DEMONSTRATIO MATHEMATICA
Vol. XXVIII No 4 1995

Jerzy Grabowski

APPROXIMATE SOLUTION OF A NON-LINEAR
INTEGRAL EQUATION IN A COMPLEX DOMAIN

Dedicated to Professor Janina Wolska-Bochenek

1. Introduction and assumptions

This article is a generalization of the paper [1] and deals with an ap-
proximation method for solution of integral equation. This method consists
in replacing the examined equation by a system of numerical equations (see
(3], [4D).

We apply this method to the equation

Kt,r,o(r
(1) o) = [ i Nept) e,
L
with respect to function ¢. We prove the uniqueness of the solutions of (1)
and the uniqueness of the corresponding numerical equation and give an
error estimation of the approximate solution.

We admit the following assumptions:
I. Let

P
(2) L= U L, C Z,

k=1
where Z denotes an open complex plane and each of theset Ly, k= 1,...,p,

is a given ordinary, smooth, open or closed directed arc (in the usual sense).
The arc Ly (k= 1,...,p) is discribed by

(3) Li:z2=zk(s), lgg <8<k,

where s — I;; denotes the length of the arc zx(lx 1), 2x(s) C Lx with the
beginning at zx(lk,1) = x(lk,1) + - yx(lk,1) and the end at zx(s) = zi(s) +
- yi(s).
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We assume that the end points of the interval (Ix1,lk2), & =1,...,p,
satisfy the condition

(4) ha20, i <lje<lipg <lipie
for j=1,...,p— 1. Assume that the function
P
(5) 2 ( U(zk,l;zm)) ~Z
k=1
defined by

(6) z(s) = 2k(s)

for s € (Ig1,lk2), k=1,...,p, is “one to one” in the set J7_,(lk,1,0k,2)-
II. « is a given real number satisfying the condition

(7 0<a<l.

IIL.1. Functions K = K(t,7,u) : LXx L X Z — Z and N = N(t,u) :
L x Z — Z, satisfy Lipschitz condition with respect to variable u, i.e. there
exist positive constants kx and ky such for arbitrary elementst € L, 7 € L,
u € Z and u' € Z the following conditions are satisfied
(8) |K(t,7,u) — K(t,7,u")| < kg - |u— /|,
(9) IN(t,u)_N(tau,)l < kN'Iu_ull'
These functions are continuous with respect to ¢t = z(s;) € L, 7 = 2(s,) € L,
i.e. for every u € Z functions K[z(s:),2(sr),u], N[2(s;),u] are continuous
with respect to

(8t,87) € (0<lk,1§lk,2)) X (O(Ik,l;lk.Z)), st € O(lk,l;lk,z)-
k=1

k=1 k=1
IT1.2. The following inequality holds
(10) 0<vy<1,
where
(11) y=kg-b+kn,
P lea
(12) b=sup (k‘[.”f lzk(s)—tw)

II1.3. For every R > 0 there exist positive constants M(K,R) and
M(N, R) such that for arbitrary elements ¢t € L, 7 € L, and u € {u €
Z : |u} < R} the following inequalities hold
(13) K (¢, 7 u)| < M(K,R),

(14) IN(t,)] < M(N, R).
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From the assumptions III.1 and II1.3 we infer that for every R > 0 and
d > 0 we have

(15) w(K,R,8) = sup [sup( sup |K[z(s),7,u]— K[z(s"),7,u]|)] < +o0
|u|<R TEL |s-s'|<6

and

(16) w(N,R,8) = sup ( sup |N[z(s),u] - N[2(s),u]|) < +o0
lul<R |s—s'|<6

satisfying the conditions

(17) 62151+ w(K,R,6) =0,
(18) 51_1.3(1)1+ w(N,R,8)=0

2. Existence and uniqueness of the solution of the equation (1)

Let C(L) denote a set of functions ¢ : L — Z defined as follows: ¢ €
C(L) iff the function @ oz, being a superposition of the functions ¢ and z, is
continuous at each point of the set [Ji_,(lx,1;k,2). The set C(L) is a linear
space with the usual addition and multiplication by a complex number.
Denote the norm of ¢ € C(L) by

(19) llll = sup |o(2)]
teL

and let ||¢ — g|| be the distance between g, € C(L). So the set C(L) is a
Banach space.
For an arbitrary function ¢ € C(L) let

20) (= [ KDy o) @er).

