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Introduction

Differential inclusions of the form Pu(t) € F(t,u(t)), where P is a differ-
ential operator, are immediate generalization of the differential equations.
The theory of properties of ordinary differential inclusions of the first order
has been thriving since the early seventies and a lot is known on the existence
of solutions and on their properties both in the framework of the Euclidean
space R"™ as well as in the framework of the Banach space X. In general dif-
ferential inclusions with ordinary differential operator s of the higher order
are much less examined although a remarkable amount of interest in this
field has been observed lately.

The present paper deals with some topological properties of the solution
set to the inclusion

d’z(t)
(1 ~—n € F(t,z(1)
with boundary conditions
(2) £(0) = 0 = (),

where t € (0; ), and multifunctions F(t,-) are Lipschitz with compact but
not necessarily convex values in the real line R. We prove that the set of
solutions is a retract of the Sobolev space of the type W?! with a weight
p. The role of the weight p is similar to the role of the Bielecki norm and
reduces the problem to the result by Bressan—Cellina-Fryszkowski [4] on
the fixed point set for a contraction with decomposable values in L!(p).
In section 2 we construct the appropiate weight p taking into account the
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theory of the Sturm-Liouville equation

2
3) —ZT;B —-m(t)z =Xz, teT.

The main result is formulated and proved in the section 3 while the
section 1 contains preliminary facts and definitions which are needed in this
paper.

Let us observe that the Sturm-Liouville equation (3) is a particular case
of the problem (1) with F(t,z) = {Az + m(t)z}. In this sense the Sturm-
Liouville theory of the equation (3) is carried on the diferential inclusions

case.

Preliminaries

Let T = (0,7), £ be the og-algebra of Lebesgue measurable subsets of
T. The spaces of functions integrable with p-th power on T for 1 < p < o0,
equipped with the usual norms |z|,, we shall denote by L? and let W™?
and Wy"'? be Sobolev spaces endowed with the usual norms |z|m p.

Any non-negative function 0 # p € L will be called a weight.

For a given weight p by the weighted Lebesgue space LP(p) we mean the
space of all functions z such that

zp!/? € L?  with the norm |||, = [zp'/?|,.

For p = 1 we shall also consider the space
l
W)= {z e o) Gr € 1p), €50

with the norm

lzllps1 := ll=ll, + Z

1<e<s

p

and the space Wy (p) which is the completion of the C§°(T) in the norm
Ill5,s,1- Now the embedding i : L' — L(p) is continuous. It is clear that in
case when p and p~! are the weights then just introduced weighted spaces
are isomorphic to L?, W1, W, 1 respectively.

Let us fix a function w € L! and consider the Sturm-Liouville problem

d2

(4) Lyz= g T WT= 0, with z(0) =0 = z(7).
The operator L,,, called the Sturm-Liouville operator, satisfies

(5) (Lyz, 2) f (2'(1)2'(t) — w(t)a(t)2(t)) dt
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for all z € W2 and z € W,'®. Denote the bilinear form on the right
hand side of (5) by a,(z,z) and observe that it can be uniquely extended
to a bounded bilinear form on W, x W, with 14+ 1 = 1. The spectral
theory of the operator L,, as well as of the problem (3) with the Dirichlet
boundary conditions is well developed. In particular, by using the Priiffer
transform there exists a sequence Ag < A} < ... < A < .., limj00 A; = 00
of eigenvalues i.e. of such reals that the problems

d*u .
(6) —W—w(t)u=/\,-u, u(0) =0 =u(n), 1=0,1,...
have not vanishing solutions. Moreover, we may assume that the eigenfunc-
tion 1y corresponding to the smallest eigenvalue Ay, called also the principal
eigenvalue, is positive in the interval T’ and the corresponding eigenspace is
one-dimensional (see [2], [5], [6], [9], [11], [12]).

d*z

F (fOl‘

The simplest Sturm-Liouville operator is the operator Loz = —
w = 0). The equation
) Loz =u
with the boundary conditions (2)
(8) z(0) = 0 = z(7).

has a solution z = Au € W' n Wy*? for any u € L. This solution is
expressed by the formula

(9) Au(t) = fG'o(t,s)u(s)ds
0

where Go(t,3) > 0 is the corresponding Green function.

