DEMONSTRATIO MATHEMATICA
Vol. XXVIII No 4 1995

Andrzej Borzymowski

A GOURSAT-TYPE PROBLEM
FOR A HIGH ORDER PARTIAL DIFFERENTIAL EQUATION

Dedicated to Professor Janina Wolska-Bochenek

0. Introduction

Goursat-type boundary value problems for hyperbolic partial differen-
tial equations of orders greater than two in rectangular domains have been
examined in papers [1], {2], [4] and [9]-][11] (see also the references therein).
One of the most fundamental assumptions in all these papers is that the
curves considered in the problem do not intersect one another except one
vertex of the rectangle. In this paper we consider a Goursat-type problem
in the case when the said curves additionally meet at the opposite vertex
of the rectangle which makes the problem overdetermined and hence much
harder. We examine it by using the method given by Fichera [5] and then
applied by the present author [3] in a more complicated case. Let us observe
that also the differential operator appearing in the considered equation and
the boundary conditions dealt with in the paper are more general than those
in the earlier papers (cf. Remark 1.1 in the sequel).

To the best of our knowledge,the present problem has not been examined
so far.

1. The Problem and the assumptions

Let Y be a Banach space with norm |} - ||, and N the set of all positive
integers. We consider two numbers p,q € N (in the sequel it will be assumed
that p < ¢; it is easily seen how the argument should be modified in the
opposite case).

Let r be a positive divisor of p, and set k& = E. We denote by P the
rectangle [0, 1] X [0, o], where 0 < o < 00, and we introduce the class £ of all
functions u : P — Y possessing continuous derivatives D2 Dgu (where D% =
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aa—a' Df = i) fora = 0,1,...,p; 8 = 0,1,...,9. We also consider the
zer Py 3yP y by iy 4 y by )
set (S) of 2r curves I,..., Iy Ih,..., I, of equations y = fi(z); z = hi(y)
(1=1,2,...,r) respectively, where f; : [0,1] — [0,0]; h; : [0,0] — [0,1].
The aim of this paper is to examine the following boundary value problem
(&):

Find a solution u to the equation
(1.1) DiDJu(z,y) =0

in P (that is a function v € R satisfying (1.1) at each point (z,y) € P),
fulfilling on (8S) the following system of p + ¢ boundary conditions

(a) LI"DIPulz, fi(z)] = M; (=),
(1.2) (b)  LI"DIPulhi(y),y] = Nii(y),
(c) L*ulh.(y),y) = N,(3),

where L = D;D,; 3 =0,1,...,k-1;i=1,2,...,r8=0,1,...,q—p—1
(we set (0,1,...,t) := 0 when t < 0).

Remark 1.1. Let us consider the particular case p = ¢ (in which equa-
tion (1.1) takes the form LPu = 0 and is called the polyvibrating equation
of Mangeron (see [7], [10], [11]). As a consequence, condition (c) in (1.2) is
deleted. If no two of the curves I, ..., I, and I},. .., I'» intersect in P\ {0},
where Q(0,0), then the (&)-problem is identical with that in [9] (for the ho-
mogeneous partial differential equation; the same refers to the sequel of this
Remark), and in the subcase r = 1 with the one in [10], [11] while in the
subcase r = p with that in (1], [2]. If » = 1 and the curves considered pass
through the points O and M(1,0) and do not intersect elsewhere, then the
(®)-problem coincides with that examined in [3]. Let us observe, however,
that the boundary value problem for equation (1.1) dealt with in [4] cannot
be obtained from problem (®).

We make the following assumptions

I. The functions f; and h; (¢ = 1,2,...,7) are of class C'Y, strictly increase
and satisfy the conditions

£:(0) = hi(0) = 0; fi(1) = hi'(1) = 03 fu-1(2) < fu(2);
hu-1(y) < hu(y); fr(z) < h7'(2)

(z €(0,1);y € (0,0); p=2,3,...,7);

(1.4) min(fl,’f\zr) >0; go:= max(f,l;r,(frﬁr)"l) <(r+ 1)_7?
where f = f1(0); hi = hi(0); f: = f1(1); hi = hi(o) and o € (0,1];

(1.3)
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»

(15) min (i - fi_l) > [e(@)) ™ i min (hi = hicy) > [e(e)] Hhr,

(16) min (7 = F24) > @) f7 min (7 - hiZh) > [e(e)] AL,
when r > 2, where

(1.7) e(e) = (r+1)(1+¢)

with ¢ being any number such that

(1.8) 0<e<[(r+1) g™+ —1.

_ It is_clear that by Assumption I above, the curves I7,...,[I and
I,..., I, pass through the points @ and M, and have no other common
points.