i |7 — |

Note that if ¢ € C(L), and g € C(L) and the assumptions I, II and III.1
are satisfied, then Ap € C(L), Ag € C(L) and

lAp — Agll < 7+ lle - gll,

where 7 is given by (11).
Basing on the Banach-Cacciopoli theorem (see [2], p. 197-199), we have
the following

THEOREM 1. If the assumptions 1, 11, 111.1 and I11.2 are satisfied, then
the equation (1) has in C(L) ezactly one solution @. This solution can be
obtained by taking limit of the sequence of successive approrimations

(21) POy PLy P2y e vy Prmyees
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uniformly convergent on the set L, where

@ enn= [ M) e D)
L

form=0,1,2,..., and ¢g € C(L) is arbitrary but fized.

3. Approximate equation and its solution
Let ny,...,n, be fixed positive integers. Consider a partition of the

set Uk=y(lk,1;lk,2) into intervals pry = (sk058k1), Pri = (Ski<1;Sk,i)s
t = 2,3,...,n5,k = 1,...,p, having no common points, defined by the
conditions

lk,l = 8k,0 < Sk,1 < Sk2 < .o. < Sknp—1 < Skni=lk 2 k=1,...,p.
Denote

P P ng
L= Jaslea) = UU Pk,is

k=1

n=mny+n+...+n,,

by = ax max (Sg;i — Sk.i—1)]-
el e max, (Ski = ski-1)]

Let C(L) denote the set of all functions ¥, : £ — Z defined by

i— S8 8 — 8ki-1
24) Pa(s i(8) [ g+ L i),
(24) ¥n(s) = EEXk( ) ( i Skic TN i sk

k=1 1i=1
where 2y ; € Z for j =0,1,...,nk, k=1,...,p and

1, ifse€p;

G=1,...,nk, k=1,...,p).
The set Cp(L) is a complex Banach space with the norm

%nlln = sup [¢n(s)|
seL

and usual operations.
As the approximate equation of (1) we take the equation

(25)  ls) = szkxs){

k=1 i=1 i 7 Skji-1

{Z I Kleoni) (oo tn(o0]: o) g,

2 J [2(5:) = 2(ski-1)|°
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S — 8k,i-1
Sk,i — Sk,i-1

+ Nz(sk,i-1), @bn(sk,i-l)]} +

lj,2 K[2(ski), 2(81)s ¥ulsr)] - 2'(sr)
| {;l;{ |z(31)—2(sk1)|a ds S+

+ N[z(sk,i), ¢n(8k,i)]}}

with respect to function ¢, € C,(L). If the function ¥, is given by (24) then
equation (25) is equivalent to the following system of numerical equations

o K [2(sk,i), 2(57), ¥n(s7)] - 2'(57)
wim 3 [ o)

+N[Z(Sk,,’), ";bn(sk,i)]’ i=0,1,...,m, k=1,...,p

with unknowns complex numbers z;, ¢ = 0,1,...,n, kK = 1,...,p, where
in place of 1,(s) we have to put the right-hand side of the equality (24).

For an arbitrary function 1, € C,(L) denote by (A,%,)(s) the right-
hand side of the equality (25). Let us note that if ¥, € Cp(L), h, € Cp(L)
and the conditions I, II, IIL.1, are satisfied then A9, € Cn(L), Aph, €
Cn(L) and

ds;+

I( nd’n)(“") - (Anhn)(s)l <

P Nk

Ski— S

€30S k) | bk k) — ot

Sk — Sk,i-1
k=1 i=1 ! !
— Sk.i-
+s—_k-—l (ki b+ EN) - [9n - hn“n] =
k,i Sk,i-1
P N
Y = Balln - (303 x04(9)) = 7+ 90 = halln-

k=1 i=1

Hence

”An"pn - Anhn”n S Y- ”¢n - hn”n-
Basing on the above mentioned Banach-Cacciopoli theorem we have the

following

THEOREM 2. If the assumptions 1, 11, II1.1 and I11.2, are satisfied then
the equation (25) has in Cp(L) ezactly one solution 1, being the limit of
the sequence of successive approrimations

(26) 1/)71,0, "pn,l, "»b'n,Z, veey "/’n,mv LR
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uniformly convergent in the set L, where

(27) Yo m41(8) = (An¥n,m)(s) = Z Z Xk,i($) - { _ ;—ks
== =1
£ K[#(3ki-1)s 2(30), Ymem(s)] - 2'(51)
{g f |2(sr) = 2(sk,i-1)|* et
+N[Z(Sk,i—1)a¢n,m(3k,i—1)]} + i_—%
2 K#(503), (50), Pam(30)] - 2/ (50)
{ Z f |2(87) — 2(sk,0)|* dort

=15,
+N[z(sk,i)s %,m(Sk.i)]}}

form=0,1,2,..., and Pr o € Cn(L) is an arbitrary but fired element.

