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0. Introduction 
Goursat-type boundary value problems for hyperbolic partial differen-

tial equations of orders greater than two in rectangular domains have been 
examined in papers [1], [2], [4] and [9]-[ll] (see also the references therein). 
One of the most fundamental assumptions in all these papers is that the 
curves considered in the problem do not intersect one another except one 
vertex of the rectangle. In this paper we consider a Goursat-type problem 
in the case when the said curves additionally meet at the opposite vertex 
of the rectangle which makes the problem overdetermined and hence much 
harder. We examine it by using the method given by Fichera [5] and then 
applied by the present author [3] in a more complicated case. Let us observe 
that also the differential operator appearing in the considered equation and 
the boundary conditions dealt with in the paper are more general than those 
in the earlier papers (cf. Remark 1.1 in the sequel). 

To the best of our knowledge,the present problem has not been examined 
so far. 

1. The Problem and the assumptions 
Let Y be a Banach space with norm || • ||, and N the set of all positive 

integers. We consider two numbers p,q € N (in the sequel it will be assumed 
that p < q; it is easily seen how the argument should be modified in the 
opposite case). 

Let r be a positive divisor of p, and set k = We denote by P the 
rectangle [0,1] X [0, cr], where 0 < a < oo, and we introduce the class of all 
functions u : P —> Y possessing continuous derivatives (where D" = 
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•fipr; = for a = 0 , 1 , . . . , p ; (3 = 0 , 1 , . . . , q . We also consider the 
set (S) of 2r curves f i , . . . , TV; i \ , . . . , JTr, of equations y = /,(x); a; — /»¿(y) 
(i = 1 , 2 , . . . , r) respectively, where /,• : [0,1] —• [0, a]; h, : [0, a] —> [0,1]. 

The aim of this paper is to examine the following boundary value problem 
(©): 

Find a solution u to the equation 

(1.1) DpxDlu(x,y) = 0 

in P (that is a function u € £ satisfying (1.1) at each point ( x , y ) € P), 
fulfilling on (S) the following system of p + q boundary conditions 

(a) V r Dl->u[x , f i (x ) ] = M i J ( x ) , 

(1.2) (b) L^Dl^uMy^y) = Nitj(y), 

(c) Lsu[hr(y),y) = N,(y), 

where L = DxDy; j = 0 , 1 , . . . , k — 1; i = 1 , 2 , . . . , r; s — 0 , 1 , . . . ,q — p — 1 
(we set ( 0 , 1 , . . . , t) := 0 when t < 0). 

R e m a r k 1.1. Let us consider the particular casep = q (in which equa-
tion (1.1) takes the form Lpu = 0 and is called the polyvibrating equation 
of Mangeron (see [7], [10], [11]). As a consequence, condition (c) in (1.2) is 
deleted. If no two of the curves 7 \ , . . . , rr and . . . , tr intersect in P \ { 0 } , 
where 0 (0 ,0 ) , then the ((S)-problem is identical with that in [9] (for the ho-
mogeneous partial differential equation; the same refers to the sequel of this 
Remark), and in the subcase r = 1 with the one in [10], [11] while in the 
subcase r = p with that in [1], [2]. If r = 1 and the curves considered pass 
through the points O and M(l,cr) and do not intersect elsewhere, then the 
((S)-problem coincides with that examined in [3]. Let us observe, however, 
that the boundary value problem for equation (1.1) dealt with in [4] cannot 
be obtained from problem ( 0 ) . 

We make the following assumptions 

I . The functions /,• and hj (i = 1 , 2 , . . . , r ) are of class Cq, strictly increase 
and satisfy the conditions 

(1 3) f i { 0 ) = * i ( 0 ) = / , ( 1 ) = * * 7 l ( 1 ) = U ~ X { X ) < 

hp-iiy) < h^y); /P(z) < / ^ ( x ) 

(x € (0,1); y € (0, a); /z = 2 , 3 , . . . , r); 

(1.4) min(/i ,£r) > 0; g0 := m a x ( f r h r , ( / X ) - 1 ) < (r + 1 ) ^ 

where f = //(0); hi = h\{0); % = //(l); % = h\(a) and € (0,1]; 
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(1.5) min ( f i - fi-i) > [«(£)] 1fr] min (hi - h^) > [e(e)] lhr, 
2 < t < r 2 <t<r 

(1.6) min ( f r 1 - fr_\) > [e(e)]~l f~x; min (h~l-h~},) > [eW'h;1, 
2 < t < r 2<%<T 

It is clear that by Assumption I above, the curves / j , . . . , r r and 
A , . . . , r r pass through the points O and M, and have no other common 
points. 

I I . The function Mitj : [0,1] -> Y and Nitj : [0, a] Y (i = 1 , 2 , . . . , r ; 
j = 0 , 1 , . . . , k — 1) are of class C 9 - j V , respectively, and satisfy the following 
conditions*) 

\\M$j\x)\\ < const[min(x, 1 - x)]P+v-W-Dr-m-2+Mot 

^ ^ l l^&^yJII < c o n s t [ m i n ( y , a - !/)]P+?-(2i-i)r-m-2+«o 

((x,y) G i2] i = l , 2 , . . . , r ; m = 0,1,..., q - jr\ j = 0 , l , . . . , k - 1 ) . 