IL. The function M;; :[0,1] — Y and N;;: [0,0] = Y (i = 1,2,.
j=0,1,...,k—1) are of class C979", respectively, and satisfy the following
conditions®

IIM(m)(:v)H < const[min(z,1 — z)}PH9-(3i-Dr-m-2+x0
||N(m)(y)|| < const[min(y, o — y)}PtI~ (2j-1)r—m=2+3

(z,y) € 2;i=12,...,r;, m=0,1,...,¢q—jr; 7=0,1,...,k - 1).

(1.9)

III. The functions N, : [0,0] = Y (s = 0,1,...,¢g — p — 1) are of class
Cmax(0,p-3) respectively.

ExAMPLE 1.1. We give an example of the functions satisfying Assump-
tion L.

Let r =2 and o > 3% . One can verify that
o 1 z
fl(x)— e — 1 _1)1 f?(x)"‘ 6—1(6 _1),

hi(y) = 27— = 1); ha(y) = = (e¥ = 1),

satisfy all the requirements of the said Assumption.

2. Auxiliary theorems
In this section we give some lemmas.

*) Here and in the sequel, const denotes a positive constant.
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LeMMA 2.1. If u : P — Y satisfies

( p

(@) )P IE(x) + X g (y)]+
+ Z—: ym lAm( )
(2.1)  u(z,y) = m=1

(b)Y llo—y) 1P 1e(x) + (1 - x)™hm(y)]+
m=1

q—p
+ Y (09" ()
m=1

\

((z,y) € 12), where b, I : [0,1] - Y; Jm,iﬁm : [0,0] = Y and &g, :
[0,1] =Y (m=1,2,...,p; 8 =1,2,...,q9—p) are functions of class C?,C?
and C?, respectively, then u is a solution of equation (1.1) in P.

Conversely, ifuisa gwen solution of equation (1.1) in P, then there are
function &, 8, :{0,1] = Y, v,,v, :[0,6] = Yand Bp, 5 :[0,1] - Y (v =
0,1,...,p—1;8=1,2,...,q~p) of class CP~7,C?~% and CP, respectively,
such that '

(@) = bindole) + (1~ 61m) | ((m—)%i o (6) dE
b G e a1 | GO
bm(z) 61mPo(z) + (1= 61m) f (m — 2) ®rm-1(£) dE,

36) = fim [BraF0(3) + (1 = 30 f =D o ]

2 O s
+(1—61m)f rErrTe L OL
Bn0) = b1 [Bpa0(0) + (1 = ) [ LD+
a _ g-p+m-2
F-dm) [ OO il ()

(m=1,2,...,p and §,, is the Kronecker delta) and that equalities (2.1) are
satisfied, respectively.
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We omit a straightforward proof of this lemma.

LEMMA 2.2. There is a sufficienty small number §; (0 < o1 < min(1,4))
such that the inequalities

() filz) - fi(z) > [e(e)] Mo ~ fil2)) >

> [e(e)]71(1 - e0) fi(1 - z)
(b)  hi(y) ~ hi(y) > [e(e)] (1 = ha(y)) >

> [e(e)] 7! (1 ~ e0)ha (o — p)
(©) 7)) - 7)) > e - 7)) >

> [e(e)] M (1 = €0) 7 (o - v)
) h7'(z) - k7M@) > [e(e)) (o ~ k7N (2)) >

> [e(e)) 71 (1 ~ €0)h7 (1 - @)

(1<j< i< r;r>2)hold good for x € (1 - 6,,1) and y € (0 — 61,0),
respectively, g9 being any number such that

(2.4) 0 <o <1~ [(r+ 1) g,

(2.3)

Proof. The proof, being similar for the remaining inequalities, will be
given only for (2.3)(c).
Introducing the auxiliary function

(2.5) Fii(y) = f71 () = £71(w) = e(e)(1 = £ ()
and using the equality F; ;(o) = 0, we get

Fi,i(y) = (7)) = (7)) = e(e) (7)o = w),

where = y + (o — y); ¥ € (0,1).

Set €, = %[212121 (= f2N) —e(e) M2 +e(e) £71]7! (let us observe
that by (1.4), (1.5) we have &, > 0).

It follows from Assumption I that
(2:6) (1-edfat < (5 < (L +e)fF!
(¢ =1,2,...,7) provided that 0 — §; < y < o with §; = §;(e.) € (0,0)
being sufficiently small.

