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A TOPOLOGICAL P R O P E R T Y OF THE SOLUTION SET 
TO THE STURM-LIOUVILLE DIFFERENTIAL INCLUSIONS 

Introduction 
Differential inclusions of the form Vu{t) G ̂ (t^u^)), where V is a differ-

ential operator, are immediate generalization of the differential equations. 
The theory of properties of ordinary differential inclusions of the first order 
has been thriving since the early seventies and a lot is known on the existence 
of solutions and on their properties both in the framework of the Euclidean 
space R n as well as in the framework of the Banach space .Y. In general dif-
ferential inclusions with ordinary differential operator s of the higher order 
are much less examined although a remarkable amount of interest in this 
field has been observed lately. 

The present paper deals with some topological properties of the solution 
set to the inclusion 

where t 6 (0; tt), and multifunctions Jr(t, •) are Lipschitz with compact but 
not necessarily convex values in the real line R. We prove that the set of 
solutions is a retract of the Sobolev space of the type W2,1 with a weight 
p. The role of the weight p is similar to the role of the Bielecki norm and 
reduces the problem to the result by Bressan-Cellina-Fryszkowski [4] on 
the fixed point set for a contraction with decomposable values in Ll{p). 
In section 2 we construct the appropiate weight p taking into account the 
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theory of the Sturm-Liouville equation 

(3) - m ( t ) x = X x , te T. 
The main result is formulated and proved in the section 3 while the 

section 1 contains preliminary facts and definitions which are needed in this 
paper. 

Let us observe that the Sturm-Liouville equation (3) is a particular case 
of the problem (1) with T(t,z) = {Az + m(t)z}. In this sense the Sturm-
Liouville theory of the equation (3) is carried on the diferential inclusions 
case. 

Preliminaries 
Let T — (0,7r), £ be the cr-algebra of Lebesgue measurable subsets of 

T. The spaces of functions integrable with p-th power on T for 1 < p < oo, 
equipped with the usual norms |x|p, we shall denote by Lp and let Wm'p 

and W0m'p be Sobolev spaces endowed with the usual norms |x|m,p. 
Any non-negative function 0 ^ p € L°° will be called a weight. 
For a given weight p by the weighted Lebesgue space Lp(p) we mean the 

space of all functions x such that 

xp1!p e Lp
 with the norm ||x||p = \xp1/p\p. 

For p = 1 we shall also consider the space 

with the norm 

N U i : = l l * l l p + E 

i < e < s 

and the space W0 s , 1(p) which 
is the completion of the CQ°(T) in the norm 

|| • Now the embedding i : L1 Lx(p) is continuous. It is clear that in 
case when p and p~x are the weights then just introduced weighted spaces 
are isomorphic to Lp, W 4 ' 1 , VFq'1 respectively. 

Let us fix a function w £ L1 and consider the Sturm-Liouville problem d2x 
(4) Lwx = — wx = 0, with a;(0) = 0 = x(7r). 

The operator Lw, called the Sturm-Liouville operator, satisfies 7T (5) (Lwx, z) = J (x'(t)z'(t)-w(t)x(t)z(t))dt 
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for all x € W 2 ' 1 and z 6 WQ'00. Denote the bilinear form on the right 
hand side of (5) by a w ( x , z ) and observe that it can be uniquely extended 
to a bounded bilinear form on WQ,P X WQ'9 with ^ -f ^ = 1. The spectral 
theory of the operator L w as well as of the problem (3) with the Dirichlet 
boundary conditions is well developed. In particular, by using the Priiffer 
transform there exists a sequence Ao < Ai < . . . < A* < ..., limj-K» A,- = oo 
of eigenvalues i.e. of such reals that the problems 

d?u 
(6) -w{t)u = A,u, u(0) = 0 = tt(ir), t = 0,1, . . . 

have not vanishing solutions. Moreover, we may assume that the eigenfunc-
tion ipo corresponding to the smallest eigenvalue Ao, called also the principal 
eigenvalue, is positive in the interval T and the corresponding eigenspace is 
one-dimensional (see [2], [5], [6], [9], [11], [12]). d2 x 

