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1. Introduction 
The theorem on the support of a measure generated by the solution to a 

functional stochastic differential equation is examined. We consider a model 
similar to that in the papers of Dawidowicz and Twardowska [4] and of 
Twardowska [18], [19]. This note is a relatively simple consequence of the 
approximation theorem of Wong-Zakai type for the above equations from 
[18], [19] and of the support theorem of Millet and Sanz-Sole (see [13]). 
However, we restrict ourselves to spaces of continuous functions instead of 
spaces of Holder functions since the generalization to Holder functions is 
straightforward on the base of the quoted papers. 

There are some papers dealing with the support of probability measures 
connected with stochastic differential equations in finite dimension; see e.g. 
Stroock and Varadhan [16], [17], Ikeda and Watanabe [8] for finite multi-
dimensional stochastic differential equations. See also the paper of Aida, 
Kusuoka and Stroock [1], which uses a sequence of non-absolutely continu-
ous transformations of a probability space. A characterization of the support 
in the finite-dimensional case on the space of Holder-continuous functions 
was given by Ben Arous and Gradinaru in [3], Bally, Millet and Sanz-Sole 
in [2], Millet and Sanz-Sole in [13], [14]. The support of diffusion processes 
considered on manifolds was examined by Kunita in [9]. For stochastic dif-
ferential equations driven by finite multidimensional continuous semimartin-
gales, support theorems were given by Mackevicius in [11], [12] as well as by 
Gyongy in [5], [6], Gyongy and Prohle in [7]. 
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It is well known that support theorems are important for the character-
ization of invariant sets and, consequently, for ergodic theorems. 

2. Definitions and notations 
Let t e [0,T] and let (Í2, T, Tt, P) be a complete probability space with 

Tt — (^rí)íe[o,T] an increasing family of sub-cr-algebras of the cr-algebra T. 
We put J = [—r, 0] and we introduce the metric spaces C- = C(J, Rd),Ci = 
C([-r,T],Rd) and C2° = C( [ - r ,T] ,R m ) = ¡2 of continuous functions. The 
spaces C-, C\ and are endowed with the usual norms of uniform conver-
gence. Here d is the dimension of the state space and m is the dimension of 
the Wiener process; in the space all functions are equal to zero at zero. 
Below we denote by X any of the above spaces. 

Let B(X) denote the topological a-algebra of the space X. It is obvi-
ous that it is identical with the cr-algebra generated by the family of all 
Borel cylinder sets in X. So we construct the Wiener space (C!¡,B(CPw), 
where Pw is the Wiener measure ([8], Chapter I). The coordinate process 
B(t,w) = w(t), w € is the m-dimensional Wiener process. 

The smallest Borel algebra that contains . • • is denoted by B\ U 
Z?2 U ...; BU,V(X) denotes the smallest Borel c-algebra for which a. given 
stochastic process X(t) is measurable for every t 6 [u, w] and BUfV(dB) de-
notes the smallest Borel algebra for which B(s) - B(t) is measurable for 
every (f, s) with u < t < s <v. 

Let Bn(t,w) = wn(t) be the following piecewise linear ^¿-adapted ap-
proximation of B(t, w) = w(t): 

( 2 . i ) = » ' ( A ) _ . , ( £ ) ) 

for each p = 1 , . . . , m and (k + l)T/2n < t < (k + 2)T/2n for k = 0 ,1 , . . . 
. . . ,2n — 1. 

For the stochastic process X(t,w) and for a fixed t € [0,T] we de-
fine 

Xt(0,w) = X(t + 0,w), 0 6 J; 
therefore Xt(-,w) denotes the segment of the trajectory X(-,w) on [—r, t\. 

3. Description of the model 
Now we consider Q = C®. Let X be a continuous stochastic process 

X(t, w) : [-r,T] x Q Rd , that is, X : ñ -»• X = C\. 
We take some fixed initial constant stochastic processes X'(0 + 0,w) = 

X¿(W) = XQ''(W) = YJ(W) for 6 € J , i = I,... ,d. We also consider op-
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erators b : C_ R d , a : -* L{Rm,Rd) (where L(Rm,Rd) is the Ba-
nach space of linear functions from R m to Rd with uniform operator norm 
M L ) . 