Thus, we can assert that

(27) Fis(y) > 7' - 7t - @7 — el + 7+ e(@)f o - 9) >

> [min (f7 - F2) ~e@f ! —eal2f +e(@) ] 0 - 9) >

> slain (71 = Fd) - e@ 16 - ) > 0,
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whence we conclude that the first of inequalities (2.3)(c) is valid. The second
one follows from it and from relation (2.6) (with the replacement of €. by £g).

Now, let us introduce the following notation

(2.8) {zﬁ(zs)(w) = hi,, © fry_y © zE(,_,S_2)(x) for s > 2;
Ziea) (&) = by, © fiy (2);
(2.9) {

(2s-1)(-’t) = fkyy 1 © 25(23_2)(:::) for s > 2;
_.1 _1 )
(2.10) { 5(23)(3:) sz kzs 1 © ”5(23—2) for s > 2;

N

p
k) (®) = fu(2);
iy (2) = Sl o bl (=);
(2.11) ’35(23—1)(”‘) = hk2s , O BRgs—ny(®) fors>2;
fray(@) = hi (2),

where E(m) = (kmykm—-1,-..,k1) for m € N with 1 < k, < 7 forv =
1,2,.

The functlons % (2 y(z) and Zg,,\(z) were introduced in [1], [2]. The
function “k(z y(2) is a generalization of the functions p(z) and p;(z) con-
sidered in [5] and [3], respectively. The function jig,, ;)(z) has not been
dealt with so far.

LEMMA 2.3. The following relations

(2.12) 25 30 0n [0,1),
(2.13) llzk’(zs) :-; on (O, 1]

hold good, when s — oo, with =3 denoting the almost-uniform convergence.

Proof. The validity of (2.12) follows from Lemma 4 in [2].

In order to prove (2.13), let us observe that by Assumption I and defi-
nition (2.10), we have

(2.14) p(z) < /‘E(zs)(x) <P(z)

(z € (O 1)), where pu(z) = f71 o h7l(z); A(z) = o hi}(z) (we set
po(z) = pop*(z); B(z) = B° o @°~ 1(:::) forse N;s 2 2)

Using Lemma, 2 in [3], we can assert that u* = 1 on (0,1] and 7° = 1 on
(0,1] when s — oo, whence and from (2.14) it follows that relation (2.13) is

valid, as required.
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LEMMA 2.4. If 6 (where 0 < 82 < ;) is a sufficiently small number then
the inequalities

< (1 + 50)23 H };'kz.,szy—l S (1 + 60)28g3

d
525(23)(17)
v=1

(2.15)

(where z € [0, §,]);

d s YT 717
10 | fran®)| < 0+ e T TRl <0+ en)s
v=1

(where z € [1 — §3,1]) are valid.

Proof. Relation (2.15) follows from (51) in [2]. The estimate (2.16) is
a consequence of definition (2.10), inequality (2.6) with ¢, replaced by &,
and an analogous inequality for the function A;!.

LEMMA 2.5. The following inequalities
=

dz™ zl’c’(zs)(l') < consts¥™D(1 4 g)%* g8

(2.17)

(where z € [0, 62]);

dm

(218) Ez—mugms)(z) < constsq(m-—l)(l +50)2s!]3

(where z € [1 — 62,1)) hold good for m = 2,3,...,q.

The validity of the Lemma, follows from Lemma 2.4 and the formula for
m-th derivative of a composite function (cf. [8], Remark).

3. Solution of the Problem

We shall find sufficient conditions for the existence of a solution to prob-
lem (®) and give a formula for this solution. Our method will be an adap-
tation of those used in [5] and [9] (cf. also [1}-[3] and [6], Chap. II).

Let gg € (0,0) be arbitrarily fixed and denote z; = f7!(00); Z; = hi(00)
(i=1,2,...,7). We introduce the rectangles A = [0,Z,] x [0,00] and 2 =
[Z,,1] X {00, 0] (see Fig. 1).

We are going to consider problem (&) in the said domains, successively,
beginning with 2.

Writing the boundary conditions (1.2)(a), (b) in the form

L™ DI Pulf7(9),y] = Mijo f7'(v)
L-’TD;—”u[z,hi'l(a:)] = N; ;o h7!(z)
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T1 Lr-1 Zr Ty Tr-1T1

Fig. 1

((z,y) € 257 =1,2,...,r; j = 0,1,...,k — 1, and imposing them on
the solution of equation (1.1) (cf. (2.1)(b)), we get the following system of
differential-functional equations (for simplicity we omit * over ¢,, and ¥,,)

P
Yo AT (o — )™ o f7 ()4

m=jr+l
3.1) + b (1= TGN ()} = (1) M 0 £ (9),
3 B He - ) @)
m=jr+1 :
+ by (1= o)1 0 b (2)} = (=1)7"Nij 0 b (2),
where @Zm = 5,3—7’) and
(3.1 ple — (z+m—1)!

