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1. Introduction

The theorem on the support of a measure generated by the solution to a
functional stochastic differential equation is examined. We consider a model
similar to that in the papers of Dawidowicz and Twardowska [4] and of
Twardowska [18], [19]. This note is a relatively simple consequence of the
approximation theorem of Wong-Zakai type for the above equations from
[18], [19] and of the support theorem of Millet and Sanz-Solé (see [13]).
However, we restrict ourselves to spaces of continuous functions instead of
spaces of Holder functions since the generalization to Holder functions is
straightforward on the base of the quoted papers.

There are some papers dealing with the support of probability measures
connected with stochastic differential equations in finite dimension; see e.g.
Stroock and Varadhan [16], [17], Ikeda and Watanabe [8] for finite multi-
dimensional stochastic differential equations. See also the paper of Aida,
Kusuoka and Stroock [1], which uses a sequence of non-absolutely continu-
ous transformations of a probability space. A characterization of the support
in the finite-dimensional case on the space of Hélder-continuous functions
was given by Ben Arous and Gradinaru in [3], Bally, Millet and Sanz-Solé
in [2], Millet and Sanz-Solé in [13], [14]. The support of diffusion processes
considered on manifolds was examined by Kunita in [9]. For stochastic dif-
ferential equations driven by finite multidimensional continuous semimartin-
gales, support theorems were given by Mackevicius in [11], [12] as well as by
Gyongy in [5], [6], Gy6ngy and Préhle in [7]. ‘
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It is well known that support theorems are important for the character-
ization of invariant sets and, consequently, for ergodic theorems.

2. Definitions and notations

Let t € [0,T] and let (£2,F,F;, P) be a complete probability space with
Fi = (Ft)tepp, 1) an increasing family of sub-o-algebras of the o-algebra F.
We put J = [—r,0] and we introduce the metric spaces C_ = C(J,R?),C; =
C([-r,T),R%) and C§ = C([-r,T],R™) = R of continuous functions. The
spaces C_, C; and CJ are endowed with the usual norms of uniform conver-
gence. Here d is the dimension of the state space and m is the dimension of
the Wiener process; in the space C? all functions are equal to zero at zero.
Below we denote by X’ any of the above spaces.

Let B(X) denote the topological o-algebra of the space X. It is obvi-
ous that it is identical with the o-algebra generated by the family of all
Borel cylinder sets in X'. So we construct the Wiener space (C3, B(C?), P¥),
where P* is the Wiener measure ([8], Chapter I). The coordinate process
B(t,w) = w(t), w € €3, is the m-dimensional Wiener process.

The smallest Borel algebra that contains By, Bs,... is denoted by B; U
Bz U..; Byo(X) denotes the smallest Borel o-algebra for which a given
stochastic process X (t) is measurable for every t € [u,v] and B, (dB) de-
notes the smallest Borel algebra for which B(s) — B(t) is measurable for
every (t,s) with u <t < s <v.

Let B™(t,w) = wy(t) be the following piecewise linear F;-adapted ap-
proximation of B(t,w) = w(t):

(2.1) B™P(t,w) = w”(;;) +2" (t - zin) (“’p(k er 1) - wp(%))

foreach p = 1,...,m and (k+ 1)T/2" <t < (k4 2)T/2" for k = 0,1,...
s om 1,

For the stochastic process X (¢,w) and for a fixed ¢t € [0,T) we de-
fine

Xi(0,w)=X(t+0,w), 6€lJ;
therefore X;(-, w) denotes the segment of the trajectory X (-,w) on [-r,1].

3. Description of the model

Now we consider 2 = C9. Let X be a continuous stochastic process
X(t,w): [-r,T) x 2 — R?, that is, X : 2 — X = (;.

