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1. Introduction
Lyapunov [10] (see also [8] p. 345) proved that, if y(t) is a nontrivial
solution of

(1) y'(t) + q(t)y(t) =0

on an interval containing the points a, b (a < b) and such that y(a) = y(b) =
0, the function ¢ being real and continuous, then

b
2 (b~a) [ la(s)ds > 4.

Many generalizations and applications of this result of Lypunov can be
found in [1}, [2], [6]-[12] and in the papers cited therein. The main purpose
of this note is to provide an inequality similar to (2) for the differential
equation

(3) (YO 2Y'@) + a®lyOP*y(t) =0, p>1,

where t € I = [0,00) and I contains the points a,b (a < b), the function ¢
is real-valued and continuous on I. The problems of existence, uniqueness
and other properties of solutions to equations of the form (3) are recently
studied in [3]-[5]. In what follows it is assumed that solutions of (3), and
also of some generalizations of (3), exist on [.
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2. Main results

THEOREM 1. Let y(t) be a solution of (3) with y(a) = y(b) = 0, and
y(t) # 0 for t € (a,b). Let |y(t)| be mazimized in a point ¢ € (a,b). Then

(4) 1<27P(b—a)y™ f la(s)lds,
(5) 1< (c—a)Pt [ |g(s)lds,

b
(6) 1< (- [lg(s)lds.

Proof. Let M = max|y(t)| = |y(c)], ¢ € (a,b). By assumptions, M is a
positive constant. Since y(a) = y(b) = 0, we have the inequalities

(M M=ly@i=| [ v&)ds|< [ ly(s)lds,

b b
(8) M=ly@)l=|- [v()ds|< [ly(s)lds,
implying
1 b
(9) M <3 [ ly(s)lds

By taking p-th power on both sides of (9), applying Hélder’s inequality with
indices p, ;ET’ integrating by parts and using the fact that y(¢) is a solution
of (3) such that y(a) = y(b) = 0, we have

: b
(10) MP <27P(b—a)P" [ |y'(s)IPds
b
=27P(b~ap™! [ (ly'(5)P 2 ())y'(s)ds
b
=277(b—a) { = [ (Iy"()I"~%'(s))'y(s)ds }

b
=277(b— P { [ (a(s)ly()/P2y(s))y(s)ds}
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b
<27 -af [ lg(o)lly(s)IPds

b
<27PMP(b-a)P"" [ |g(s)lds.

Now, dividing both sides of (10) by MP, we get (4). Inequalities (5), (6)
follow in similar fashion.

COROLLARY 1. Assume that the hypotheses of Theorem I hold. Then

(i) the inequality (4) yields the lower bound on the distance between
the consecutive zeros of the nontrivial solution y(t) of (3) by means of an
integral measurement of |q(1)],

(ii) the inequalities (5), (6) yield the lower bounds that relate to the
integral measurement of |q(t)| not only the points a,b at which the nontrivial
solution y(t) of (3) vanishes but also the point ¢ € (a,b) at which |y(t)] is
mazimized.

Remark 1. We note that in [12] are established the inequalities of the
forms (4)-(6) when p = 2 by using different analysis.

We next establish an inequality similar to Lyapunov’s inequality for
higher order differential equation of the form

1) (Y@OPYO) D + gy y(t) =0, p>1, n >3,

with the same function ¢ as in equation (3). We shall use the following
notation

o] g Apn—2
(*) E(t,h(s)) = f f . f h(s)dsds,—s...ds3ds,,
t  s2 Sp-2

with a real-valued nonnegative continuous function h on I and ay,asy,...
..., 0p_y suitable points in 1. We denote by E(t,h(s)) the integral on the
right-hand side of (*), when the upper limits a;, as,...,a,_2 of integrals
are all replaced by the greatest number from a;, ¢ =1,2,...,n— 2.

THEOREM 2. Let ay > as > ... > an_o be, respectively, zeros of
(YO @), (YO 29 @), - .., (' @Oy (1),

where y(t) is a solution of (11), let @ < ap—3 and b > a; be zeros of y(t),
and |y(t)| be mazimized in c € (a,b). Then

b
(12) 1<27?(b—a)P" [ E(s1,lq(s)])ds1,
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c

(13) 1< (c—a)P [ E(s1,lq(s)])dst,

a

b
(14) 1< (- [ E(s1,la(s)l)ds1.

Proof. Integrating n — 2 times the equation (11), by the hypotheses,
we get

(15) D" (YO (@) + E(t a(s)ly(s)Py(s)) = 0.

Then following the proof of Theorem 1 with suitable modifications and using
the fact that, by the hypotheses, the solution of (11) satisfies the equivalent
integral equation (15), we get (12)-(14).