We consider the following stochastic differential equation with delayed 
argument: 

t m t 
(3.1) X«'(f,ti;) = Xi ( t iO+ J bi(X.(.,w))ds + '%2 f aip(X3(;w))dw»(s) 

0 p= 1 0 

fo r i = 1 , . . . , d. 
Let Px be the probability law of the solution X = {X(f)}, t 6 [0,T], 

to equation (3.1). Let H be the Cameron-Martin space associated with the 
Brownian motion, that is, the space of functions h : [0,T] —• R m which 
are absolutely continuous and whose derivative h belongs to £ 2 ( [ 0 , r ] , R m ) . 
Let 

(3.2) Sn = {heC% : h e H , h(0) = 0}. 

We consider for given h £ S-H and x = A'0(u>) € R d the equation 

t m t 
( 3 . 3 ) ? ( t ) = X i + J b%(.))ds + ] r J <7ip(U-))hp(s)ds-

0 p= 1 0 

1 m d t 

- a S E J Z j " i p ( U ) ) * S p ( U ) ) d ' 
p=1j=1 0 

for every i — 1 Further, Da,p is the Frechet derivative from to 
Z(C_,R). From the Riesz Theorem (see Rudin [15]) it follows that there 
exists a family of measures ¡1 = fi'™ with bounded variation such that 

d o 

= ]T J ^ ( v ) ^ ( d v ) 
j=1 - r 

is a directional derivative, for any $,g 6 C-. The measure // has the following 
decomposition: 

p{A) = fi(A n [ - r , 0)) + fi(A n {0}) = Ji{A) + /i({0})«0(A), 

where So is the Dirac measure, A 6 B([—r, 0)). We denote the value /x],PJ({0}) 
by D j a t ' i g ) , that is, ( f , ( . , w)) = < ¿ ¿ ( { 0 } ) , where ^ = 

Let 

(3.4) Si = supp Px in G = C\, 

(3.5) S2 = {£ = Z(x,h) : h e Sn} (closure in G). 
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Denote by the map T„(w) = w — Bn+ h and observe that by the 
Girsanov theorem the measures P o (T.^) - 1 are absolutely continuous with 
respect to P. 

Let us introduce the following conditions: 

(Al) The initial stochastic process Xo is - measurable and P( |Xo(w) | 
< oo) = 1, where |X 0 (w) | = J2j=i l^oi™)!? B-r,o(Xo) is indepen-
dent of B0,T(B). 

(A2) For every tp, V € C- the following Lipschitz condition is satisfied: 

- m \ 2 + M r ) - < L1 } \ m - m \ 2 

— T 

+L2\<p(o)-m\2, 

where K(6) is a certain bounded measure on J, and L1, L2 are some 
constants. 

(A3) For every <p G C- the following growth condition is satisfied: 

ikvoi2 + H v ) i i < L i j ( i + < p 2 m dim+L2( i + ^ 2 (o)) , 
—r 

where ^ ( 0 ) = £ ? = i 

( M ) b\aip e for every i = 1 p = 1 where CI 
denotes the space of bounded mappings with continuous bounded 
first derivative, and the first derivatives of <r,p satisfy the Lipschitz 
condition. 

Notice that conditions {Al)-(AA) ensure the existence and uniqueness 
of solutions for equations considered in this paper (compare [18]). 

Let (E , || • ||) be a separable Banach space. Here (E , || • ||) = (Ci,sup | • |). 
Further we consider the following equations for i — I,... ,d: 

(3.6") Xn'\t, w) = X^(w) + f 6«(XS"(., w)) ds+ 
o 

m t m t 
+ E I < r i p ( X ? ( ; v ) ) d w p ( s ) ~ Y l I c T i p ( ^ ( ; w ) ) B n ' ^ s , w ) d s + 

p=l 0 P=1 0 
TO t 

+ E f < r i p ( X ? ( ' , w ) M * ) d * , 
p=1 o 
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(3.7") C'\t, w) = XZ'\w) + j b\C(; w)) ds+ 
o 

m, t 

+ E I 
p-1 0 

- m d t 

- ¿ E E f ¿j<rip(C(-,v))<rjp(CO,v))ds. 
P=lj=l o 

Both processes Xn and £n are particular cases of the stochastic process Yn = (Yn>\ .. .,Yn'd) which components are the solutions to the stochastic 
differential equations: 

m t 

(3.8») Yn>\t,w) = y 0 n , > ) + £ f Fi"(Ysn(.,w))dw"(s)+ 
p=l o 

t m t + f Bi(Ysn(;w))ds+£ f Ôir(Ysn(;w))èn'»(s,w)ds+ 
0 P=1 0 

m. t + £ J H^(Ys\,wW(s)ds, 
p=1 0 

«in /«. i*. /S 

where the coefficients F, G, H and B satisfy by our assumptions the condi-
tion: 