We take some fixed initial constant stochastic processes X (0 + 6, w) =
Xi(w) = X3 (w) = Yj(w) for 6 € J, i = 1,...,d. We also consider op-
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erators b : C_ — R%, o : C_ — L(R™,R?) (where L(R™,R?) is the Ba-
nach space of linear functions from R™ to R¢ with uniform operator norm
| -]L)-

We consider the following stochastic differential equation with delayed
argument:

t m i
(3.1) Xi(t,w) = X{(w)+ [ b'(Xs(nw))ds+ D [ oa™P(X,(-,w)) dwP(s)
0 p=1 0
fori=1,...,d.

Let Px be the probability law of the solution X = {X(¢)}, t € [0,T),
to equation (3.1). Let H be the Cameron-Martin space associated with the
Brownian motion, that is, the space of functions h : [0,7] — R™ which
are absolutely continuous and whose derivative A belongs to L2([0,T],R™).
Let

(3.2) Su={heC?:heH, h(0)=0).

We consider for given h € Sy and z = Xo(w) € R? the equation

(3.3) ) =X5+ [ (()ds+ Y [ oP(&())h?(s)ds—
0 p=1 0

>

d
p=1j=1

f Bjdip(fs('))o'jp(fs(-)) ds

N =

for every i = 1,...,d. Further, Do*? is the Fréchet derivative from C_ to
L(C_,R). From the Riesz Theorem (see Rudin [15]) it follows that there
exists a family of measures p = piP? with bounded variation such that

d 0
Do?(g)(@) =) [ ®;(v)u(dv)

=1 —r

is a directional derivative, for any @,g € C_. The measure p has the following
decomposition:

#(A) = p(AN[-7,0)) + p(AN {0}) = i(A) + p({0})bo(A),
where & is the Dirac measure, A € B([-7,0)). We denote the value uiP7({0})
by Djo(g), that is, Do (E.(w)) = 4% (({0)), where ¥ , = piPi
Let
(3.4) S1 =suppPx in G =0,
(3.5) Sy ={€=€&(z,h): h € S} (closurein G).
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Denote by T the map T*(w) = w — B™+h and observe that by the
Girsanov theorem the measures P o (T*)~1 are absolutely continuous with
respect to P.

Let us introduce the following conditions:

(A1)  The initial stochastic process Xp is Fo — measurable and P(|Xo(w)]
< o) = 1, where | Xo(w)| = E;Ll [ X§(w)l|, B-ro(Xo) is indepen-
dent of By r(B).

(22) For every ¢, % € C_ the following Lipschitz condition is satisfied:

0
lb(¢) = b)Y + lo(e) — o ()IF < L' [ 1¢(8) — $(0)I* dK (6)+

+ L?|p(0) - %(0)[?,

where K (6) is a certain bounded measure on J, and L*, L? are some
constants.

(23) For every ¢ € C_ the following growth condition is satisfied:

() +lo(@)l < L' [ (1+¢%(8)) dK(0) + L*(1 + ©*(0)),

-7

where ()02(0) = Et—l ¥i (0)

(A4) b0 € CY(C-), for every i = 1,...,d, p = 1,...,m, where C}
denotes the space of bounded mappings with continuous bounded
first derivative, and the first derivatives of o*? satisfy the Lipschitz
condition.

Notice that conditions (A1)-(A4) ensure the existence and uniqueness
of solutions for equations considered in this paper (compare [18]).

Let (E,||-]|) be a separable Banach space. Here (E, “ ) = (Cy,sup|-|).
Further we consider the following equations for ¢ = 1,...,d:

(3.6™) X™i(t,w) = X (w) + f b(X™(-, w)) ds+

+3° [ o XCw)dwP(s) =Y [ oP(XT(,w)B (s, w)ds+
p=1 0 p=1 0
+3° [ (X, w)h(s)ds,

p=1 0
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t
(3.7 £t w) = Xg(w) + [ 6(E0(,w))ds+
0

+ f oP(E(-,w)) B (s) ds—
Z f Do (€3(-, w))a?P(£2(-, w)) ds.

p=1j=1 0

w|»—~

Both processes X™ and £" are particular cases of the stochastic process
n = (Y™1,...,Y™4) which components are the solutions to the stochastic
differential equations:

(387 Y™ =YW+ Y, [ PR w) dur(e)+

p=1 0

+ f Ei(st(',w))dS+E f @ip(ysn(.,w))Bn,P(s’w)ds+
0

p=1 0

+> [ HPYICw)hP(s)ds,

C» jANgE

where the coefficients F, G, H and B satisfy by our assumptions the condi-

tion:

(C) the functions F,G,H : C_ — L(R™,RY) are globally Lipschitz, G
is of class C! with bounded partial derivatives and the first deriva-
tives satisfying the Lipschitz condition, B:C. - Riis globally
Lipschitz.