The operator A : L' — W?2! is linear, and bounded, and positive, i.e.
for any function u < 0 we have Au < 0. In particular, it means that for any
u € L! the following estimate

(10) [Au(t)] < A(Jul)(®) ae.inT
holds.
The problem (4) is a special case of the differential inclusion
d’u
(11) —W—wuef(t,u) 2(0) = 0 = u(7)

for a given multifunction F.
By a W1lP-weak solution u (for all p € [1;+00]) of the problem (11)
(and also (4)) we mean a function u € W1P(T) such that there exists
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z € L}(T) such that z(t) € F(t,u(t)) a.e. and such that a,(u, ) = {2, @) for
all p € Wy'I(T'), where %+% = 1. In other words Lo : Wy P(T) - W~19(T)
is in the coincidence with the multifunction Kx. [Here Kz(u) = {2z € L} :
2(t) € F(t,u(t))}).

The above definition is equivalent to the following one of the Caratheo-
dory solution of the problem

2
_‘ciiT;L —wu € F(t,u), u(0)=0=u(r)

i.e. the continuous function u such that there exist a v € L'(T)/R (it means
that [ v(t)dt = 0) and L!-selection 2(t) € w(t)u(t) + F(t,u(t)) a.e. with
the representations

u(t) = —f v(s)ds and o(t) - f z(s)ds € R ae.

0 0

Let us consider the multifunction F(¢,z) satisfying the following hy-
potheses:

(H1)  the sets F(t,z) are compact subsets of R for any t € T and z € R,
and the multifunction s ¢t — F(¢, z) are measurable for any z € R;

(H2) there exists m € L! such that for any z,y € R we have
du(F(t,z), F(t,9)) < m(t)|z - yl,

where dy(K, L) stands for Hausdorff distance between sets K and
LCR;
(H3) sup{jz|:z € F(¢,0)} < a(t) a.e.anda€ L.

Consider the boundary value problem to the inclusion (1) with boundary
conditions (2) In the present paper we deal with properties of the solution
set Rx C W?%1 of the problem (1), (2). We prove that R is a retract of
the whole space W1,

A bypass is the existence of solutions of the problem (1), (2), since any
retract R # . Our work was motivated by a result due to De Blasi
and Pianigiani [3], where the authors assumed that the Lipschitz constant
m(t) = const < 1, t € [0;1] (in the more general setting R™). In the sit-
uation considered in our paper, the above hypothesis has been weakened
substantially, and we intend to discuss the problem (1) in the R” in our
subsequent paper.

The method of proving the existence of a retraction is based on the result
Bressan—Cellina-Fryszkowski {4] on the fixed point set for a contraction
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in L(p). In order to formulate this theorem let us recall the notion of
decomposability. The set K C L(p) is called decomposable, if

(12) /\Au+(l—)\A)v€IC

for any u, v € K and A € L. The family of all non-empty, closed, and
decomposable subsets of L!(p) let us denote by dec L'(p).

Consider the map K : L!(p) — dec L'(p) and assume that the map K is
a contraction i.e. there exists a < 1 such that

(13) du(K(u),K(v)) < allu - |,

THEOREM 1 [4]. For any contraction K : L'(p) — dec L(p) the set
Fix(K) of fized points of K is a retract of L'(p).

Now, we shall establish a kind of the stability result with respect to L!
perturbations.

ProposITION 1. For any m € L! let Ay = \o(m) be the principal eigen-
value of the Dirichlet problem for the Sturm-Liouville operator
d*u

—gF mu = Aou, u(0) = 0 = u(m).

Then the mapping m + Ag(m) is continuous in the strong topology of L!.

Consider {m,}2, C L!. By the (6) for any n = 0, 1,..., there exists a

sequence A? , ¢ =0,1,... of eigenvalues i.e. of reals such that
d’u _n o _
SPTR ma(t)u = ATy, u(0)=0=u(r), n=0,1,...

have not vanishing solutions. Moreover the corresponding eigenspaces are
one-dimensional. Pick real A* diffrent from all of {A}}5%_,. Take any f € L?
and consider the sequence of the non-homogeneous problems
d?u,

di?

By the choice of A* the only solution to each homogeneous problem (with
f = 0) is equal to zero. Therefore each non-homogeneous problem (15) has
unique solution which we denote by T, f. Observe that T, f € C(T) and if
¥y is an eigenfunction corresponding to the principal eigenvalue A} of (14)
then %, is also an eigenfunction of T, since

(16) Tothn = (AT =~ X)) 1op,..

We shall prove that each T;, is a linear compact operator in C(T').
The proof we shall split into few parts.

(15) - —(Mp+XYup = f, up(0)=0=uy(r), n=12,..
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LEMMA 1. Assume m,, — mg in L' and f, s fo and let v, = Ty, f, be
solutions of (15) for n =1,2,.

(a) If {un : » =1,2,...} is bounded in C(T) then {u, : n =1,2,...} is
relatively compact in C(T).

(b) If un = uo and u, are solutions to the (15), n = 1,2,... then uq is
a solution to the (15) for n = 0.