4. Error estimation of the approximate solution

Let the assumptions I, IT, II1.1, IT1.2 be satisfied and let the first elements
@o and ), o of sequences (21) and (26) satisfy the condition

(28) V A (@olz(s)] = %no(s) = o).
c€EZ seL

Because of uniform convergence of these sequences we have that there exists
a number R, > 0, such that for arbitrary s € £ and m € {0,1,2,...} the
following inequalities hold:

(29) lom[2(s)]] < R,

(30) |¢n,m(3)l < R,.

Then error estimation of the approximate solution is given by the following

THEOREM 3. Let the assumptions 1, I, I11.1, 1I1.2, II1.3 and conditions
(22), (27)-(30) be satisfied. Then

(31)  sup|vn(s) — @[2(s)]| <
s€EL
1 1

l1-vy 1-%

-[d(6n) - M(K,R,) + b-w(K, Ry, 8,) + w(N, Ry, 6,)],
N

where
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(32)  d(6r) =
P 2 1 1
max su - ds)].
e [ep(E“f EOEE O EEORE
ke{1,...,p} I=4ha

Proof. To prove Theorem 3 we give estimation of sup,e, |¥n,m(s) —
em(z(s)l].
For this aim we use (22), (27) and the equalities
K(2(sk,1), 2(s7), ¥n,m(s7)] _ K{z(s), 2(s7), pm(2(s7))] —
|2(s7) = 2(sk,0)| |2(sr) = z(s)|*
— K[Z(sk,l)s Z(ST), ¢n,m(37)] _ K[Z(s)’z(s‘r)a ¢n,m(3f)]
|2(s7) — z(sk0)|*
K[z(s),z(s,.) Yn,m(s7)] — K[2(s), 2(s7), ‘Pm(z(sr))]
|2(s7) = 2(sk,0)|
1 1 .
oo - T e - ke eno )
N5 Ynim(58.0)] = N[2(5), ¢m(2(5))] =
= N[z(sk,0), ¥n,m(sk,0)] = N[2(8), Y m(sk,0)]+
+N[2(5), Yn,m(sk,0)] = N[2(s), ¥n,m(s)]+
+N[2(8), ¥n,m(8)] = N[2(s), om(2(s))]
forl=1¢-1,4,2=1,2,...,n k = 1,2,...,p. Basing on the conditions
(8)-(16) and on the equality

Yo xkils) =1

k=1 i=1

+

for s € L, we have the following estimation

|¢n.m+1(5) - (Pm+1[z(s)]| <b-w(K, Rn, 6n)+
+d(6n) ) M(I(, Rn) +O)(N, Rna 6n) + (kK b+ kN) * S]‘elg |¢n,m(s) - (Pm[z(s)]l'*'

+kN Z ZX'C '(s) [ Pkt = |'¢n,m(3k,i-l) - wn,m(s)H" _

k=1 i=1 AT Skyis

+¢ . Ilbn,m(sk,i) - 1/),,,,,,,(8)'] .

Sk,i — Sk,i-1

Ifsepri,i=1,2,...,nk k=1,...,p, then in virtue of (24) we have
"pn,m(sk,i—l) - "pn,m(s) =
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_ Ski— S S — Ski—1 -
= Zk,i-1 — -~ < Zki-1— .. Zki =
Sk, — Sk,i-1 Sk,i — Sk,i-1
S = Sk,i-1 S — Sk,i-1

. [¢n,m(3k,i—1) - ";bn,m(sk,i)]a

= (g - ) =
Sk — Sk,i—1 Sk — Sk,i-1

?_1 : [d)’n,m(sk,i) - ¢n,m(sk‘,-_l)],

.Sk" -
Yn,m(Sk,i) = Ynm(s) = —2——
Sk, = Sk,

Hence
(33) sup [¥n,m+1(8) = @mir[2(8)]] £
< - sup [Ynm(S) — em[2(8)]] + b - w(K, Ry, 8,) + d(6n) - M(K, R,,)+
SEL

+w(N’ Rn7 671.) + kN + . Inax I"»bn,m(sk,i) - ¢n,m(5k,i—l)l
i€{l,...,nx }
ke{l,...p}
for m=0,1,2,....
Now we shall give the estimation of

ie{lll}?“..),{nk} |¢n,m(3k,i) - "ﬁn,m(skvi—l)l'

ke{l,...,p}
Taking into account (27), we have
¢n,m+1(3k,i) - ¢n,m+1(3k,i—-l) =
!