III. The functions Ns : [0, <r] —• Y (5 = 0 , 1 , . . . , q — p — 1) are of class 
Cm a x ( 0 > p" s ) , respectively. 

EXAMPLE 1 .1 . We give an example of the functions satisfying Assump-
tion I. 

e(e) = (r + l)(l + e) 

with £ being any number such that 

(1.8) 0 < £ < [ ( r + l ) r 5 o ] T ^ - l . 

4. 
Let r = 2 and a > 3 . One can verify that 

Wv) = ^ r r j ( e 3 w - 1 ) ; Ms/) = T ^ ~ 1 ) » 

e - 1 

satisfy all the requirements of the said Assumption. 

2. Auxiliary theorems 
In this section we give some lemmas. 

) Here and in the sequel, const denotes a positive constant. 
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LEMMA 2.1. If u : P -»• Y satisfies 

(2.1) u(x,y) = 

(a) ¿ [ y q - p + m - 1 ^ ( x ) + x m - 1 ^ m ( y ) ] + 
m = l 

+ J2 ym~'¿ruin) 
m=l 

(b) ¿ [ ( a - y)c>-P+m-10(x) + (1 - x ) m - ^ m ( y ) ] + 
m = l 

m= 1 

({x,y) G Ì2), where <j>,<j>m : [0,1] Y; : [0,<r] -> Y anddp,ùp : 
[0,1] —• Y (m = 1 ,2 , . . . ,p; j3 = 1 ,2 , . . . , q — p) are functions of class Cp, Cq 

and Cp, respectively, then u is a solution of equation (1.1) in P. 
Conversely, if u is a given solution of equation (1.1) in P, then there are 

function : [0,1] Y, : [0,cr] Y andu0,ùp : [0,1] Y {v = 
0 ,1 , . . . ,p - 1; (3 = 1 , 2 , . . . , q - p) of class Cp~", Cp~v and Cp, respectively, 
such that 

r (x - f)m~2 -
4>m(x) = "1 m "1 m 

r (x- £)m~2 ' 
"lm 

tp{y) = ilm 

(2.2) 

( m - 2 ) ! 

( y - v ] 
0 ( 9 - P - 1 ) ! 

» (y _ „^-p+rn-2 ^ 

+ (1 - «„,) J + 

= ilm ' ( v - y ) q - p - 1 + iM#o(v) + (1 - J J ^ r r i y * 0 ^)dr, 

<L v)q-p+m-2 . 

(m = 1 ,2 , . . . ,p and 6vtl is the Kronecker delta) and that equalities (2.1) are 
satisfied, respectively. 
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We omit a straightforward proof of this lemma. 
L E M M A 2.2. There is a sufficienty small number Si (0 < <J\ < min(l,£)) 

such that the inequalities 

(a) fi(x) - fj(x) > [e(e)]_1(<7 - fi(x)) > 
> [ e ( £ ) ] " 1 ( l - £ o ) 7 i ( l - x ) 

(b) hi(y)-hj(y)>{e(e)}-\l-h1(y))> 

>{e(e)]-\l-£Q)h1(a-y) 
( ' } (c) f~\y) - ft~\y) > W O l ' ^ l " /r_1(»)) > 

>[e(e)}-\l-eo)f-H<T-y) 
(d) h j \ z ) - h~\x) > [e(s))-\<r - h~\x)) > 

> [ e ( £ ) ) - \ l - £ 0 ) h ; \ l - x ) 

(1 < j < i < r; r > 2) hold good for x € (1 — ¿j, 1) and y G (a — Si,a), 
respectively, £o being any number such that 

(2.4) 0 < £ O < 

P r o o f . The proof, being similar for the remaining inequalities, will be 
given only for (2.3)(c). 

Introducing the auxiliary function 
(2.5) Fij(v) := f r \ y ) - f ~ \ y ) - e ( e ) ( l - f~\y)) 

and using the equality F i j ( a ) = 0, we get 

FiAv) = [ { f r V M - ( f r U ) ( v ) - e(e)(f-l')(V)](a - y), 
where 77 = y + t?(<t - y)', i? € (0,1). 

Set = I[ min ( f r * - f - \ ) - e { e ) f ^ ] [ 2 f ^ + e { e ) f ^ (let us observe 

that by (1.4), (1.5) we have > 0). 
It follows from Assumption I that 

(2.6) (1 - E^f-1 < ( f - v ) ( r , ) < (1 + e.)^1 

(a = 1 , 2 , . . . , r ) provided that a — Si < y < a with Si = ¿i(e») € (0,<r) 
being sufficiently small. 

Thus, we can assert that 

(2.7) Fij(y) > [ f r 1 - ?Jl - eis)/-1 - e.[fr1 + f-1 + e(s)f^]](a - y) > 

> [ m m t f f 1 - fr.\) ~ e(e)f~l - e.[2 J~x + e(e)f^]](<r - y) > 

> ( / - 1 - f~_\) - e{e)f^}{6 - y) > 0, 



868 A. B o r z y m o w s k i 

whence we conclude that the first of inequalities (2.3)(c) is valid. The second 
one follows from it and from relation (2.6) (with the replacement off* by £o). 

