveness property and Calderon-Zygmund estimate are clearly satisfied.
Furthermore, integrating by parts we find out that

1 1 1

f (Pu)udz = f e(D*u)udz = f e(D*w)? dz = p(u,u),

0 0 0

which ensures required in (VI) Green’s Identity. Since all needed assump-
tions are verified, thus our general result guarantees that the problem (36)
has a unique local Hélder solution (in fact, as it was shown in [4], it is
possible to justify the existence of the global solution for this problem).

7. Appendix
We shall give here the proof of the Preliminary lemma that has been
formulated at the end of the paragraph 4.

Proof of the Preliminary Lemma. Let us choose «, with
la| € 2m — 1. From Nirenberg—Gagliardo, Young, and Cauchy inequalities
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we obtain
2 2
(39)  ID%[§ ny2 < (Crall D¥0|I1%II D*0(13%)°
9 10 o3 1 - [o 2
< Cf7(ﬁf *IID%vll12 + 5¢ Ip vllo,z)
)

< Sl + CHID 0] .

Next we find out that

o )
(40) IDvll§ 2 < |vlfy 2 < Echlvgm,? + Cs,alv15 25

where (according to [1}, p. 75) |[v]i2 = (0= |D*v||2 ,)!/2. Inserting (40)
to (39) we have further

(41) ID*0|I§ ny2 < 8l10ll3m 2 + Co.aCillollG 2,

and consequently

(42) ID*0lI5 et < 8ll0ll3m 2 + Csllvllg 2

with Cs = 2]a|<2m—1 C§Cs,a. Using now Calderon-Zygmund estimate we
get from (42) that

(43) 1 Dv||3 42 < 6CT3(I1Pollo2 + 1ollo,2)* + Collvll3 »
< 250123”1)””(2),2 +(26C3; + 06)”1’”3,2-

Next, we shall estimate L2-norm of Pv. Because of (2) and global Lip-
schitz continuity of g inside ¥ we have (Cs stands for |G|sup(; s)eqpT

{lg(t,z,d>™=10)1})
(44) 1Pl 2 = llg(t, -, d*™ " v) = vlg »
< 3lwelld 2 + 3llg(t, -, d>™ 1013
+3lg(t, -, d*"v) ~ g(t, -, " NO)I5

< 3l|vellg, +3Cs +3dL? 3" (ID0[f3 .
la|]€2m-1

From (43), (44) we find that

(45) ”Da'””g,nw < 650%3‘”'2 E ”Da””g,z + 650123”’%”3,2
|o|<2m~1

+66C5CH3 + (Cs + 26CE5)||vlj ».-

Moreover, summing both sides of (45) with respect to a, with |a] < 2m —1
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we get

(46) Y ID*0ll§ ny2 S 68CHA* LY Y~ |ID%0|[§ 5 + 66CTd]|vell5
laj<2m -1 la]<2m -1

+66C5Cd + (Cs + 26CE)d||v|)3 .
Now using inequality
ID*0l(5 5 < IGIF37 D015 sz

and choosing 8y so small that

660C%d2 LG5 < %

we obtain, for all é € (0, 6]
(47) “v“gm_l,n+2 S d Z “Dav“?),n+2

la]<2m—1
< 128C 3 |[vlg o +12C5 Clyd® +2(Cs+28CT3)d? | |o]|5 .-
Hence, substituting in (47) v = 126C%,d? and defining
(48) v = (L*|G|737)~
we come finally to inequality (9).
To justify (10) we start from (16). Choosing arbitrary o, with |a| <

2m—1 and following the proof of inequality (9) (between formulas (39)—(43))
we obtain the estimate

(49) 1D%2||§ 42 < 26CH1|P2|3 2 + (26C25 + Cs)||z]13 -
From the first equation in (16) we have
(50) 1P=l13 2 = llge(t, s 0) + Y ga(ty0)D%z + H(t,-,v) = 25 5
la]<2m -1
< (d+3)(llzellg 2 + llget, - o)IE 2 + I H (2, 0)II5 2
+ > lgalt,0)D%23 ).

la|<2m—1

The estimates (50), (3) give (let us recall that H, g;, g» are bounded on
compact sets and upper bounds are denoted by the same constant M, except
the bound for H which is denoted by My;)

(51) 1Pl 2 < (d+3)(ll2ellf 2 + MPIGI+ MEIGI+ M? ) [[D%2l3 5)-
Jaj<2m -1
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Putting (51) into (49) we obtain that

(52) [|D2l5 » < 26CTs(d+ 3)M> ) |ID°z|3,
Ja|<2m—1

+26C35(d + 3)[|z:)l3
+26CH(d + 3)(M? + ME)|G| + (26C%5 + Cs)l|2]12 ..

Since inequality (52) is fully analogous to (45), then the rest of the proof
follows exactly in the same way as in the case of the estimate (9) (between
formulas (46)—(48)). Our considerations are completed.
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