The simplest Sturm-Liouville operator is the operator LQX = (f°r 

w = 0). The equation 

(7) LQX = u 
with the boundary conditions (2) 

(8) z(0) = 0 = X(tt). 
has a solution x = A n € W 2 ' 1 D WQ1,2 for any u £ L 1 . This solution is 
expressed by the formula 

ir (9) Au(t)= J G0(t,s)u(s)ds 
o 

where Go(t,s) > 0 is the corresponding Green function. 
The operator A : L1 —• W 2 , 1 is linear, and bounded, and positive, i.e. 

for any function u < 0 we have Au < 0. In particular, it means that for any 
u G L1 the following estimate 

(10) |Au(i)l < ¿(|u|)(i) a.e. in f 

holds. 

The problem (4) is a special case of the differential inclusion 

d2u (11) --̂ 2--wu€?{t,u) u(0) = 0 = u(tt) 
for a given multifunction T. 

By a PF1,p-weak solution u (for all p £ [l;+oo]) of the problem (11) 
(and also (4)) we mean a function u £ WX,P(T) such that there exists 
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z € Ll{T) such that z(t) G .F(i,u(i)) a.e. and such that aw(u, <p) = (z, tp) for 
all if e W0

1,9(r), where i + J = 1. In other words L0 : ^ 0
1 , P (T) W - 1 , «(T) 

is in the coincidence with the multifunction K?. [Here K.?{u) = {z £ L1 : 
z(t) e F(t,u(t))}}. 

The above definition is equivalent to the following one of the Caratheo-
dory solution of the problem 

d2u 
~~dt? u = 0 = u(7r) 

i.e. the continuous function u such that there exist a u G L 1 ( T ) / R (it means 
that JQ v(t) dt = 0) and ix-selection z(t) € w(t)u(t) + T{t, u(t)) a.e. with 
the representations 

t t 
u(t) = —J v(s)ds and v(t) — J z(s)ds£ R a.e. 

o o 

Let us consider the multifunction T{t,x) satisfying the following hy-
potheses: 

(HI) the sets F(t,x) are compact subsets of R for any t 6 T and x 6 R , 
and the multifunction s i are measurable for any x G R; 

(H2) there exists m £ L1 such that for any i , j / S R w e have 

< m(t)\x - y\, 

where djj(K, L) stands for Hausdorff distance between sets K and 
¿ C R ; 

(H3) sup{|x| : x € T{t,0)} < a(t) a.e. and a 6 L°°. 

Consider the boundary value problem to the inclusion (1) with boundary 
conditions (2) In the present paper we deal with properties of the solution 
set Hp C W2'1 of the problem (1), (2). We prove that lZp is a retract of 
the whole space W2'1. 

A bypass is the existence of solutions of the problem (1), (2), since any 
retract H p ^ 0. Our work was motivated by a result due to De Blasi 
and Pianigiani [3], where the authors assumed that the Lipschitz constant 
m(t) = const < 1, t € [0; 1] (in the more general setting R n ) . In the sit-
uation considered in our paper, the above hypothesis has been weakened 
substantially, and we intend to discuss the problem (1) in the R™ in our 
subsequent paper. 

The method of proving the existence of a retraction is based on the result 
Bressan-Cellina-Fryszkowski [4] on the fixed point set for a contraction 
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in Lx(p). In order to formulate this theorem let us recall the notion of 
decomposability. The set K, C Lx(p) is called decomposable, if 

(12) \Au + (1 - \A)v £ IC 

for any u, v G /C and A G C. The family of all non-empty, closed, and 
decomposable subsets of Lx{p) let us denote by dec Lx(p). 

Consider the map /C : Lx(p) —* dec Lx(p) and assume that the map K, is 
a contraction i.e. there exists a < 1 such that 

(13) d J / ( /C(«) , /C(t ; ) )<a | | t t - t ; | | / , . 