™3 T (z4m— jr—1)!

(z = q¢ — p,0), which, by using an argument analogous to that in [2], pp.
258-260, can be for = € [Z,,1); y € [00,0) equivalently transformed to the
form (cf. [9], p. 219)
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(JT)
]T+a(z) JT+Q(‘T)+

Ry Y (—“—)) ® (@B, 0 b7 (2),

(3-2) v, Z.—
'ngr o(¥) = Jr+a(y)+

£ 820 1)“2(" PHvEIr— Dl 667 o f7(y)

v,i=1 p+V )
(z €[zr,1);y €[00,0);a=1,2,...,r;7=0,1,...,k — 1), where
+a-1)
.2[ bZ,Z.___ (Z
(3-2) o (z4+a+jr—1)

(Z =q—-Dp 0))
(3'3) er+a =

= (=17l ”Zwu(x) S(@{(=1)"Nyj0 b7 (2)+

- Y < (F)TEEL (0 — AT ()TN (2) +

m=(j+r)r+1
+b3,05(1 = 2)™ TN 0 RN (2) >,
(3.4) er+a(y) =
,

= (=1)°7N55 D (W ESW{(=1 Mo 0 £ (w)+

v=1
P
- E < (=1)1 pbl,q P(g — y)m—jr—1¢$r1;r)ofi—1(y)+
m=(j+1)r+1

+ by (1= f7 ()™ U (y) S ]

Gy i(z) = (~1)*Wi(2)E(z)(1 - 2)" !

(3.5)
Goi() = (=1)"B(y)E (y)(o — y)*

with

(3.6) bi(z) = H[h Yz) = kil (z)]™" forr > 2

t;é:
1 forr=1
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(37) &)=

r—oa
_ E H[a—h;l(z)] fora=1,2,...,7—1 whenr > 2
T ) 1<ti<e <t a <7 B=1
1 fora=r,

(t1 # 4, tr—a # 1), Wi(y) and €¥(y) being given by formulae (3.6), (3.7),
respectively, with the replacement of A;!(z) by f'(y) (i = 1,2,...,r) and
o by 1.

In what follows we shall use the following notation

n

o *V2y~2
(3.8) Esen)k@En () = HGVQ, 1ik2y—1 © HE(gy—2)(T)X
r=1

--2‘1 -1
X H V‘211k21 l‘k(?‘y 1)(1:)

(where vg := a; pgg)(T) := );

(g—p+a-1)
(¢g—p+a+jr—1)

(3°9) QJT+01($) - Jr+a(1:) +( l)q P

N (v+jr=1)! sa . _
X Z L—J—'—)G,,’u(:c)WjM,,oh“l(a:).

PRroOPOSITION 3.1. The set of functions ¢1,...,¢p; ¥1,...,%, given by
the formulae

(3.10) Gjrtal2) = «E,-r+a(x) =

(1 — &o; f (6 z) R §5.a(€) d€ + 80;50,a(z) for z € [Er,1)
0 forz =1;
(311) Pjrsa(y) = Pirra(y) :=

(
y)? ptijir-1,
(1 - boj) f l(; p)+]1' L J,a("l) dn+
= 9 +50,j{(1 - 60.q—p)( f %50 a(n)dn + 6o g PSO "‘(y)}
y
for y € [09,0)
L0 Jory=o
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(a=1,2,...,75=0,1,...,k = 1; 0(£o00) := 0), where*)

(312)  §jal(2) = Qirealz) + Y &% (a);
n=1

(313)  Fialt) = Wirra@) + Y Gou®)|Vire o 7 )+

vu=1
£ E )
n=1
with
(3.14) df;a(z) = ZT: (=1)frp29-? (¢ =p+van +jr—1)! o

I (g=p+vam—1)!

V1yeeeyV2on =1
k14 kan=1

X 5,7(2n),/}’(2n)(z)QjT+V2n ° /‘E(?n)(x)
(z € [Z,,1); y € [00,0)) is a solution to system (3.2) in the set [T,,1) X
[00,0). The functions ¢, and P, (m = 1,2,...,p) are of class C9. It is

the only solution of system (3.2) in the class R of all sets of functions ¢,
and ¥, (m = 1,2,...,p) possesing continuous derivatives of the orders up
to and including [ 1] r and [2=L] r + ¢ — p, respectively (where [ ] is the
greatest integer function) and such that the relations

lI¢% (@)1l < const(1 — z)T+2P=2m=tt>0
929l < const(o — y)T+?2P=2m=tt

(z,9) € 2y m=1,2,...,p;t = g-p+1;1=0,1,...,[2=L]r) hold good.