Now, let us introduce the following notation 

(2 8) I = hk2-0 /fc2s-10 zH2s-2)(x) for 5 ^2; 
\zk(2)(x) = hk2 0 /*,(*); 

(2 9) { = / f c 2 ' -1 ° ^(23-2)(x) f o r 5 ^ 2 ; 

(2.10) i t*k(2s)(X) = fk2] 0 hkLi ° ^(2.-2) f o r * ^ 2; 
1 H{2)(x) = fk,10 

(2 11) i = 0 ^(2S-2)(x) f o r 5 ^ 2; 

where k(m) = (km,km-i,...,ki) for m Ç. N with 1 < k„ < r for v = 

The functions ^(x) and were introduced in [1], [2]. Thé 
function Mfc(2s)(a;) a generalization of the functions fi(x) and fij(x) con-
sidered in [5] and [3], respectively. The function fik(2s-i)^x) been 
dealt with so far. 

LEMMA 2.3. The following relations 

(2.12) =5 0 on [0,1), 

(2.13) Mj&(2,)=* on (0.1] 

hold good, when s —• oo, with =3 denoting the almost-uniform convergence. 

P r o o f . The validity of (2.12) follows from Lemma 4 in [2]. 
In order to prove (2.13), let us observe that by Assumption I and defi-

nition (2.10), we have 

(2.14) fis(x) < H(2s)(x) <r(x) 

(x 6 (0,1]), where ¡x(x) = f~x o / i " 1 ^ ) ; Ji(x) = / f 1 o fcf1^) (we set 
/£s(x) = / i o ^ - 1 ^ ) ; Jl(x) = Jis o /x ' -^x) for s £ N\ s > 2). 

Using Lemma 2 in [3], we can assert that f±s =3 1 on (0,1] and Jls 1 on 
(0,1] when s —> oo, whence and from (2.14) it follows that relation (2.13) is 
valid, as required. 
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LEMMA 2.4. If 82 (where 0 < 62 < 61) is a sufficiently small number then 
the inequalities 

(2.15) 
dx

zk(2 s ) ( x ) < (1 + e0)2* [ ] ^ J k ^ < (1 + eo)23gt 
u=\ 

(where x € [0,^]); 

(2.16) 
d 

f=i 

(where x £ [1 — S2,1]) are valid. 

P r o o f . Relation (2.15) follows from (51) in [2]. The estimate (2.16) is 
a consequence of definition (2.10), inequality (2.6) with £* replaced by £0» 
and an analogous inequality for the function h~x. 

(2.17) 

LEMMA 2.5. The following inequalities 

dm 

dxm 

(where x € [O,^]); 

dm 

(2.18) 

(x) < cons t s ' ( r a _ 1 ) ( l + £0)2 sn s  

9 0 

dxT H{2 s)(X) < cons t5^ m _ 1 ^( l + £o)2s<7o 

(where x £ [1 — 62,1]) hold good for m = 2 , 3 , . . . , q. 

The validity of the Lemma follows from Lemma 2.4 and the formula for 
m-th derivative of a composite function (cf. [8], Remark). 

3. Solut ion of the P r o b l e m 
We shall find sufficient conditions for the existence of a solution to prob-

lem (®) and give a formula for this solutjon. Our method will be an adap-
tation of those used in [5] and [9] (cf. also [l]-[3] and [6], Chap. II). 

Let (To G (0,<t) be arbitrarily fixed and denote x,- = /¿_1(o0); X{ = /ij(<Jo) 
(i = 1 , 2 , . . . , r ) . We introduce the rectangles A = [0,x r] x [0,<ro] and Q = 
[x r , 1] X [<To, a] (see Fig. 1). 

We are going to consider problem (<S) in the said domains, successively, 
beginning with Q. 

Writing the boundary conditions (1.2)(a), (b) in the form 

VrDl->>u{ft-1(y),y} = M i J o f r i ( y ) 

V T D l ^ u [ x , h - \ x ) ] = Nitj o h r \ x ) 
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Fig. 1 

((x>2/) € O] i = 1 , 2 , . . . , r; j = 0,1, ...,k— 1, and imposing them on 
the solution of equation (1.1) (cf. (2.1)(b)), we get the following system of 
differential-functional equations (for simplicity we omit * over <j>m and ipm) 

E - y)m-jr-l4>iir) o fr\y)+ 
m=jr+l 

+ O 1 - / r 1 ( 2 / ) ) m - J > - 1 ^ V ) ( i / ) } = ( - 1 yrMij O f-\y), 
C3-1) , 

E tà'¿v - h - i ( x ) r - ^ < t > < i r \ x ) + 
m=jr+l 

+ 6 ^ . ( 1 - o h-\x)} = ( - 1 TN{j O h-\x), 

where = ^ m " ^ and 

1)2 _ (z + m- 1)! 
b™>i (z + m - j r - 1)! 