(C) the functions F,G,H : C_ —• L(Rm,Rd) are globally Lipschitz, G 
is of class C1 with bounded partial derivatives and the first deriva-
tives satisfying the Lipschitz condition, B : C- —* R d is globally 
Lipschitz. 

A , / S 

Given the coefficients F, G, H and 5 , let the process Z has the com-
ponents Zx being the solutions to the stochastic differential equations, for i = l,...,d: 

m t (3.9) Zi(t,w) = Xi(w) + Y, J (Fip(Zs(;w)) + Gi"(Zs(;w)))dw"(s)+ 
P=1 0 

m t t 

+ E I Hi"(Zs(;w))h'>(s)ds + J Bi{Zs(;w))ds+ 
p=l 0 0 

m d t , +EE 15iôip(zs(^))(^>(zs(.,^))+-^>(zs(.,u,)))d,. 
p = l j = l o 
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R e m a r k 3.1. Observe that if F = 0, G = a, H = 0, B = b-^Dja-a, 
then we obtain 

(3.10) Yn(t)-Z(t) = C(t)-X(t), 

while if F = a, G = —a, H = a and B = b we obtain 

(3.11) Yn(t) - Z(t) = Xn(t) -

4. Approximation theorem of Wong-Zakai type 
In [18], [19] the following is proved: 

THEOREM 4 .1 . Let conditions (A\)-{AA) be satisfied. Let Bn(t,w) be 
the approximation of the type (2.1) of the Wiener process. Assume that Xn 

and £ are the solutions to (3.6n) and (3.3), respectively, and that £n and 
X are the solutions to (3.7n) and (3.3), respectively, with a constant initial 
stochastic process. Then, for every T > 0, 

(4.1) lim sup E[\Xn(t,w)~Z(t,w)\2] = 0, 
n—oo,)<i<T 

(4.2) lim sup w) - w)|2] = 0. 
oo 0 < t<T 

R e m a r k 4.1. Instead of the interval J = (—oo,0j^in [18], [19] we can 
consider J = [—r, 0], r > 0, and the proof is analogous to that of Theorem 
2.4.1 in [18]. But, instead of considering Xj(tf + s) - X^tf^ + s) on the 
whole interval of definition like in [18], [19], we observe that 

X\t? + a) - + s) = 
' Xi(t? + s)~ + s) for t? + s < 0, 

^(0)-Xi(iJL1 + a)+ f bi(Xu(-))du+ 
o 

_ + s 
+ £ p = i f °ij(Xu{-)) dwp(u) for + s < 0 < tf + s, 

0 

J 6 i ' (X l i(-))^ + E r = i I <rij(u,Xu(-))dwP(u) f o r f ? _ 1 + a > 0 , 
. *"_! + » C-1 + « 

and we can estimate each part separately by expressions converging to zero 
to obtain the proof of Theorem 4.1. 
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5. Auxiliary lemmas 
A, /S 

LEMMA 5.1. Let F, G, H and B be bounded coefficients satisfying con-
dition (C) and let Yn be the solution to (3.8"). Then for given p € [l,oo) 
there exists a constant C\ such that for every s,t G [0, T] 

(5.1) sup E(\Yn(t) - F n (s ) | 2 ") <Cx\t-
n 

P r o o f . The proof is analogous to that of Proposition 3.1 in [13]. 

R e m a r k 5.1. The proofs of Lemmas 5.1 and 5.4 are not different 
from those of analogous lemmas in [13] because in [13] the authors do not 
use the form of the equation but only the form of the stochastic differen-
tial. 

LEMMA 5.2 . Let F, G, H and B be bounded coefficients satisfying con-
dition ( C ) and let Z(t) be the solution to ( 3 .9 ) . Then for given p G [L,OO) 
there exists a constant C<i such that for every s,t 6 [0,T] 

(5.2) E{\Z(t)~ Z(s)\2p)<C2\t-s\p. 

