

B.G. Pachpatte

A NOTE ON AN INEQUALITY
SIMILAR TO LYAPUNOV'S INEQUALITY

Dedicated to Professor Janina Wolska-Bochenek

1. Introduction

Lyapunov [10] (see also [8] p. 345) proved that, if $y(t)$ is a nontrivial solution of

$$(1) \quad y''(t) + q(t)y(t) = 0$$

on an interval containing the points a, b ($a < b$) and such that $y(a) = y(b) = 0$, the function q being real and continuous, then

$$(2) \quad (b-a) \int_a^b |q(s)ds| > 4.$$

Many generalizations and applications of this result of Lypunov can be found in [1], [2], [6]-[12] and in the papers cited therein. The main purpose of this note is to provide an inequality similar to (2) for the differential equation

$$(3) \quad (|y'(t)|^{p-2}y'(t))' + q(t)|y(t)|^{p-2}y(t) = 0, \quad p > 1,$$

where $t \in I = [0, \infty)$ and I contains the points a, b ($a < b$), the function q is real-valued and continuous on I . The problems of existence, uniqueness and other properties of solutions to equations of the form (3) are recently studied in [3]-[5]. In what follows it is assumed that solutions of (3), and also of some generalizations of (3), exist on I .

AMS Subject Classification (1991): Primary 34C10, 34C11

Keywords and Phrases: Lyapunov inequality, consecutive zeros, Hölder's inequality, oscillatory solution.

2. Main results

THEOREM 1. *Let $y(t)$ be a solution of (3) with $y(a) = y(b) = 0$, and $y(t) \neq 0$ for $t \in (a, b)$. Let $|y(t)|$ be maximized in a point $c \in (a, b)$. Then*

$$(4) \quad 1 \leq 2^{-p}(b-a)^{p-1} \int_a^b |q(s)|ds,$$

$$(5) \quad 1 \leq (c-a)^{p-1} \int_a^c |q(s)|ds,$$

$$(6) \quad 1 \leq (b-c)^{p-1} \int_c^b |q(s)|ds.$$

Proof. Let $M = \max |y(t)| = |y(c)|$, $c \in (a, b)$. By assumptions, M is a positive constant. Since $y(a) = y(b) = 0$, we have the inequalities

$$(7) \quad M = |y(c)| = \left| \int_a^c y'(s)ds \right| \leq \int_a^c |y'(s)|ds,$$

$$(8) \quad M = |y(c)| = \left| - \int_c^b y'(s)ds \right| \leq \int_c^b |y'(s)|ds,$$

implying

$$(9) \quad M \leq \frac{1}{2} \int_a^b |y'(s)|ds.$$

By taking p -th power on both sides of (9), applying Hölder's inequality with indices $p, \frac{p}{p-1}$, integrating by parts and using the fact that $y(t)$ is a solution of (3) such that $y(a) = y(b) = 0$, we have

$$\begin{aligned} (10) \quad M^p &\leq 2^{-p}(b-a)^{p-1} \int_a^b |y'(s)|^p ds \\ &= 2^{-p}(b-a)^{p-1} \int_a^b (|y'(s)|^{p-2} y'(s)) y'(s) ds \\ &= 2^{-p}(b-a)^{p-1} \left\{ - \int_a^b (|y'(s)|^{p-2} y'(s))' y(s) ds \right\} \\ &= 2^{-p}(b-a)^{p-1} \left\{ \int_a^b (q(s) |y(s)|^{p-2} y(s)) y(s) ds \right\} \end{aligned}$$

$$\begin{aligned} &\leq 2^{-p}(b-a)^{p-1} \int_a^b |q(s)||y(s)|^p ds \\ &\leq 2^{-p}M^p(b-a)^{p-1} \int_a^b |q(s)| ds. \end{aligned}$$

Now, dividing both sides of (10) by M^p , we get (4). Inequalities (5), (6) follow in similar fashion.

COROLLARY 1. *Assume that the hypotheses of Theorem 1 hold. Then*

(i) *the inequality (4) yields the lower bound on the distance between the consecutive zeros of the nontrivial solution $y(t)$ of (3) by means of an integral measurement of $|q(t)|$,*

(ii) *the inequalities (5), (6) yield the lower bounds that relate to the integral measurement of $|q(t)|$ not only the points a, b at which the nontrivial solution $y(t)$ of (3) vanishes but also the point $c \in (a, b)$ at which $|y(t)|$ is maximized.*

Remark 1. We note that in [12] are established the inequalities of the forms (4)-(6) when $p = 2$ by using different analysis.