Given the coefficients F' , é,ﬁ and ﬁ, let the process Z has the com-
ponents Z* being the solutions to the stochastic differential equations, for
t=1,...,d:

m i

(39) Z'(t,w) = X§(w)+ ) [ (FP(Z,(,w) + GP(Z,(-, w))) dw?(s)+

=1 0

+3° [ B?(Z,(,w)hP(s)ds + [ Bi(Z,(-,w))ds+

p=1 0

m d t .
+2.3 B,G7(Z,(, w)(F(Z,(,w)) + 5G97(Z (-, w))) ds.

p=1j=1
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Remark 3.1. Observe that if F = 0,G = g, H= 0, B=b- %ﬁja-a,
then we obtain

(3.10) YR(1) - 2(8) = €°(t) - X (1),
while if F = o, G= -0, H = o and B = b we obtain

(3.11) Y™(t) - Z(t) = X™(t) - £(2).

4. Approximation theorem of Wong-Zakai type
In [18], {19] the following is proved:

THEOREM 4.1. Let conditions (A1)-(A4) be satisfied. Let B™(t,w) be
the approzimation of the type (2.1) of the Wiener process. Assume that X™
and £ are the solutions to (3.6") and (3.3), respectively, and that £* and
X are the solutions to (3.7™) and (3.3), respectively, with a constant initial
stochastic process. Then, for every T > 0,

(4.1) lim sup E[X™(t,w) - (t, w)] = 0,
n00 0L T

(4.2) lim sup E[|€"(t,w)— X (¢, w)|*] = 0.
n—=000Lt<T

Remark 4.1. Instead of the interval J = (—00,0] in [18], [19] we can
consider J = [-r,0], r > 0, and the proof is analogous to that of Theorem
2.4.1 in [18]. But, instead of considering X (t" + s) — X*(t?_; + s) on the
whole interval of definition like in [18], [19], we observe that

Xt +8) - XI(th, +8) =
( X§(tr +8) — X§(th, +5) fort? +5<0,

ti+s
X§(0) = X§(try + )+ [ B(Xu(-)dut
0
- + E;":l f 0'9(Xy(-))dwP(u) fort? ; +s<0< P+,
0
tr+s th+s
f b*(Xu(+)) du + 2?:1 f ot (u, Xy()) dwP(u) for ¢, + s >0,
\ t?—1+s t?—1+s

and we can estimate each part separately by expressions converging to zero
to obtain the proof of Theorem 4.1.
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5. Auxiliary lemmas

LEMMA 5.1. Let f‘, @, fl and B be bounded coefficients satisfying con-
dition (C) and let Y™ be the solution to (3.8"). Then for given p € [1,00)
there erists a constant Cy such that for every s,t € [0, 7]

(5.1) sup E(|Y™(1) ~ Y™(5)/*") < Calt - sf”.

Proof. The proof is analogous to that of Proposition 3.1 in [13].

Remark 5.1. The proofs of Lemmas 5.1 and 5.4 are not different
from those of analogous lemmas in [13] because in [13] the authors do not
use the form of the equation but only the form of the stochastic differen-
tial.

LEMMA 5.2. Let 1?’, @, H and B be bounded coefficients satisfying con-
dition (C) and let Z(t) be the solution to (3.9). Then for given p € [1,00)
there ezists a constant Cy such that for every s,t € [0,

(5.2) E(12(t) - Z()[?) < Calt — sf?.