P r o o f . For the proof of this property see e.g. Lemma 4.11 of the book 
of Liptser and Shiryaev [10]. 

LEMMA 5.3. Let Yn(t) = Yn(t) - Z(t). Then for any e > 0 we have 

(5.3) lim p( sup = 0 . 
n—oo \ 0<«'<2n \ 2 n J J 

P r o o f . Using the Wong-Zakai type Theorem 4.1 and Remark 3.1, i.e. 
(3.11), we conclude from the Chebyshev inequality that 

p( Sup r . ( j - ) = 

V o<t<2" \ 2 n ) ) e* 
_ E(sup0<,-<2w ^ " ( j , ) - Z ( ^ r ) l ) 2 Jg(supt |F n (Q - Z(t)\)2 

£2 - £2 ^ 
as n -* oo, which completes the proof. 

As a natural consequence of Lemma 5.3 we formulate 

LEMMA 5.4 . Let the sequence F N ( I ) = Y N ( F ) - Z(t) satisfy ( 5 . 1 ) - ( 5 . 3 ) . 
Then for every e > 0 we get 

(5-4) l i m P ( | |Y B | | C L > £ ) = 0. 
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We have 

LEMMA 5 .5 . Let F : Q E be a measurable map. 

(i) Let £1 : H —> E be a measurable map, and let Hn : Q —• H be a 
sequence of random variables such that for any e > 0, 

(5.5) lim P ( | | f (w) - Ci(ffn(w))|| > e) = 0. 
n 

Then 

(5.6) s n p p i P o F - ^ c U U ) . 

(ii) Fix a map (2 : Ti —> E and for given h € H consider a sequence of 
measurable transformations : Q —»• Q such that Po(T%)~1 P , and for 
any e > 0, 

(5.7) lim sup P(||F(rn
A(u,)) - C2COII < £) > 0. 

n 

Then 

(5.8) supp(P o F - 1 ) D &CR. 

P r o o f , (i) Let U n (i(H) = 0> where U is an open set in E. It is suf-
ficient to show that (P o F~l)(U) = 0, that is, P(F(u) <E U) = 0. For a 
contradiction, suppose that P({u> : F(u) 6 U}) > 0. Then there exists a 
ball K(z,e) C U such that P({u>: F(u) £ K(z,e)}) > O.Hence, there exists 
e' < e such that P({u : F(u) £ K{z,e')}) > 0. Define s" = e - e' > 0. 
From (5.5) it follows that limn P(\\F(u) - Ci(ffn(«)) | | > e") = 0. But on 
the other hand, 

P(\\F(u) - Ci(#„("))ll > e") > P({u : F(u) £ K(z,e')}) > 0, 

which contradicts our hypothesis. 
(ii) Let U be an open set in E. We need to show that if P(F(U) £ U) = 0 

then U fl Gift) = 0- This, by our assumptions, means that for every n we 
have P(F(T%(OJ)) £ U) = 0 for some h £ H. For a contradiction, suppose 
that C,2(h) £ U,h £ H. Then there exists a ball K((2(h),e) C U such that 
P(\\F(T^(OJ)) - (^COII < e) = 0, which contradicts our hypothesis (5.7) and 
completes the proof. 

6. The support theorem 
We shall prove the following 

THEOREM 6.1. Let a and b be functions satisfying conditions (A1)-(A4) 
and X(t) be the solution to equation (3.1). Let S1 and S2 be given by (3.4) 
and (3.5), respectively. Then S\ = S2. 
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P r o o f . We have proved in Lemma 5.4 that limn_+oo •P(ll^n||ci > e) = 0, 
where Yn(t) = Yn(t) - Z(t). Using (3.10) and (3.11) we obtain the following 
particular cases of (5.4): 

(6.1) lim P(\\C - X\\Cl > k) = 0 
n—•oo 

and 

( 6 . 2 ) l im P(\\Xn-t\\Cl>e) = 0. 
71—>00 

Now we denote by F(w) the solution to equation (3.1) and by (ft) = £2(ft) 
we denote the solution to equation (3.3) for given ft G H. We also set 
Hn(w) = Bn, T*(w) = w - Bn+ h. From (6.1) and (6.2) we immedi-
ately obtain (5.5) and (5.7) for this notation. From Lemma 5.5 we obtain 
(5.6) and (5.8). From this we conclude that 5i = S2, which completes the 
proof. 
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