T

(3.15)

Proof. We shall use the inequalities
(3.16) &' (@)l £ Culo ~ b7 (2))7°,
(3.17) wi(z)] < [e(e)) (o = b7 (@),

(where C, = r™71; z € (1 — 61, 1)), resulting from (3.6), (3.7) and Lemma
2.2. :
From (3.5), (3.16) and (3.17) it follows that

(3.18) |G, :(2)] < Cule(e)) (o = k7 (2)) 70 (1 = 2)*~
(23 € (1 - 61, 1))

*) We point out that the iteration process used in deriving formulae (3.12)-(3.14) is
different from those in papers [2] (see p. 262) and {9] (see p. 223).
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In a similar way we get

(3.19) |Gy i(®)] < Cule()) (1= f71 ()10 ~ y)* !
(y € (0’ - 0170))'

Let us observe that, by Lemma 2.3, there is a number ng € N such that
for n € Njn > ng and « € [Z,,1] the relation pg, (z) € (1 - §,1] holds
good, where 0 < § < §; (cf. Lemma 2.4).

We shall first consider system (3.2) for j = k-1 (i.e. jr+a=p-r+a).

It is clear that in this case the function QP_H.O, (cf. (3.3), (3.4) and (3.9))
does not depend on the functions ¢,, and ¥, (m = 1,2,...,p). One can
also prove by using relations (1.9) and (3.16)—(3.18) that

(3.20) ||ép—r+a($)|| < COIlSt(l — m)?—p+3r—2a+xo

(ze(1-61);a=12...,71).
Basing on (2.16), (3.8), (3.14), and (3.18)—(3.20), we have for n > ng the
following sequence of inequalities

321) [ldy (@) <
< const{C.[e(e)]""'}" E (1=2)"

l/l,-..,l/g,,:l (U - h;l(m))a—l

kl,-..,k2n=1
(0= figy @)1 (1= pggy(a))e!
(L= /7 "o figey (@)1 (0 = i o py ()72
(1= Bgn_y)(2)) 227! (0 = figan-1y (%))

(0= ke 0 pign_gy(@))3n=271 (1= [0 0 figp,_yy(a))2nma™!

X |Q@p=rtvsa © Hiam) (@)l < const{[re(e)]"™!(1 - £0)* ="}
2n-1
X Z H gl U’(O’ _ ﬁE(2n_l)(z))q—p+3r—ugn—1+uo(1 _ x)l—a S

Vi,.. ,u;n =1 s=1
kly 1) n—l

< const{[re(e)]""H(1 — gg)~2BaF ) gltroyn(] _ pya-pir—atxo ¢
< const[(r 4+ 1)"(1 4 &)™ go]" %

X [(r+ 1)7g5°(1 — o) HOTF (1 — g)roptaratag

(e =1,2,...,7), where const is independent of n.
It follows from the choice of the parameters £ and ¢ (see (1.8) and (2.4))
that (r+1)"(1+€)""Ygo < 1; (1 + 1) (1 — g¢)~2(9+0) < 1, whence and
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from (3.21) we can conclude that the series in (3.12) is (for j = k — 1)
uniformly convergent in the interval [Z,,1)
One can also conclude from (3.21) (cf. [2], p. 267) that the inequality

(3.22) 165712 (2)|| < constb™(1 — g)I~PHEr—atso

where b € (0,1), holds good for all » € N; z € [Z,,1), whence and from
(8.12), (3.20) it follows that

(3.23) 15 k-1.a(z)|| < const(1 — z)I~PF2r—atxo

(z € [Z,,1);a=1,2,...,7).
Inequality (3.23) implies (cf. (3.10))

«(1
(3.24) ”¢§’-)-r+a($)“ < const(1 — z)3*T—a—tHxo

wherel =0,1,...,p— .

leferentlatmg the expression a 'a(:c) (cf. 3.14)), basing on Lemma
2.5 and on the formula quoted in the proof of that lemma, and using an
argument similar to that in the derivation (3.22) above (cf. also [2], pp. 270~
275), one can prove that the functions §k_1,a(m), a=1,2,...,r,are of class
C?%in [Z,,1) and that the estimate

«(1
(3.25) 150, (@)l < const(1 — g)i-r2r-a=texo

(z € [Zry1); @ =1,2,...,m: 1 =1,2,...,¢ — p+ 7) holds good, whence we
can conclude that relation (3.24) is valid for I=p—7+1,...,q

As a consequence
(326) zligl ¢p r+a(‘7") =0
(@ = 1,2,...,7 1 = 0,1,...,9) and hence the functions d;p._r+a; a =
1,2,...,r are of class C? in [Z,,1].