Remark 2. We note that the inequalities (4)-(6), (12)-(14) can very
easily be extended to the following more general equations

(16)  (r@IY' @Oy ®) + aOly@)IPy(t) = 0, p> 1,
17) (@Y OP Y (0)" ™V + q@)ly@O)IP*y(t) = 0, p > 1,
where n > 3, the function r is real-valued positive and continuous on I,

and ¢ is the same as in (3). For similar results related to various types of
equations we refer to [1}, [2], [11].

3. An Application

THEOREM 3. Suppose that |q(t)| € L¥[0,00), 1 < a < oo. If y(t) is any
oscillatory solution of (3), then the distance between consecutive zeros of
y(t) tends to infinity as t — oo.

Proof. Assume that the conclusion is not true. Then there exists a
solution y(t) with its sequence of zeros {t,} having a subsequence {¢,, }
such that [t,,,, —tn,| < N < oo for all k. Let s,, be a point in (tn, ,tn,,,)
at which |y(¢)| is maximized. Then |s,, — t,, | < N for all k. Let § be
the index conjugate with a, namely 1 + %; = 1. Since |q(t)] € L*[0, 00),
1 < a < oo, for k large enough we can write

¢ : )
(18) ( [ la(s)ods)™ < N1=7-3,
tn,
By (5), we have
Sn,
(19) 1 < (Sny —tn, )p—l f la(s)lds.

tag



Inequality similar to Lyapunov’s inequality 919

Using (18), (19) and the Holder inequality with indices a,, we get the
inequality

s,.k 1
—_ o @ 1
(20) 1< (my = o la()1%ds)  (sy = t)?
tn,
< (sm = t)" 43 ([ la(9)Ids) "
tny

< NPTWELONIPoR o,
being a contradiction and the proof is complete.

Remark 3. We note that in [1} and [2] were established the Lyapunov
type inequalities for the equations

(21) (R )" + a(t)yy()f(y(t - (1)) = b(2),
(22)  Lnz(t) + ) pi(0)2()fi(=(D) = (1),
=1

and used to ensure that the oscillatory solution tends to zero as t — oo
(see, [1], Theorem 2) and that the distance between consecutive zeros of the
solutions becomes unbounded (see, [2], Theorem 2). Here it is to be noted
that the results similar to those given in [1], [2] can be very easily extended
for the equation (11) by using the Lyapunov type inequalities (12)-(14). The
precise formulations of these results and their proofs are entirely similar to
those in [1], [2] with suitable modifications.

References

[1] L.S. Chen, A Lyapunov inequality and forced oscillations in general nonlinear n-th
order differential-difference equations, Glasgow Math. J. 18 (1977), 161-166.

[2) L.S. Chen, C.C.Yeh, Note on distance between zeros of the n-th order nonlinear
differential equations, Atti Acad. Naz. Lincei, Rend. Cl. Sci. Fis. Mat. Nat. 41
(1976), 217-221.

[3] M. Del Pino, R. Manasevich, Oscillation and non-oscillation for (|u’|P~2u’)’
+ a(t)|u[P~"%u =0, p > 1, Houston J. Math. 14 (1988), 173-177.

(4] M. Del Pino, M. Elgueta, R. Manasevich, A homotopic deformation along
p of a Leray-Schauder degree result and ezistence for (|u'[P~%u') + f(t,u) = 0,
u(0) = u(T) = 0, p > 1, J. Diff. Equat., 80 (1989), 1-13.

{5] M.Del Pino, M. Elgueta, R. Manasevich, Sturm comparison theorem for equa-
tions of the form (|u'|P~2u') + c(t)|u/P~2u =0, p > 1, preprint.

[6] S.B. Eliason, A Lyapunov inequality for a certain second order nonlinear differ-
ential equation, J. London Math. Soc. 2 (1970), 461-466.



920

(7]

(8]
]

[10]
[11]

(12]

B.G. Pachpatte

B.J. Harris, On an inequality of Lyapunov for disfocality, J. Math. Anal. Appl.
146 (1990), 495-500.

P. Hartman, Ordinary Differential Equations, Wiley, New York 1964.

M.K. Kwong, On Lyapunov’s inequality for disfocality, J. Math. Anal. Appl. 83
(1981), 486-494.

AM. Lyapunov, Probléme général de la stabilité de mouvement, Princeton Univ.
Press, Princeton, N.Y. 1947.

B.G. Pachpatte, A note on Lyapunov type inequalities, Indian J. Pure Appl.
Math. 21 (1990). 45-49.

W.T. Patula, On the distance between zeros, Proc. Amer. Math. Soc. 52 (1975).
247-251.

DEPARTMENT OF MATHEMATICS
MARATHWARDA UNIVERSITY
AURANGABAD 431004 (MAHARASHTRA), INDIA

Received December 20, 1992.