= Z j’z{ I([Z(Sk,i)7 Z(s‘r), ¢n,m(sT)] — I([Z(Sk'i"l)’ Z(ST), ¢n,m(31)] +

12(s7) = 2(sk,i-1)1*

=1y,

1 1
+(|z(s,) — 2(ska)l* Jz(sr) = Z(Sk,i—l)l").
Kook, 2(52) Bnin(57) }/(51) v

+N[z(sk,i)7¢n,m(sk,i)] - N[Z(sk,i—l), 1;Z"n,m(slr:,i)]'l'
+N[2(sk,i-1), Yr,m(Sk,i)] = N[2(sk,i=1)s Yn,m(Sk,i-1)]-

Hence we have the inequality

__Inax |¢n,m+1(3k,i) - '¢n,m+l(sk,i—1)| .<_.
ie{l,...,nx }
ke{l,...,p}

< b-w(K, Rn,6n) + d(8n) - MUK, Ru) + (N, By 6)+
+kn - max }|¢n,m(3k,i) = Ynm(Sk,i-1)]

ie{l,...,nk
ke{l,...,p}
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for m = 0,1,2,.... By means of (28) and 0 < ky < 1 we have

(34) 16{11133),(71:;} hbn,m(sk,i) - ¢n,m(3k,i—1)l <
ke{1,...,p}
< e [d(62) - MK, Ra) + b+ (K, Ry 80) + (N, Ray 6,)]
— N

for m = 0,1,2,.... Basing on (33) and (34) we have
SUP [thn,m1(s) - pmalz(s)] < 7 - sup [Yn,m(s) - em[2()ll+
1
1-k

form =0,1,2.... Hence, because of (28) and the assumption (10) we obtain
the inequality

sup I’/’n,m(s) —emlz(s)]] £
sEL

1 1
il v 1-

for m = 0, 1,2,.... Passing to the limit in the last inequality we get (31),
what completes the proof.

+

[d(6,) - M(K,Ry) + b-w(K, Ru, 6n) + w(N, R, 6,)]
N

— +[d(82)  M(K, Ra) + b+ (K, Ry 60) + (N, By 80)]

Remark. It is possible to admit that in the inequalities (29), (30) we
have

1 .
R, = Icl + 1 : [b . sup II\ (t,Tv C)l + sup IN(t’C)I + |C|],
-7 (t,7)ELxL tel

where ¢ is a complex constant from condition (28). Indeed, we have

lomll = llge + 01 —wo+w2—@1+ ...+ Pm — Pm-1]l <
< lleoll + ller = woll + oz — @nll + - llom — @m-ll £
<lel+ller = woll +7 - ller = @oll + .-+ 7™ 1 - ller — ol €

1 1
< _ — < —_ <
Slel+ 7 — ller = woll < lel + 1= " (lorll + llwoll) <
1 .
Slel+w——-[6- sup [K(t71,c)|+sup|N(te)l +ell,
1-~« (t,7)ELXL tel
and similarly
1 .
[bnmlla < lel+ 37— -[b- sup |K(t,7,c)l+sup |N(E, )} + lel].
-7 (t,7)ELXL tel

for m = 1,2,... and an arbitrary, defined in p. 3 partition of the set

Ui:l (lkvl; lk,Z)-
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If R is an arbitrary, fixed positive number and ¢ € {u € Z : |u| < R},
one can admit that

R.=R+ ﬁ-[b-M(K,RHM(N,RHR]-

If lim, o 6, = 0, then lim,_,o d(6,) = 0. Hence we obtain

COROLLARY. If the assumptions I, 11, 111.1, 111.2, 111.3 are satisfied and
limp o0 6n = 0, then limp_ oo SUP,e . [¥n(s) — p[2(s)]] = 0.
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