By a similar argument one can prove that the functions ¢¥p_r1q; @ =
1,2,...,r are of class C? in [0p, o).

A dlrect calculation, 81m11ar to that m (2], p. 268 shows that the set

=(9—p)
of functions ¢p—r+17 ceey ¢pa "/’p—r+l, ,"l’p (where ¢p —-r4+a = "pp—r+a) Is a

solution to system (3.2) with j = k — 1 in the set [Z,,1) X [0p,0).
Let us observe that if the functions @p_r4q and Yp_rya (@ =1,2,...,7)
satisfy the system (3.2) with j = £ — 1, then for each m € N the equality

(3.27) P00 (2) = Qporialz) + 2 i1 (2) + p2(2)
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(z € [2r,1);0=1,2,...,7) holds good, where

) (c1yirla=pta=Dlg=p+vimss +p—r - 1)t

o
T) =
pm () (g+a—-—r—DYg—p+ vomyz — 1)!

V1. V2n42=1
kl,...,k2n+2=1

>y

X Eﬁ(2m+2),E(2m+2)(z)¢p—T+V2m+2 ° “E(2m+2) (1,')

The uniqueness of the solution in the class £ is proved by using an
argument similar to that in the derivation of (3.21) and by basing on (3.27).

Thus, the proof of Proposition 3.1 is completed in the case £ = 1 (that
is r = p).

If ¥ > 1 then we base on the results obtained above for j = k¥ — 1 and
use mathematical induction (cf. [9], p. 228), hence completing the proof of
Proposition 3.1.

We still have to impose on function u the boundary condition (1.2)(c)
for y = [0, 0]. It is easily observed that this condition yields the following
system of differential equations

q-=-p o—h-Yz g—]—
629 o) = Fioh7 @)+ (-0 { T EHEEE 506

s=142

Y4
+ 3 Colo - b7 (@) P14 (@)

q-—p _(1)
+ 3 (-1l oh:l(z>}
m=ma

(g—p+m-1!
(g-p-m—~1~-1)"
max(1,p—gq+1!+1); mg = I+ 1), where the functions ¢‘)m and ’lzm are given
by formulae (3.10), (3.11), respectively.

We use relation (3.28) for I/ = ¢—p—1,...,2,1, successively, and hence
find the functions J,,(z) (m = 1,2,...,¢9 — p) from the formula

(117 € [Er,1]7 I = Oala-"’aq_P_ 1’ Cm,l = m =

1 -1
(3.29) Gy1 = (1= bor) [ (E—2) " Hi(E)dE+ boHo(a) + Y A,(1- )
z v=0
(z € [z,,1);1 = 0,1,...,4 — p— 1), where I, denotes the right-hand side
expression in (3.28) and 4, (v =0,1,...,1-1;1=10,1,...,¢g—p—1) are
arbitrary constants.
Now, we consider problem (®) in the domain A.
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Imposing on the solution of equation (1.1) (cf. (2.1)(a)) the boundary
conditions (1.2)(a), (b), and proceeding analogously as in the case of {2, we
get a counterpart of the system (3.2) in the form

(97 (2) = Virgalz)+

eotreay 3 e i, o )

llt—

1/’.1r+01(3/) Jr+a(?/)+

1 r
b20( 1)a-P Z (q (qp‘;:tjr ) )Gaz(y)¢_(1'z~4?y°hi(y)

(3.30) |

v,i=1

(z €(0,Z,); y € (0,00]; « =1,2,...,7; = 0,1,...,k — 1) with

(331) Vjrta(z) = (-1)T7PH7103077 S wu(w)e‘u’(l'){(—1)j’Mu.j(w)+

v=1
r

=Y < (=D ST N () +
m=(j+1)r+1
(m —1)!

(m—jr-1)!

(3.32) Wirsaly) = (~1)*~182° Zwy)'és(y){(—1)er.,,,-(y)+ .

=) < (=1 4y I U o hy(y)+
m=(j+1)r+1

A @) > |,

G, i(z) = (-1)wi(z)ef (z)z"~ -1
. { G2 i(y) = (-1)*Ti(y)e(y)y* ™",

g gy ),

where the functions w; and ef* are given by formulae (3.6), (3.7) with ;' (z)
(0 = v,t) and 0 — hEl(a:) replaced by f,(z) and fg(z), respectively (the
functions w; and €; are defined by formulae analogous to those for w; and
e, respectively, with the replacement of f,(z) by h.(y), where 7 = pu, 8).