THEOREM 1 [4]. For any contraction fC : Lx{p) —»• d e c i 1 ( P ) the set 
Fix(/C) of fixed points of K, is a retract of L1 (p). 

Now, we shall establish a kind of the stability result with respect to L1 

perturbations. 

PROPOSITION 1. For any m € Lx let Ao = A o ( r o ) be the principal eigen-
value of the Dirichlet problem for the Sturm-Liouville operator 

d2u . 
- - ^ 2 — m u = Aou, u(0) = 0 = U(7TJ. 

Then the mapping m Ao(m) is continuous in the strong topology of Ll. 

Consider {mn}£L0 C L1. By the (6) for any n = 0 ,1 , . . . , there exists a 
sequence A" , i = 0 , 1 , . . . of eigenvalues i.e. of reals such that 

d2u 
- mn(t)u = u(0) = 0 = u(7r), n = 0 , l , . . . 

have not vanishing solutions. Moreover the corresponding eigenspaces are 
one-dimensional. Pick real A* diffrent from all of {A"}£°i=0. Take any / 6 L1 

and consider the sequence of the non-homogeneous problems 

d2u 
(15) — - (m n + A*)un = / , u„(0) = 0 = ttn(jr), n = 1 , 2 , . . . 

By the choice of A* the only solution to each homogeneous problem (with 
/ = 0) is equal to zero. Therefore each non-homogeneous problem (15) has 
unique solution which we denote by T n f . Observe that Tnf 6 C(T) and if 
V>n is an eigenfunction corresponding to the principal eigenvalue AJ of (14) 
then ipn is also an eigenfunction of Tn since 

(16) r n V „ = (AJ - A*)"Vn. 

We shall prove that each Tn is a linear compact operator in C(T). 
The proof we shall split into few parts. 
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LEMMA 1. Assume mn —> mo in L l and fn —» /o and let un = Tnfn be solutions of (15) for n = 1,2, 
(a) If {un : n = 1 , 2 , . . . } is bounded in C(T) then {un : n = 1,2,...} is 

relatively compact in C(T). 
(b) If un =3 uo and un are solutions to the (15), n = 1 , 2 , . . . then Uo is 

a solution to the (15) for n = 0. 
P r o o f . Since {un} is bounded in L°° then by the Banach-Alaoglu the-

orem we may assume that it is weakly* convergent to a uq € L°°. It is clear 
that 

Ll mnun -r m0u0 
because of the strong convergence of mn in L l . By (15) this implies that 
f d 2un 1 - i i f dun "I 
< > is weakly convergent in L . We shall prove that < —— > is weakly 

convergent in L 1 too. Fix h G L°° and define a function 
t t * (pit) = f his) ds f his) ds. j X J 

Observe that 

(17) v(0) = 0 = V?(tt) 

and 

(is) / <" = - } '-¡jrWrW<«• 
o o 

Indeed, the right hand side of (18) equals 

0 0 dt V  

= J ^(t)h(t)dt-± f h(s)ds f t)dt, 
0 0 0 

what together with Dirichlet boundary data from (15) gives the required 

identity (18). Now the weak convergence of in L1 follows from (18) 
f d 2un 1 

and weak convergence of < >. 

(a) The weak convergence j together with the Dirichlet boundary 



Topological property of the solution set 909 

data gives by the Arzela - Ascoli theorem the uniform convergence of the 
sequence {-un}. 

f d 2 u n \ (b) Assume tha t < " > is weakly convergent say to a wq £ Lx and 

tha t is weakly convergent to VQ. We shall show tha t exists and 
[ at J ati 

is equal to WQ- Since un are absolutely continuous then 

dt y / dt o 

for every <p € C2(T). Taking <p(t) = — 7r)2 we obtain the convergence 

of —(0) and taking (pit) = 12 we get the convergence of —j^-(ff). 
dt 2ir at 

d dun dun 
This together with — — >• WQ gives t>o. Hence vo is absolutely 

continuous and = Wo. Since =t vo and w„(0) = 0 = UN(X) then UQ 
dt dt 

d d2 

is absolutely continuous and — UQ = v0. Thus - p r u 0 = w0. 
dt dt* 

Now passing to the limit in (15) we obtain 

d2 u — ^ - (m 0 + A*)u0 = / 0 , u o (0) = 0 = u0(v) 

and this completes the proof. • 

LEMMA 2. Let mn —• MO and let zn be a solution of ( 15 ) . If { f n : 
n = 1 , 2 , . . . } C L°° is bounded then {zn : n = 1 , 2 , . . . } is relatively compact 
in C{T). 