(z = q — p,0), which, by using an argument analogous to that in [2], pp. 
258-260, can be for x £ [x r, 1); y G [o"o,<r) equivalently transformed to the 
form (cf. [9], p. 219) 
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i'r'-lj'l = V V + „ ( * ) + 

(3.2) 

J- A2-0/' U9-P (_,>) x 

+ W - 1 ) ( q _ p — i ) ; GuAy)<f>jr+v°fi ( y ) 

(x € [ ® r , l ) ; y G [<To, cr); a = 1 , 2 , . . . , r ; j = 0 , 1 , . . . , fc — 1), where 
a ' j ~ (z + a + jr-1)1 

{z = q - p , 0); 

(3 .3 ) V j r + a = 

= £ ¿ „ ( x W x m - i y ' N ^ 0 k \ x ) + 
v=l 

- £ < ( - i r ^ r p ( a - A r i ( « ) r - j r - v , i r ) ( x ) + 

m=(j+r)r+l 

( 3 . 4 ) # i r + a ( 2 / ) = 

i/=i 

- E < " i / ) " 1 - ^ - 1 ^ O / " 1 ( i / ) + 
m=(j+l)r+l 

+ 0 1 - f r \ y ) ) m - i r - ^ U r \ y ) >}; 

, , < ? ; , , ( « ) = ( - i r & i ( « ) i f ( « ) ( i - x r i 
( 3 - 5 ) 

wi th 

( 3 . 6 ) vii(x) = n ^ . r l ( ® ) - ^ ( z ) ] " 1 for r > 2 
t=l 

1 for r — 1 
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(3.7) i?(z) = 

n i ' - ^ w i f o r ° = 1 w h e n r ^ 2 

1 for a — r, 

(il ^ i,..., i r _ a / i), ii5,-(y) and e*f (y) being given by formulae (3.6), (3.7), 
respectively, with the replacement of hjl (x) by /¿ - 1 (y) (i = 1 , 2 , . . . , r ) and 
o by 1. 

In what follows we shall use the following notation 

n 

(3.8) " ¿7(2n)fc(2n) (®) = H 0 M£(27_2) ( l )X 
7=1 

n 

7=1 

(where i/0 := a ; /ijf(0)(®) := 

(3.9) Q j r + a ( x ) = F j r + a ( x ) + ( - i r ^ y ^ : 1 , 1 ^ 

r 

PROPOSITION 3.1. The set of functions <f>i,. ..,(f>p] ip\,...,i/>p given by 
the formulae 

m 
(3.10) </>jr+a(x) = <t>jr+a(x) := 

( ( - s)J>-l . 
~ 6°i J | j r - l | ! + S0jS0,a(x) f°r x e [xP, 1) 

0 for x = 1; 
* 

(3.11) ^jr+a(y) = ^jr+a(y) == 

J- / " y)9-P" 1 . . . . 1 

for y e [or0,(T) 
0 /or y = cr 
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( a = 1 , 2 , . . . , r; j = 0 , 1 , . . . , k - 1; 0 ( ± o o ) := 0) , where*) 

oo 

(3 .12) Sjia(x) = Qjr+a(x) + £ d^(x); 

n=l 
r 

(3 .13) S j t M = Wjr+a(y) + J ] GauJy)[vjr+l/ o / ; 1 ( y ) + 
i/,M=l 

oo 

n=l 

with 

(314) a j - ( - ) = t w ' v / . ; ^ - ! ^ 

m m 
X '=i7(2n),it(2n)(X)^ir+' /2n 0 /xjt(2n)i®) 

(a; 6 [Sr>l) ; 2/ G [cto,<t)) ¿5 a solution to system (3 .2) in the set [ x r j l ) X 
* * 

[(To,ct). The functions <f>m and V>m = 1 > 2 , . . . , p ) are o / c /ass C®. It is 
m 

the only solution of system ( 3 .2 ) 
in the class i? of all sets of functions <j>m 

and ipm ( m = 1 , 2 , . . . ,p) possesing continuous derivatives of the orders up 

to and including r and [^f^-] r + q — p, respectively (where ] is the 

greatest integer function) and such that the relations 
x) | | < C0nst( l - x ) 9 + 2 p - 2 m - / + * o 

.. - m / M. < c o n s t ( ( 7 _ yy+2p-2m-t+Mo 

((x,y) e i2; m = 1 , 2 , . t = q-p+l; I = 0 , 1 , . . . , C 2 ^ - ] r ) hold good. 

P r o o f . W e shall use the inequal i t ies 

(3 .16 ) 

(3 .17 ) 

(where C* = r r _ 1 ; x 6 (1 — ¿ 1 , 1 ) ) , result ing from (3 .6) , (3 .7 ) and L e m m a 
2.2 . 

From (3 .5 ) , (3 .16 ) and (3 .17 ) it fol lows tha t 

(3 .18 ) I C O O I < C , [ e ( e ) Y - \ * - - x ) - 1 

(x e (1-^,1)). 