The following proposition is valid (the proof of which is analogous to
that of Proposition 3.1):
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ProprosITION 3.2. Let the functions ¢q,...,¢p; P1,...,%, be given by
the formulae

(3.34) djrya(z) = 1£jr+a(€v) =
T _ jir—1
- { (1 = boj) Of %TE—)J”,—Sj,a(E)dE + 80 S0,a(z) for z € (0,Z,]

0 for z = 0;
(3.35) Yjrtaly) = ¢°jr+a(y) =

( (y n)q ptir—1
(1_60.1)1‘ lg—p+jr— 1! Ja(n)dn‘l'

. Yy 9-p-—
T < +60j{(1_ 60,q—p) f giqq—z))_lso a(n)dn+60q pSO a(y)}
0

fOT'yG(O,G'()]
0 for y=0;
(a=1,2,...,7;5=0,1,...,k = 1), where

(3.36) Sja(z) = Qjrtalz) + Z a}*(z);

(3.37) 5; a(y) = Jr+a(i'/)
b Y Gon)[Virswo ) + Zja“oh#(y)]

vu=1
al*(z) being defined by a form}to{a ana{c_)gous to (3.14) (together with (3.8),
(3.9)) with the replacement of G, (z), G, {(y), Kiaq) (%) and fig,, 1y (z) by
G,i(z), G5 (), zEus)(z) and 5E(,_,S_1)l(:1:), respectively.

The set of the said functions is a solution to system (3.30) in the set
(0,Z,] x (0, 0¢]. The functions q;m and 1/;,,, (m=1,2,...,p) are of class CY.
It is the only soluton of system (3.30) in the class £ of all sets of functions
¢m and Y, (m=1,2,...,p) possessmg continuous derivatives of the orders

up to and including [m 1] r and [ ] r + ¢ — p, respectively, and such
that the relations
o(l
(3.38) 16 (@)]] < constz?*2p=2m=ttxo
’ o(t g+2p—2m—Il+xo
¥ (9)I] < comsty
(z,9) € A;m=1,2,...,p;t=q—p+1;1=0,1,...,[2=1] r) hold good.

Having found the functions qoﬁm and d;m, z € [0,Z,]; y € [0,00); m =
1,2,...,p (cf. Proposition 3.2), we can determine, in a way analogous to
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that in deriving (3.29), the functions

-1
(3.39) Sipa(z) = (1 - 8oi) f(:c— €)1V H \(€) dE + b Ho(z) + Y Ayz”

v=0
(z € [O,x,.];l=0,1,...,q—p— 1), where

(3.40) Ifz(x)=ﬁt°h71(z)‘{ Z EI(L];I—I

T O (z)+
s=l4+2

z o(1) = (1)
+ Z Cm,l[h:l(il?)]q_p+m-l—1¢m (:L‘)+ Z zm—l—l¢m oh:l(z)}

m=mj; m=mj

and /iy (v=0,1,...,1-1;1=0,1,...,g — p— 1) are arbitrary constants.
In the sequel we shall use the following notation

W () form=12,...,¢q-p
3.41 z
( ) ( ) {¢m q+p($) form = q-— p+ 1,...,¢q
(z€[0,7,);m=1,2,...,9);
. &) forp=1,2,...,q—p
3.42 =4
(3.42) Xu(?) {¢u—q+p(z) forp=q-p+1,.

(zelzpllju=mm+1,...,¢sm=12,...,q);
g
~ m l"—l —-m.*
(3.49) tn(z) = ("1 Y (A7) ormiu(e)
p=m

(z €Zr,1);m=1,2,...,q), and
(3.44) Fmly) = (~1mH Z (" ALY

(y € [0076]; m = 172,-- -7p)a where ¢u, '»bm“:’ﬁ and qzus'[’u,‘-‘;,@ (V =
1,2,...,p; 8 = 1,2,...,q — p) are the functions given by formulae (3.34),
(3.35), (3.39) and (3.10, (3.11), (3.29), respectively.

It follows from Propositions 3.1 and 3.2 that the function
q P
(3.45) w(z,y) = Y Yy xm(@)+ Y 2" P (y)
m=1 m=1
((z,y) € P), where

_ [ Xm(z) for0<z<z,
(3.46) Xm(2) = {fm(:c) forz, <z <1
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(m=1,2,...,9);

3.47 — 'Eém(y) for 0 S ) S Jo
(347 ¥m(v) {¢m(y) forop<y<o
(m = 1,2,...,p), satisfies the boundary conditions (1.2) on the parts of
I,...,I,and I,..., I, contained in AU .