P r o o f . By the Banach-Alaoglu theorem we may assume tha t { / „ } 
is weakly convergent in L1. By Lemma 1 it suffices to show that {zn : 
n = 1 , 2 , . . . } is bounded in C(T). 

Assuming opposite, by passing to a subsequence, we may assume tha t 
lkn||oo +oo. Denote by un = z„/| |*n||oo; thus 

IKHoo = 1 

and 
du 

¿ f " " ( m " + A * ) U n = 3 n , U„(0) = 0 = U„(7r), 

where gn = /„/Hunlloo -* 0 since { / n } C Ll is bounded. 
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According to Lemma 1 {wn} contains a uniformly convergent subse-
quence to UQ and 

But A* in not any eigenvalue, hence UQ = 0 and we come to the contradiction 
with H«o||oo = limn-oc | |«n | |oo = 1. • 

As a consequence of previous lemmas we have the following 

COROLLARY 1. (a) Tn is a compact operator for n — 0 , 1 , 

(b) If mn —> mo in L1 then Tn tends to To in the operator topology. 

P r o o f of t h e P r o p o s i t i o n 1. Let mn —> mo in Ll as n —oo and 
Aq satisfy (14) (i = 0). We need to show that Aq tends to Aq. 

Employing the Collorary 1 and Lemma VII.6.3 [7] applied to the sequence 
of operators Tn we conclude from (16) that 

what completes the proof. • 

Acknowledgement. The authors wish to deeply thank to Professor 
Giovanni Vidossich for his kind and fruitful cooperation in proving Propo-
sition 1. 

Differential inequalities for Sturm—Liouville operator 
In this section we explain the question of existence of the non-ve solutions 

to the inequality: 

On the interval T and measurable function w we impose the following 
hypothesis 

d2 

(H+) the operator Lm = ~ m on^y positive eigenvalues. 

In particular, the assumption (H+) assures that the operator Lm is pos-
itively defined in H = L2 and is invertible. Observe the assumption (H+) is 

—TT- - ( m 0 + A * ) u 0 = 0 , u0(0) = 0 = u 0 ( t t ) -

(A£ - A * ) " 1 (A° - A * ) " 1 

(19) 

a s ( 0 ) = 0 = X(TT). 
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satisfied in three important cases: 
7r 

(a) f m(t) dt < 4/TT (cf. [9] p. 405); 
o 

(b) m € L°° and |m|oo < 1 as a consquence of Wirtinger inequality. 
7T 

(c) 7 < 1, where 7 = 7r_1 J t(ir — t)m(t)dt. 
0 

The fundamental lemma in this paper is as follows 

LEMMA 3. Let us assume the operator Lm is positively defined. Then 
there exist £0 > 0 and XQ € W2'1 fl Wq'2 such that 

(21) - (m(t) + A0/2)(l + £0)®o(0 > 0 

and 

x0(t) > 0 for t 6 T. 
P r o o f . Consider the operators CC defined on domCe = dom(Co —Ao/2) 

= W^'2 generated by the form z) where Ao is the principal 
eigenvalue of the operator Lw. Let A(s) stand for the first eigenvalue of the 
operator C£. Thus by the Proposition 1 A(e) is continuous at £ = 0. 