We point out that the iteration process used in deriving formulae (3.12)-(3.14) is 
different from those in papers [2] (see p. 262) and [9] (see p. 223). 
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In a similar way we get 

(3.19) i s ^ - a o i < c ^ o r i i - i r ' i y ) ) 1 - ^ - y r 1 

(ye (a- ffi.a)). 
Let us observe that, by Lemma 2.3, there is a number no G N such that 

for n 6 iV; n > no and x 6 [®r, 1] the relation ^ ~ ^ 1] holds 
good, where 0 < 6 < (cf. Lemma 2.4). 

We shall first consider system (3.2) for j = k — 1 (i. e. jr + a = p — r + «). 
* 

It is clear that in this case the function Q p _ r + a (cf. (3.3), (3.4) and (3.9)) 
does not depend on the functions (f>m and ipm (m = 1,2, . . . , p ) . One can 
also prove by using relations (1.9) and (3.16)-(3.18) that 

(3.20) \\Qp.r+a(x)\\ < const(l - a.)«-p+3r-Ja+*0 

(a: € (1 — 1); a = 1 , 2 , . . . , r) . 
Basing on (2.16), (3.8), (3.14), and (3.18)-(3.20), we have for n > n0 the 

following sequence of inequalities 

(3.21) | |a ; -1 '«(x) | | < 

( g - ^ ( D ( g ) r - 1 (1 ~ H f o i * ) ) ' * - 1 

X (1 - f ' 1 0 fo^x))»^ (a-h~1 oH(2){x)Y^ ""X 

X (a-hr1 0/ijE(2B_2)(x))'*-»-1 (1 - fr'1 O^Zn-D^))1'2"-1-1 "" 

X \\Qp-r+Van o^(2n)(x)\\ < c o n s t { [ r e ( £ ) ] ' - 1 ( l - f 0 ) 2 ( 1 - r ) } n X 

r 2n—1 
x E I I 9l-v-{e-fiEi2n-1)i*))q-p+*r-u''-1+M0{l-x)1-a < 

fl. —>"2»=1 S=1 
fell •••,fc2n=l 

< const{[rc(£)] r-1(l - - xy-p+2r~a+*° < 

< c o n s t [ ( r + l ) r ( l + £ ) r - 1 < 7 o ] n X 

x [(r + 1 - e 0 ) " 2 ( 3 , + , < 0 ) ] n ( l -
(a = 1 , 2 , . . . , r) , where const is independent of n. 

It follows from the choice of the parameters £ and £0 (see (1.8) and (2.4)) 
that (r + l ) r ( l + £) r - 1 p 0 < 1; ( r + l ) r ^ ° ( l - £ 0 ) _ 2 ( 3 9 + X o ) < 1, whence and 
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from (3.21) we can conclude that the series in (3.12) is (for j — k — 1) 
uniformly convergent in the interval [xr, 1). 

One can also conclude from (3.21) (cf. [2], p. 267) that the inequality 

(3.22) ||oS"1,0,(®)|| < const6n(l - x)*-P+**-°+»o t 

where b G (0,1), holds good for all n 6 N\ x 6 [xr, 1), whence and from 
(3.12), (3.20) it follows that 

(3.23) ||S*-i,«(aOI| < const(1 -

(x 6 [x r , l ) ; a = 1 , 2 , . . . , r ) . 
Inequality (3.23) implies (cf. (3.10)) 

(3.24) Il4-r+«(*)ll < c o n s t ( l " » ) « + ' — 

where / = 0 , 1 , . . . ,p — r. 
Differentiating the expression a £ - 1 , a ( x ) (cf. 3.14)), basing on Lemma 

2.5 and on the formula quoted in the proof of that lemma, and using an 
argument similar to that in the derivation (3.22) above (cf. also [2], pp. 270-
275), one can prove that the functions Sk- i , a ( x ) i a = 1 , 2 , . . . , r, are of class 
Cq in [xr, 1) and that the estimate 

(3-25) HsL -mOOII < const(l - x y - P + 2 r - a - ^ 

(x 6 [xr, 1); a = 1 , 2 , . . . , r: I = 1 , 2 , . . . , q - p + r) holds good, whence we 
can conclude that relation (3.24) is valid for / = p — r + 1 , . . . , q. 

As a consequence 

(3.26) Jim ¿ p _ r + a ( x ) = 0 

(a = 1 , 2 , . . . , r ; I = 0 , 1 , . . . , q ) and hence the functions a — 
1 , 2 , . . . , r are of class Cq in [xr, 1]. 

By a similar argument one can prove that the functions Vv-r+ai a = 
1 , 2 , . . . , r are of class Cq in [<To, cr], 

A direct calculation, similar to that in [2], p. 268, shows that the set 

of functions <j>p-r+i, • • •, 4>p\ V>p-r+i ,--- , i>P (wherej0p_ r + a = ^ p _ r + a ) is a 
solution to system (3.2) with j = k — 1 in the set [xr, 1) x [<to,<t). 