Proof. For the proof of this property see e.g. Lemma 4.11 of the book
of Liptser and Shiryaev [10].

LEMMA 5.3. Let Y,.(t) = Y™(t) — Z(t). Then for any ¢ > 0 we have

()]>e) =o.

Proof. Using the Wong-Zakai type Theorem 4.1 and Remark 3.1, i.e.
(3.11), we conclude from the Chebyshev inequality that

(5.3) lim P( sup

n-—=00 OSiS2”

) . R
P( sup YH(L)I > 8) S E(Sup0S1S2" IY’n('Zn) ) —
0<i<2n 2n )
_ Elswpocicr [Y"(55) = 2(50)])* _ E(sup [Y"(t) ~ 201 _

e? g?
as n — 00, which completes the proof.
As a natural consequence of Lemma 5.3 we formulate

LEMMA 5.4. Let the sequence Y,(t) = Y™ (t) — Z(t) satisfy (5.1)«(5.3).
Then for every € > 0 we get

(54) Jm P([¥ale, > ¢) =0.
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We have
LEMMA 5.5. Let F' : 2 — E be a measurable map.

(i) Let (1 : H — E be a measurable map, and let H, : 2 — H be a
sequence of random vartables such that for any ¢ > 0,

(5.5) tim POIF(@) — G (Ha())]| > €) = 0.
Then
(5.6) supp(P o F71) c ¢, (H).

(ii) Fiz a map (3 : H — E and for given h € H consider a sequence of
measurable transformations T} : 2 — 2 such that Po(T?)~! « P, and for
any e >0,

(5.7) lim sup P(|F(Ty(w)) — G(R)|| < €) > 0.
Then
(5.8) supp(P o F7) > G(H.

Proof. (i) Let U N (1(H) = @, where U is an open set in E. It is suf-
ficient to show that (P o F~1)(U) = 0, that is, P(F(w) € U) = 0. For a
contradiction, suppose that P({w : F(w) € U}) > 0. Then there exists a
ball K(z,¢) C U such that P({w : F(w) € K(z,¢)}) > 0.Hence, there exists
g’ < ¢ such that P({w : F(w) € K(z,¢')}) > 0. Define ¢ = ¢ -¢' > 0.
From (5.5) it follows that lim, P(||F(w) — (1(Hn(w))|| > €”) = 0. But on
the other hand,

P(||F(w) = G(Hn(@)l| > ") 2 P({w : F(w) € K(z,£')}) > 0,

which contradicts our hypothesis.

(i) Let U be an open set in E. We need to show that if P(F(w) € U) = 0
then U N (3(H) = @. This, by our assumptions, means that for every n we
have P(F(T}(w)) € U) = 0 for some h € H. For a contradiction, suppose
that (3(h) € U,h € H. Then there exists a ball K({2(h),e) C U such that
P(||F(T}(w)) - ¢2(h)|| < €) = 0, which contradicts our hypothesis (5.7) and
completes the proof.

6. The support theorem
We shall prove the following

THEOREM 6.1. Let o and b be functions satisfying conditions (A1)~(A4)
and X (t) be the solution to equation (3.1). Let Sy and S, be given by (3.4)
and (3.5), respectively. Then 51 = Ss.
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Proof. We have proved in Lemma 5.4 that lim,_,. P(||Yallc, > €) =0,
where Y, (t) = Y™(t) — Z(t). Using (3.10) and (3.11) we obtain the following
particular cases of (5.4):

(6.1)
and

(6.2)

Now

Jm_ P(lE" = Xlle, > &) =0

Jim P(IX™ = glle, > <) =0.

we denote by F(w) the solution to equation (3.1) and by (1(k) = (2(h)

we denote the solution to equation (3.3) for given A € H. We also set
H,(w) = B*, T}w) = w — B"+h. From (6.1) and (6.2) we immedi-
ately obtain (5.5) and (5.7) for this notation. From Lemma 5.5 we obtain

(5.6) and (5.8). From this we conclude that S; = S, which completes the
proof.
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