Proof. Since {u,} is bounded in L* then by the Banach-Alaoglu the-
orem we may assume that it is weakly* convergent to a ug € L. It is clear
that

LI
MpUyn — MoUg
because of the strong convergence of m, in L!. By (15) this implies that
d? d
{ d‘l; } is weakly convergent in L!. We shall prove that { ;t } is weakly

convergent in L! too. Fix h € L™ and define a function

et)= [ h(s) ds—% [ h(s)ds.
0 0

Observe that

(17) ¢(0) = 0 = ()

and
™ Un, ™ 2un

(18) il dd—t(t)h(t)dtz— i ddt2 (t) dt.
0 0

Indeed, the right hand side of (18) equals

_% f dtn (t) ()t

dun 1 r dun
= 6[ (Dh(t)dt - — f h(s) ds Of —

0
what together with Dirichlet boundary data from (15) gives the required

identity (18). Now the weak convergence of —:iltl in L! follows from (18)

d k e of dup
and weak convergenc 2 [

(a) The weak convergence {d—ui} together with the Dirichlet boundary

dt
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data gives by the Arzela — Ascoli theorem the uniform convergence of the
sequence {u,}.
2

d*u
(b) Assume that { o

"} is weakly convergent say to a wy € L' and

d?
that {d;t } is weakly convergent to vyp. We shall show that d:;O exists and

is equal to wp. Since u, are absolutely continuous then

K d%p du, dop|”
Of un(D g M= 3731,

- [ 20

for every ¢ € C*(T). Taking ¢(t) = 3=(¢ — 7)? we obtain the convergence
d
of éﬁﬁ(O) and taking ¢(t) = Lﬂ_t2 we get the convergence of —d—utﬁ(w)

‘n.

d d
This together with — — wg gives &in =} vg. Hence vy is absolutely

dt dt dt
continuous and % = wy. Since % = vg and u,(0) = 0 = un(7) then ug
d 2
is absolutely continuous and -(Euo = vg. Thus 7 ~— g = Wp.
Now passing to the limit in (15) we obtain
d*u
=S8 = (mo + Mo = fo,  u0(0) = 0 = ug(m)

and this completes the proof. =

LEMMA 2. Let m, — mg and let z, be a solution of (15). If {fn :
n=1,2,...} C L™ is bounded then {z, : n = 1,2,...} is relatively compact
in C(T).

Proof. By the Banach-Alaoglu theorem we may assume that {f,}-
is weakly convergent in L!. By Lemma 1 it suffices to show that {z, :
n=1,2,...} is bounded in C(T).

Assuming opposite, by passing to a subsequence, we may assume that

znlloo =" 400. Denote by u, = 2,/||2n)loo; thus
lunfloo =1
and
du, .
_7 —(mn+/\ )un = Gn, un(()):()zun(n'),

1
where g, = fu/lltn]lco L, 0 since {fa} C L! is bounded.
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According to Lemma 1 {u,} contains a uniformly convergent subse-
quence to ug and

du
—Eg —(mo+Aug =0, u(0) = 0= up(w).

But A* in not any eigenvalue, hence 4y = 0 and we come to the contradiction
with {[uo]leo = liMmp—oo [[Unllee = 1. m

As a consequence of previous lemmas we have the following

COROLLARY 1. (a) T, is a compact operator for n=0,1,....
(b) If m,, — mg in L! then T, tends to Ty in the operator topology.

Proof of the Proposition 1. Let m, — mg in L! as » — oo and
A2 satisfy (14) (i = 0). We need to show that A} tends to AJ.

Employing the Collorary 1 and Lemma VII.6.3 [7] applied to the sequence
of operators T;, we conclude from (16) that

(WG =A== (A0 = A,
what completes the proof. m

Acknowledgement. The authors wish to deeply thank to Professor
Giovanni Vidossich for his kind and fruitful cooperation in proving Propo-
sition 1.

Differential inequalities for Sturm—-Liouville operator
In this section we explain the question of existence of the non-ve solutions
to the inequality:

9

d
(19) Lyz=- dtf —w(t)z >0

with boundary conditions
(20) z(0) = 0 = z(m).
On the interval T and measurable function w we impose the following
hypothesis

d2
Tde

In particular, the assumption (H, ) assures that the operator L,, is pos-
itively defined in % = L? and is invertible. Observe the assumption (H) is

(Hy) the operator L,, = — m has only positive eigenvalues.