Let us observe that if the functions <f>p_r+a and ^ p - r + a (a = 1 , 2 , . . . , r) 
satisfy the system (3.2) with j = k — 1, then for each m £ N the equality 

771 

(3.27) = <?P-r+a(*) + £ &k - l ' a (x) + Pa
m(x) 

Tl=l 
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(x 6 [x r , 1); a = 1 , 2 , . . . , r ) holds good, where 

n <x ( r \ - V ( 1 V> (g - p + a - ^ ( g - p + ^m+2 + P - r - 1)! 
, r - i (ç + a - r - l ) ! (g - p + - 1)! 
^11-1^+2 = 1 

*CV 
X "i7(2m+2),/b(2m+2)(a;)</>p-r+i/2m+2 0 ^Ê(2m+2) i 1 ) ' 

* 

The uniqueness of the solution in the class & is proved by using an 
argument similar to that in the derivation of (3.21) and by basing on (3.27). 

Thus, the proof of Proposition 3.1 is completed in the case k — 1 (that 
is r = p). 

If k > 1 then we base on the results obtained above for j = k — 1 and 
use mathematical induction (cf. [9], p. 228), hence completing the proof of 
Proposition 3.1. 

We still have to impose on function u the boundary condition (1.2)(c) 
for y = [(T0, cr]. It is easily observed that this condition yields the following 
system of differential equations 

(3.28) ¿ ^ ( x ) = Nio h~1(x) + ( - 1 ) ' + 1 1 £ 

+ i t cm,l((T-h;\x)y-^m-l-l^(x)+ 
771= 7711 

771 = 7712 

(Q P | TTX j^l 
( s € [ s r , 1 ]; / = 0 , 1 , . . . , q - p - 1; Cm,i = _ p _ m _ t m i = 

* * 

max( l , p — q +1 + 1); 7712 = f + 1)> where the functions <j>m and are given 
by formulae (3.10), (3.11), respectively. 

We use relation (3.28) for I = q — p - 1 , . . . , 2,1, successively, and hence 
find the functions um(x) (m = 1 , 2 , . . . , q — p) from the formula 

1 ( - 1 
(3.29) w/+1 = (1 - M / (f - x)'-1 Ht(0 + 60lH0(x) + A„( 1 - x)v 

x ^=0 
* 

(x e [xr, 1]; l — 0 , 1 , . . . , q - p - 1), where Hi denotes the right-hand side 
expression in (3.28) and Av (1/ = 0 , 1 , . . . , / - 1; I = 0 , 1 , . . . , q - p - 1) are 
arbitrary constants. 

Now, we consider problem (<$) in the domain A. 
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Imposing on the solution of equation (1.1) (cf. (2.1)(a)) the boundary 
conditions (1.2)(a), (b), and proceeding analogously as in the case of fi, we 
get a counterpart of the system (3.2) in the form 

(3.30) 

$ 2 » = vir+a(*)+ 

i>jr+a(y) = Wjr+a(y) + 

, ,2,0^ v - ( g - p + t z + j r - l ) ! ~ a , f A 

i/,t=l 

(x € (0 ,z r ] ; y G (0, cr0]; a = 1 , 2 , . . . , r ; j = 0 , 1 , . . . , A - 1) with 

(3.31) V i 7 - + a (z ) = ( - l ) ' - ^ " - ^ ^ - " ¿ ^ ( x ) e e ( x ) { ( - i r M 1 / , i ( x ) + 

m=(j+l)r+l 

+ (m - 1)! „m- j r -
(TO — jr — 1)! J 

(3.32) w i r +o, (») = ( - i ) a r - 1 6 Î r ' 5 è ^ ( w ) S ! î ( y ) { ( - i ) , > ^ ( y ) + . 

- E < ( - 1 ) ' " P £ , m ! 7 P + ym~iT~l<t>mr) O fci(»)+ 
m=(j+l)r+l 

(to - 1)! + i M » ) ] 
m-jr-l ./.(jr) 

VÂr\y) > 

(3.33) 

(TO — jr — 1)! 

GW) = ( - 1 ( x ) « " - 1 

where the functions and ef are given by formulae (3.6), (3.7) with / i " 1 ^ ) 
(/i = i/,t) and a — hp1(x) replaced by and fp(x), respectively (the 
functions W{ and e,- are defined by formulae analogous to those for W{ and 
ef, respectively, with the replacement of fT{x) by hT(y), where r = fi, (3). 

The following proposition is valid (the proof of which is analogous to 
that of Proposition 3.1): 
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P r o p o s i t i o n 3 . 2 . Let the functions <f>\,..., <j>p; be given by 
the formulae 

o 
( 3 . 3 4 ) <j>jr+a(x) = i)jr+a(x) := 

( 1 - ¿Oj) J — 1 | ! + S0jS0<a(x) f°r x 6 ( 0 , z r ] 

0 for x = 0; 

( 3 . 3 5 ) 1 p j r + a ( y ) = ll>ir+oc{y) • = 

1 (v _ „^-P+jV-l _ 

: = 
r y ( y - r j y - p - _ Ï 

+ (5 0 j | ( l - ¿ o , 9 - p ) J _ p _ 5*0,0,(77) d f j + V g - P - S o . ^ y ) j 

/or y G (0, <r0] 
) for y = 0; 

(a = 1 , 2 , . . . , r; j = 0 , 1 , . . . , k — 1), where 
a 

(3.36) Sj,a(x) = Qjr+a(x) + J ] ai'a(x); 
n= 1 

(3.37) Sj,a(y) = Wjr+a(y)+ 
r a 

+ £ [v,r+* o h,(y) + J2 <a ° M»)], 
71 = 1 

a n ' a ( x ) defined by a formula analogous to (3.14) (together with (3.8), * a Of 