We next establish an inequality similar to Lyapunov's inequality for higher order differential equation of the form

$$(11) \quad (|y'(t)|^{p-2}y'(t))^{(n-1)} + q(t)|y(t)|^{p-2}y(t) = 0, \quad p > 1, n \geq 3,$$

with the same function q as in equation (3). We shall use the following notation

$$(*) \quad E(t, h(s)) = \int_t^{\alpha_1} \int_{s_2}^{\alpha_2} \cdots \int_{s_{n-2}}^{\alpha_{n-2}} h(s) ds ds_{n-2} \cdots ds_3 ds_2,$$

with a real-valued nonnegative continuous function h on I and $\alpha_1, \alpha_2, \dots, \alpha_{n-2}$ suitable points in I . We denote by $\bar{E}(t, h(s))$ the integral on the right-hand side of (*), when the upper limits $\alpha_1, \alpha_2, \dots, \alpha_{n-2}$ of integrals are all replaced by the greatest number from α_i , $i = 1, 2, \dots, n-2$.

THEOREM 2. *Let $\alpha_1 > \alpha_2 > \dots > \alpha_{n-2}$ be, respectively, zeros of*

$$(|y'(t)|^{p-2}y'(t))', (|y'(t)|^{p-2}y'(t))'', \dots, (|y'(t)|^{p-2}y'(t))^{(n-2)},$$

where $y(t)$ is a solution of (11), let $a < \alpha_{n-2}$ and $b > \alpha_1$ be zeros of $y(t)$, and $|y(t)|$ be maximized in $c \in (a, b)$. Then

$$(12) \quad 1 \leq 2^{-p}(b-a)^{p-1} \int_a^b \bar{E}(s_1, |q(s)|) ds_1,$$

$$(13) \quad 1 \leq (c-a)^{p-1} \int_a^c \bar{E}(s_1, |q(s)|) ds_1,$$

$$(14) \quad 1 \leq (b-c)^{p-1} \int_c^b \bar{E}(s_1, |q(s)|) ds_1.$$

Proof. Integrating $n-2$ times the equation (11), by the hypotheses, we get

$$(15) \quad (-1)^{n-2} (|y'(t)|^{p-2} y'(t))' + E(t, q(s)|y(s)|^{p-2} y(s)) = 0.$$

Then following the proof of Theorem 1 with suitable modifications and using the fact that, by the hypotheses, the solution of (11) satisfies the equivalent integral equation (15), we get (12)-(14).

Remark 2. We note that the inequalities (4)-(6), (12)-(14) can very easily be extended to the following more general equations

$$(16) \quad (r(t)|y'(t)|^{p-2} y'(t))' + q(t)|y(t)|^{p-2} y(t) = 0, \quad p > 1,$$

$$(17) \quad (r(t)|y'(t)|^{p-2} y'(t))^{(n-1)} + q(t)|y(t)|^{p-2} y(t) = 0, \quad p > 1,$$

where $n \geq 3$, the function r is real-valued positive and continuous on I , and q is the same as in (3). For similar results related to various types of equations we refer to [1], [2], [11].

3. An Application

THEOREM 3. Suppose that $|q(t)| \in L^\alpha[0, \infty)$, $1 \leq \alpha < \infty$. If $y(t)$ is any oscillatory solution of (3), then the distance between consecutive zeros of $y(t)$ tends to infinity as $t \rightarrow \infty$.

Proof. Assume that the conclusion is not true. Then there exists a solution $y(t)$ with its sequence of zeros $\{t_n\}$ having a subsequence $\{t_{n_k}\}$ such that $|t_{n_{k+1}} - t_{n_k}| \leq N < \infty$ for all k . Let s_{n_k} be a point in $(t_{n_k}, t_{n_{k+1}})$ at which $|y(t)|$ is maximized. Then $|s_{n_k} - t_{n_k}| < N$ for all k . Let β be the index conjugate with α , namely $\frac{1}{\alpha} + \frac{1}{\beta} = 1$. Since $|q(t)| \in L^\alpha[0, \infty)$, $1 \leq \alpha < \infty$, for k large enough we can write

$$(18) \quad \left(\int_{t_{n_k}}^{\infty} |q(s)|^\alpha ds \right)^{\frac{1}{\alpha}} \leq N^{1-p-\frac{1}{\beta}}.$$