Topological property of the solution set 911
satisfied in three important cases:

(a) f m(t)dt < 4/ (cf. [9] p. 405);
0
(b) m € L* and |m| < 1 as a consquence of Wirtinger inequality.
™

(c)y <1, where y = 77! f t(r — t)m(t) dt.
0

The fundamental lemma in this paper is as follows

LEMMA 3. Let us assume the operator L., is positively defined. Then
there ezist e > 0 and zo € W1 N Wy such that

d(to

(21) =g~ (m(t) + 20/2) (1 + €0)zo(t) 2 0

and
zo(t) >0 for teT.

P roof Consider the operators C, defined on dom C, = dom (Cg—Ag/2)
= W,? generated by the form (L(w+10/2)(14¢)%, 2) Where g is the principal
eigenvalue of the operator L,,. Let A(¢) stand for the first eigenvalue of the
operator C.. Thus by the Proposition 1 A(¢) is continuous at € = 0.

Since A(0) = Ag/2 > 0 therefore there is €9 > 0 such that A(eg) > 0.

Let 9o € Wol 2 be the eigenfunction of the operator C,, so we have

d*vo
dt?
a.e. in T. Since A(gp) is the principal eigenvalue, the function 1y does not

vanish in the interval T', so we can assume ¢o(t) > 0 for t € T'. The inequality
(21) is now a straightforward conclusion. m

(22) — (m+ Xo/2)(1 + €0)to(t) = Meo)o(t)

LEMMA 4. Under the same assumptions as in Lemma 3 there ezist a €
(0;1) and a weight p such that

(i) A is defined in L'(p);
(ii) A(wp)(t) < ap(t) a.e. in T = [0;7].

Proof. It suffices to take a = (1 + &¢)~!, and p as the function:

plt) = 200 4 32y

where €9 and ), satisfy (22). Then
A((m + Ao/2)p) = o,
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and (22) means that
(23)  ap~ {1+ A(eo)(m+ X0/2)7}(1 + €)'} A((m + Xo/2)p) = O,

and (ii) follows.
The second part (i) is an immediate consequence of the explicit form of
the integral operator A. m

Main result
Let us consider the problem of the existence of solution z to the differ-
ential inclusion
d*z
dt?

in the class of function s z € W2! N W,"* and therefore z satisfies the
boundary conditions

(26) z(0) = 0 = z(r).

Let us impose the conditions (H1) (1{2) and (H3) on the right hand side
F(t,z) and let us assume that operator L,,, where m is “Lipschitz constant”
of the multifunction F(¢,-) satisfies (H4.). The solution set R is the set of
all z such that (24) is fulfiled almost everywhere in T' with (25) on the
boundary of T'. The main result in this paper is the following:

THEOREM 2. Let us assume that for the multifunction F(t,z) (H1), (H2),
(H3) and (Hy) hold. Then there exists a positive weight p(t) in T such that
the set of solutions to the problem (24) with (25) is a retract of the space

W' (p).

Proof. Let p be the function given by the Lemma 4. Let us consider
the space L'(p) D L!. Denote by

K(u) = {v e L*(p) : v(t) € F(t, A(u)(t)) ae. in T}.

We shall prove that K : L'(p) — dec L!(p) is a contraction.

First, let us observe that the sets X(u) # 0. Indeed, let v be a measurable
selection of multifunction t — F(t, A(u)(t)). The existence of v follows from
the Kuratowski and Ryll-Nardzewski Theorem. The hypothesis (H2) implies

dist(u(t), F(1,0)) < m(8)| Au)()|
for a.e. t € T = [0; ). Then from (H3) follows an estimate
[o(Blo(2) < a(t)p(t) + m(E)p(E)IA(u])(0)
and further v € L!(p).

(25) € F(t,z)
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Second, for the contractivity of the map u — K(u), let us fix uy, up and
vy € K(uyp). Let va(t) € F(t, A(uz)(t)) be a measurable selection such that
|91 (2) — v2(2)] < (m(t)]A(u1 — uz)(t)| a.e. in T. Hence together with (H2)
we have '

(27) o= wally = [ fon(t) = va®)lp(t)
0

T

J (m)®)p(D1A(ur ~ u2)(0)] dt

0

= [ A(m)p)()lus(t) - ua(t)] dt.
0

IA

Now, from our specific construction of the weight p (cf. Lemma 4), we have
that the right-hand side of (27) can be estimated by [} ap(t)|uy(t)—uz(2)| dt
= afluy — u2||,, and this is nothing but the contractivity of K. We are
in the position of the B-C-F Theorem which implies that the set Fix(K)
of fixed points of multifunction K(u) is a retract of the space L!(p). Let
¢ : L'(p) — Fix(K) be the retraction. Then the map = : W2''(p) —» R#

given by )
-a(o(-5)

is the retraction from the main theorem. =
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