(3.9)) iAe replacement ofGu i(x), GVyi(y), and ¿k(2s-i)(x) 

G„,i(x), G®fi(y), and h(2s-i)l(x)> respectively. 
The set of the said functions is a solution to system (3.30) in the set 0 0 

( 0 , ï r ] x (0, <7o]. The functions <t>m and ipm (m = 1,2, . . . , p ) are of class Cg. 
0 

It is the only soluton of system (3.30) in the class & of all sets of functions 
<j)m and ipm (m = 1 , 2 , . . . ,p) possessing continuous derivatives of the orders 
up to and including f 1 2 ^ ] t and f 2 ^ - ] r + q — p, respectively, and such 
that the relations 

/ irémOOII < constx»+ 2 p- 2 m- '+ 5 < 0 
(3.38) \ 

I wj(y)\\ < consty9+2p-2m-l+,o 

((x,y) 6 A; m = 1,2, t = q-p + l;l = 0 , 1 , . . . , r) hold good. 
e e 

Having found the functions (f>m and ipm, x £ [0,xr]; y 6 [0,cto]; m — 
1 , 2 , . . . , p (cf. Proposition 3.2), we can determine, in a way analogous to 
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t h a t i n d e r i v i n g ( 3 . 2 9 ) , t h e f u n c t i o n s 

x i-1 

( 3 . 3 9 ) à l + 1 ( x ) = ( 1 - Soi) J (x - 0 ' " 1 Hi(0 # + 6 0 } t H 0 ( x ) + E Xvx" 

0 ^ = 0 

( x e [ 0 , x r ] ; / = 0 , 1 , . . . , g - p - 1 ) , w h e r e 

( 3 . 4 0 ) H t ( x ) = N , o h~\x) - { J ] 

+ E c m A K H x ) r ^ - ' - ^ ( x ) + g x - ' - ^ ï o ^ C « ) } 
771 = 7711 771 = 7712 

( 3 . 4 1 ) * „ < • ) = { Î * W 

1 <Pm-qJ, 

a n d A„ (v = 0 , 1 , . . . , / — 1 ; / = 0 , 1 , . . . , q — p — 1 ) a r e a r b i t r a r y c o n s t a n t s . 

I n t h e s e q u e l w e s h a l l u s e t h e f o l l o w i n g n o t a t i o n 

c) f o r m = 1 , 2 , . . . , q - p 

-q+p(x) f o r m = q - p + l , . . . , q 

( x € [ 0 , « r ] ; to = 1 , 2 , . . . , } ) ; 

( 3 4 2 ) y f x ) - i ^ ( a ; ) f o r /z = 1 , 2 , . . . , g — p 
( S . U ) - | ^ _ 9 + p ( x ) for p = , - p + 1 , . . . , q 

( x G [ x r , 1]; ¿i = m , m + m = l , 2 , . . . , g ) ; 

( 3 . 4 3 ) x m ( * ) = ( - l ) m + 1 E 
fi=m 

( x G [ x r , 1] ; TO = 1 , 2 , . . . , g ) , a n d 

( 3 . 4 4 ) $m{y) = ( - 1 E - l H ( y ) 

ii—m > ' 771 

© © 

( y e [o"o,cr]; m = l , 2 , . . . , p ) , w h e r e < j > L a n d (i> = 

1 , 2 , . . . , p ; f3 = 1 , 2 , . . . , q — p) a r e t h e f u n c t i o n s g i v e n b y f o r m u l a e ( 3 . 3 4 ) , 

( 3 . 3 5 ) , ( 3 . 3 9 ) a n d ( 3 . 1 0 , ( 3 . 1 1 ) , ( 3 . 2 9 ) , r e s p e c t i v e l y . 

I t f o l l o w s f r o m P r o p o s i t i o n s 3 . 1 a n d 3 . 2 t h a t t h e f u n c t i o n 

i v 

( 3 . 4 5 ) u ( x , y) = E y m ' l X m { x ) + £ x ™ ' 1 ^ ) 

m = l m = 1 

( ( x , y ) Ç P ) , w h e r e 

( 3 4 6 ) Y M = f o r 0 < x < x r ( 3 . 4 b ) Xm(x) - | ~ m ( x ) f o r x r < x < 1 
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(m = 1 , 2 , . . . , g); 

(3.47) M y ) = { i i y l i o r 0 

I i>m{y) for (To < y < a 
(m = 1,2, ...,p), satisfies the boundary conditions (1.2) on the parts of 
A , . . . , r r and i~ i , . . . , r r contained in A U Q. 

Evidently, u € Â, and hence (cf. Lemma 2.1) is a solution to equation 
(1.1), provided that the equalities 

(3.48) £ \ x r ) = j&>(x r ) ; ^ \ < T 0 ) = 

(m = m i , . . . s = s i , . . . ,p with mi = max(l,/z + 1 - q + p); Si = v + 1) 
hold good for u = 0 , 1 , . . . ,p; ¡1 = 0 , 1 , . . . , q. 