By (5), we have

$$(19) \quad 1 \leq (s_{n_k} - t_{n_k})^{p-1} \int_{t_{n_k}}^{s_{n_k}} |q(s)| ds.$$

Using (18), (19) and the Hölder inequality with indices α, β , we get the inequality

$$\begin{aligned}
 (20) \quad 1 &\leq (s_{n_k} - t_{n_k})^{p-1} \left(\int_{t_{n_k}}^{s_{n_k}} |q(s)|^\alpha ds \right)^{\frac{1}{\alpha}} (s_{n_k} - t_{n_k})^{\frac{1}{\beta}} \\
 &\leq (s_{n_k} - t_{n_k})^{p-1+\frac{1}{\beta}} \left(\int_{t_{n_k}}^{\infty} |q(s)|^\alpha ds \right)^{\frac{1}{\alpha}} \\
 &< N^{p-1+\frac{1}{\beta}} \cdot N^{1-p-\frac{1}{\beta}} = 1,
 \end{aligned}$$

being a contradiction and the proof is complete.

Remark 3. We note that in [1] and [2] were established the Lyapunov type inequalities for the equations

$$(21) \quad (r(t)h(y'(t)))^{(n-1)} + a(t)y(t)f(y(t - \tau(t))) = b(t),$$

$$(22) \quad L_n x(t) + \sum_{i=1}^m p_i(t)x(t)f_i(x(t)) = q(t),$$

and used to ensure that the oscillatory solution tends to zero as $t \rightarrow \infty$ (see, [1], Theorem 2) and that the distance between consecutive zeros of the solutions becomes unbounded (see, [2], Theorem 2). Here it is to be noted that the results similar to those given in [1], [2] can be very easily extended for the equation (11) by using the Lyapunov type inequalities (12)-(14). The precise formulations of these results and their proofs are entirely similar to those in [1], [2] with suitable modifications.

References

- [1] L.S. Chen, *A Lyapunov inequality and forced oscillations in general nonlinear n-th order differential-difference equations*, Glasgow Math. J. 18 (1977), 161–166.
- [2] L.S. Chen, C.C. Yeh, *Note on distance between zeros of the n-th order nonlinear differential equations*, Atti Acad. Naz. Lincei, Rend. Cl. Sci. Fis. Mat. Nat. 41 (1976), 217–221.
- [3] M. Del Pino, R. Manasevich, *Oscillation and non-oscillation for $(|u'|^{p-2}u')' + a(t)|u|^{p-2}u = 0$, $p > 1$* , Houston J. Math. 14 (1988), 173–177.
- [4] M. Del Pino, M. Elgueta, R. Manasevich, *A homotopic deformation along p of a Leray-Schauder degree result and existence for $(|u'|^{p-2}u')' + f(t, u) = 0$, $u(0) = u(T) = 0$, $p > 1$* , J. Diff. Equat., 80 (1989), 1–13.
- [5] M. Del Pino, M. Elgueta, R. Manasevich, *Sturm comparison theorem for equations of the form $(|u'|^{p-2}u')' + c(t)|u|^{p-2}u = 0$, $p > 1$* , preprint.
- [6] S.B. Eliason, *A Lyapunov inequality for a certain second order nonlinear differential equation*, J. London Math. Soc. 2 (1970), 461–466.

- [7] B.J. Harris, *On an inequality of Lyapunov for disfocality*, J. Math. Anal. Appl. 146 (1990), 495–500.
- [8] P. Hartman, *Ordinary Differential Equations*, Wiley, New York 1964.
- [9] M.K. Kwong, *On Lyapunov's inequality for disfocality*, J. Math. Anal. Appl. 83 (1981), 486–494.
- [10] A.M. Lyapunov, *Problème général de la stabilité de mouvement*, Princeton Univ. Press, Princeton, N.Y. 1947.
- [11] B.G. Pachpatte, *A note on Lyapunov type inequalities*, Indian J. Pure Appl. Math. 21 (1990), 45–49.
- [12] W.T. Patula, *On the distance between zeros*, Proc. Amer. Math. Soc. 52 (1975), 247–251.

DEPARTMENT OF MATHEMATICS
MARATHWARDA UNIVERSITY
AURANGABAD 431004 (MAHARASHTRA), INDIA

Received December 20, 1992.