Since A(0) = Ao/2 > 0 therefore there is fo > 0 such that A(^o) > 0. 
Let TL>o € Wq1,2 be the eigenfunction of the operator CCQ so we have 

(22) - (m + A0/2)(l + e 0 ) M t ) = A(e o )^ (0 

a.e. in T. Since A(£o) is the principal eigenvalue, the function Vo does not 
vanish in the interval T, so we can assume ipo(t) > 0 for t € T. The inequality 
(21) is now a straightforward conclusion. • 

LEMMA 4. Under the same assumptions as in Lemma 3 there exist a G 
(0; 1) and a weight p such that 

(i) A is defined in L1(p); 
(ii) A(wp)(t) < ap(t) a.e. in T = [0;ir]. 

P r o o f . It suffices to take a — (1 + £o)-1> and p as the function: 

P { T ) . . = . F M ( M + X O N R 

where £q and ifio satisfy (22). Then 

A((m+A0/2)p) = Vo, 
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and (22) means that 

(23) ap-{ 1 + A(e0)(m + A 0 /2 ) - a ( l + e0)~' }A{{m + A0/2)p) = 0, 

and (ii) follows. 
The second part (i) is an immediate consequence of the explicit form of 

the integral operator A. a 

Main result 
Let us consider the problem of the existence of solution x to the differ-

ential inclusion 

( 2 5 ) 

in the class of function s x G W2'1 fl W^'2 and therefore x satisfies the 
boundary conditions 

(26) z(0) = 0 = ar(ir). 

Let us impose the conditions (HI) (H2) and (H3) on the right hand side 
T(t,x) and let us assume that operator Lm, where m is "Lipschitz constant" 
of the multifunction ^ ( t , - ) satisfies ( H + ) . The solution set H is the set of 
all x such that (24) is fulfiled almost everywhere in T with (25) on the 
boundary of T. The main result in this paper is the following: 

THEOREM 2 . Let us assume that for the multifunction !F(t,x) (HI), (H2), 
(H3) and (#+) hold. Then there exists a positive weight p(t) in T such that 
the set of solutions to the problem (24) with (25) is a retract of the space 
W2

0'\p). 

P r o o f . Let p be the function given by the Lemma 4. Let us consider 
the space ¿1(/?) D L1. Denote by 

/C(tt) = {v € Ll(p): t>(i) G F(t,A(u)(t)) a.e. in T}. 

We shall prove that IC : Lr(p) —» dec Ll(p) is a contraction. 
First, let us observe that the sets IC(u) / 0. Indeed, let v be a measurable 

selection of multifunction t H-> ^(t, A(u)(t)). The existence of v follows from 
the Kuratowski and Ryll-Nardzewski Theorem. The hypothesis (H2) implies 

dist( t ;( i) ,^(i ,0)) < m(i)|y4(ti)(f)| 

for a.e. t e T — [0; TT]. Then from (H3) follows an estimate 

\v(t)\p(t) < a(<)/9(i) + m(t)p(i)|A(|tt|)(i)| 

and further v e Ll(p). 
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Second, for the contractivity of the map u JC(u), let us fix ttj, u2 and 
v\ G )C(ui). Let ^ ( 0 G A(u2)(t)) be a measurable selection such that 
MO - MO I ^ (™(t)\A(ui - u2 ) ( i )| a.e. in T . Hence together with (H2) 
we have 

a 

( 2 7 ) \\vl-v2\\p= J \v1(t)-v2(t)]p(t)dt 

0 

ir 

< J (m)(t)p(t)\A(ul-u2)(t)\dt 

0 

it 

= f A((m)p)(t)lu1(t)-u2(t)ldt. 

0 

Now, from our specific construction of the weight p (cf. Lemma 4), we have 
that the right-hand side of (27) can be estimated by fg ap (0|u i (0 — U 2 (0 I & 
= a||ui — u2\[p, and this is nothing but the contractivity of /C. We are 
in the position of the B - C - F Theorem which implies that the set Fix(/C) 
of fixed points of multifunction K(u) is a retract of the space L 1 ( p ) . Let 
<t> : Ll{p) —• Fix(/C) be the retraction. Then the map r : Wl'l(p) —> H? 

given by 

is the retraction from the main theorem. • 
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