Evidently, u € £, and hence (cf. Lemma 2.1) is a solution to equation
(1.1), provided that the equalities

(3.49) KE) =G 9, (00) = TP (00)
(m=my,...,p; s =81,...,p withmy =max(l,u+1-q+p);s1 =v+1)
hold good for » = 0,1,...,p;  =0,1,...,q.

Let us observe that we still have to impose on the function u the following
requirements:

1° The conditions (1.2)(a) are to be satisfied on the parts of I,..., I,
marked on Fig. 1; _ _

2° The conditions (1.2)(b) should be fulfilled on the parts of I',...,Ir_y
marked on the said figure.

Imposing the aforementioned requirements on the function u (cf. (3.45)),
and using (3.46), (3.47), we get the following system of equalities

(3.49) m;:;ﬂ { v (_qp"fnt T_n]—r 1_)!1)! (=1)7=P*7 (= i()) ™13 (2)+
W(T—j—rl_)!T)izm_jr—l‘zm o fi(w)} = M;,j(z)
(z € [Fraid;i=1,2,...,7);
(3.50) m;;l { v (_qp- f :; Tfj—r 1_)!1)!_1/"—#—1&5}) o hi(y)+
APy - m) S, ) = M)

(y € [o0,h7}Z)); i = 1,2,...,7 — 1), where J)m,ﬁm,q‘;m and ¥, (m =
1,2,...,p) aree given by formulae (3.10), (3.11) and (3.34), (3.35), respec-
tively.

Thus, a sufficient condition for the existence of a solution to problem (P)
is the following one

(3.51) (C) = {(3.48)-(3.50)}
consisting in the validity of relations (3.48)-(3.50).
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ExaMPLE 3.1. We shall give an example of the boundary data satisfying
the condition (C).

Let = p = ¢ = 2 (as a consequence, ¥k = 1, j = 0; ¢« = 1,2,
the conditons (1.2)(c) do not appear and the equalities (cf. (3.41)-(3.43))
Xm(z) = Xm(z) = 0for m =1,2,...,¢— p hold good), and assume that the
functions M;o(z) and N;o(y) (¢ = 1,2) satisfy, apart from Assumption II,
the following conditions

My p(z) =0 forz € [0,1];
(3.52) { M, 0(z) =0 forz €[0,Z,]) U [z2, 1]

Nio(y) =0 fory €0, f2(22)] U o0 — 1, 0]

(i = 1,2), where 7 is a number arbitrarily fixed in the interval (f2(Z32), ).

One can show by using formulae (3.10), (3.11), (3.34), (3.35) and (3.52)
that all the infinite series present in equalities (3.49) and (3.50) are equal to
zero (we base on the relations

/,l,;(23)(£1:) € [:l:,-, l); zi:'(2s)(‘z‘) € (0’51‘] fOI’ T € [Erazi]; 1= 172,

resulting from definitions (2.8)-(2.11), respectively) and hence the
said equalities reduce to the form

2
(3.53) Y B ()(E () - [T (®)Noo(y) = Migo f7H(3)
v=1
(y € [f2(52)’0'0]; 1= 1a2);

2
(3:54) D [ws o hi(y)(el o ha(y) = Y)Mi0 0 ha(y) + B (¥)(€L(9)+

v=1
(1= h(y)Myp 0 £ ()] = N1o(y) (v € [00, b7 (Z2)]).

Condition (3.54) is identically satisfied due to assumption (3.52).

Relations (3.53) can be treated as a system of algebraic equations with
the unknows N, o (v = 1,2). It is easily shown that the determinant of the
coefficient matrix of this system is equal to @1 (y)i2(y)(f; ' (¥) — fi Y (¥)) -
-(h1(y) — h2(y)) and hence is different from zero for y € [f2(Z2), 00)-

Thus, given M;p (¢ = 1,2) one can find the functions N, g (v = 1,2),
and conversely, so that conditions (3.53) hold good.

As a consequence, we can assert that if the assumptions (3.52) are sat-
isfied then (3.49), (3.50) are true.

The validity of relations (3.48) follows directly from formulae (3.10),
(3.11), (3.34), (3.35) and assumptions (3.52).

Basing on the considerations performed in this chapter, we can formulate
the following theorem.
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THEOREM. If Assumptions I-III are satisfied and condition (C) (cf.
(3.51)) holds good then problem (B) has a solution of the form (3.45) (cf.

also (3.41)~(3.44)), where the functions Gum,Ym,bm, YmWg, and g (m =
1,2,...,p; B = 1,...,q4 — p) are given by formulae (3.10), (3.11), (3.29),
(3.34), (3.35) and (3.39), respectively.
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