Let us observe that we still have to impose on the function u the following 
requirements: 

1° The conditions (1.2)(a) are to be satisfied on the parts of . . . , r r 

marked on Fig. 1; 
2° The conditions (1.2)(b) should be fulfilled on the parts of A , . . . , f r _ i 

marked on the said figure. 
Imposing the aforementioned requirements on the function u (cf. (3.45)), 

and using (3.46), (3.47), we get the following system of equalities 
p 

| ^ ~ 1 ) 1 j ^ - j r - l 
(m — j r — 1)! 

m=jH-i {(q-P + r n - j r - i y . 

j r ~ l L o f i ( x ) ^ = M i j ( x ) 

(x £ [xr,xi]; i = l , 2 , . . . , r ) ; 

• ([q - P + m - j r - 1)1 m=jr+1 N v 3 ' 

+ ( m ( - J > - ! l ) ! ( - 1 ) i r ( 1 " ^ r ^ - ^ i y ) } = K M 
- * * o o 

(y e [<r0A' (*»•); i = 1 , 2 , . . . , r — 1), where <£m,Vm,<£m and ipm (m = 
1 , 2 , . . . , p ) aree given by formulae (3.10), (3.11) and (3.34), (3.35), respec-
tively. 

Thus, a sufficient condition for the existence of a solution to problem (P) 
is the following one 

(3.51) (C) = {(3.48)-(3.50)} 

consisting in the validity of relations (3.48)-(3.50). 
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E X A M P L E 3 . 1 . We shall give an example of the boundary data satisfying 
the condition (C). 

Let r = p = q = 2 (as a consequence, k = 1, j = 0; i = 1,2, 
the conditons (1.2)(c) do not appear and the equalities (cf. (3.41)-(3.43)) 
Xm(x) = Xro(x) = 0 for m = 1 , 2 , . . .,q~p hold good), and assume that the 
functions Mtio(ar) and Niß(y) (i = 1 ,2) satisfy, apart from Assumption II, 
the following conditions 

' M i f i ( x ) = 0 f o r x e [ 0 , 1 ] ; 

( 3 . 5 2 ) M2\O(X) = 0 f o r x G [ 0 , x 2 ] U [ x 2 , 1 ] 

. Ni,0(y) = 0 f o r y (E [ 0 , f2(x2)] U [a0 - 77, a] 

(i = 1 ,2) , where 77 is a number arbitrarily fixed in the interval (/2(®2)»<^o)* 
One can show by using formulae (3.10), (3.11), (3.34), (3.35) and (3.52) 

that all the infinite series present in equalities (3.49) and (3.50) are equal to 
zero (we base on the relations 

/xfc(2S)(a;) e 1); *j£(a,)00 € (0,®r] for x € [£r,x t-]; i = 1,2, 

resulting from definitions (2.8)-(2.11), respectively) and hence the 
said equalities reduce to the form 

2 

( 3 . 5 3 ) 5 > „ ( y ) ( e l ( v ) - f r \ v ) ) N y M = Mifi 0 f r \ y ) 

( y € [/ 2(x 2) , (7o] ; i = 1,2) ; 
2 

(3.54) 0 h i ( y ) ( e l 0 M i / ) - y)M„ja o h^y) + iv„(y)(e i ( » ) + 
t/=i 

- (1 - h1(y)Ml/,0 o f-\y)) = N\fi(y) (y € k o . f c r 1 ^ ) ] ) . 

Condition (3.54) is identically satisfied due to assumption (3.52). 
Relations (3.53) can be treated as a system of algebraic equations with 

the unknows N„t0 (^ = 1,2) . It is easily shown that the determinant of the 
coefficient matrix of this system is equal to ^ ( ¡ / ^ ( J / X - ^ T H J / ) ~ / f ' ( l / ) ) ' 
•(h\(y) — h2(y)) and hence is different from zero for y 6 [/2(x2)»°'o]-

Thus, given M t io (i = 1 ,2) one can find the functions N„t0 (^ = 1 ,2) , 
and conversely, so that conditions (3.53) hold good. 

As a consequence, we can assert that if the assumptions (3.52) are sat-
isfied then (3.49), (3.50) are true. 

The validity of relations (3.48) follows directly from formulae (3.10), 
(3.11), (3.34), (3.35) and assumptions (3.52). 

Basing on the considerations performed in this chapter, we can formulate 
the following theorem. 
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T H E O R E M . If Assumptions I—III are satisfied and condition (C) (c / . 
( 3 . 5 1 ) ) holds good then problem ( (5) has a solution of the form ( 3 . 4 5 ) ( c f . 

m * o o 

also ( 3 . 4 1 ) - ( 3 . 4 4 ) ) , where the functions <j>m,Ì,m,<t>mi'4>mùf}, ond ùp (m = 
1 , 2 , . . . , p ; (3 = 1 ,...,q — p) are given by formulae ( 3 . 10 ) , ( 3 . 1 1 ) , ( 3 . 2 9 ) , 
( 3 . 3 4 ) , ( 3 . 3 5 ) and ( 3 . 3 9 ) , respectively. 
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