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The authors continue their earlier investigations (cf. B[1]-[5], PR[1]-{4])
on shifts induced by right invertible operators. The purpose of the present
paper is to study limit properties and infinitesimal generators of families
of functional shifts induced by a right invertible operator D and its per-
turbations. Functional shifts, introduced and studied recently by the first
of the authors, generalize in a sense classical notions of translations and
semigroups.

Conditions for a family of functional shifts defined on a locally bounded
complete linear metric space to be a commutative semigroup (with respect
to the superposition of operators as a structure operation) are established.
Moreover, there are given conditions for perturbed families of functional
shifts to have the limit property. If these conditions are satisfied then in-
finitesimal generators of perturbed families are determined by means of in-
finitesimal generators of the original family of functional shifts.

We shall recall some definitions and theorems (without proofs) which
will be used in our subsequent considerations.

Assume that X is a linear space over the field C of complex numbers.
Denote by R(X) the set of all right invertible operators belonging to L(X),
by Rp - the set of all right inverses of a D € R(X) and by Fp - the set of
all initial operators for D, i.e.

RD={R€L0(X):DR=I},
Fp={F € Ly(X): F* = F, FX =ker D and dger, FR = 0}.

In the sequel we shall assume that ker D # {0}, i.e. D is right invertible
but not invertible. The theory of right invertible operators and its applica-
tions can be found in PR[1].
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We admit that 0° = 1. We also write : Ny = {0} U N. For a given
operator D € R(X) write

(1) S =| ) ker D.
=1

The set S is equal to the linear span P(R) of all D-monomials
§ = P(R) =lin{R*z: z € ker D, k € Ny}

independently of the choice of a right inverse R of D (cf. PR[1]).
In the sequel, K will stand either for a disk K, ={h€ C:|h|<p, 0<

p < +oo} or for the complex plane C. Denote by H(K') the space of all
functions analytic on the set K. Suppose that a function f € H(K') has the
following expansion

[e o]
(2) f(h)= axh* forallhe K.

k=0

DEFINITION 1 (cf. B[2]). Suppose that D € R(X) and ker D # {0}. A
family Tk = {Th}rex C Lo(X) is said to be a family of functional shifts for
the operator D induced by a function f € H(K) if
(3) Tz = [f(hD)]z = Y axh*D*z forallhe K, z € S,

k=0
where S is defined by Formula (1).

We should point out that, by definition of 5, the last sum has only a
finite number of members different than zero.

ProrositioN 1 ( cf. B[2]). Suppose that D € R(X), ker D # {0}, F is an
initial operator for D corresponding to an R € Rp and Tx = {Th}rex C
Lo(X). Let f € H(K) (i.e. f is of the form (1)). Then the following condi-
tions are equivalent:

(i) Tk is a family of functional shifts for the operator D induced by the
function f;
(ii) ThRFF = ¥5_ a;h R¥=IF for all h € K, k € Ny.

ProrosITION 2 (cf. B[2]). Suppose that D € R(X), ker D # {0} and
Ttk = {Trr}nex is a family of functional shifts for the operator D induced
by a function f € H(K). Let F' be an initial operator for D corresponding
toan R € Rp. Then
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(i) Forallhe K, z€ ker D, k € Ny
k
(4) Tf,thZ = Z ajhj Rk—jz;
Jj=0

(ii) The operators Ty, (h € K) are uniquely determined on the set S

(iii) If X is a complete linear metric space, S = X and Ty}, are contin-
uous for h € K then Ty, are uniquely determined on the whole space;

(iv) For all h € K the operators Ty, commute on the set S with the
operator D.

The listed properties and other informations about shifts for right in-
vertible operators can be found in B[1]-B[4] (cf. also PR[1]-PR[4]).

Proposition 1.2 of B[3] implies

ProrosiTION 3. Suppose that all assumptions of Proposition 2 are sat-
isfied and f(0) = ap # 0. Let

(5) F, = f_1 (O)FTL}, fOT‘ hekK.
Then F, is an initial operator for D corresponding to the right inverse
(6) Rp,=R—-F,R forhe€eK.

It is well-known that the set H(K) is a commutative ring with the fol-
lowing algebraic operations

(f +9)(h) = f(R) + g(h), (ag)(h)=ag(h), (fg)(h)= f(h)g(h),
where f, g€ H(K),a € C,h € K.

Let T(K) be the set of all families of functional shifts for an operator
D € R(X) induced by the members of H(K), i.e.

(7) T(K) =T Kk :9€ H(K)}.

Define the following operations
(8) Trr+Tok =Trigk, oTyx =Togk, TrrTex =Trek,
where f, g € H(K), a € C.

THEOREM 1 (cf. B[2]). Suppose that D € R(X) and T(K) is defined by
Formula (7). Let Ts(K) = T(K)|s, where S is defined by Formula (1). Then

(i) The set Ts(K) is a commutative ring with the operations defined by
Formulae (8);
(ii) The rings H(K') and Ts(K) are isomorphic. The mapping

T: f == Tf,l(lS

is a ring isomorphism of H(K) onto Ts(K).
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THEOREM 2 (cf. B&PR[1]). Suppose that D € R(X), ker D # {0} and
Ts k = {Ts.r}rek is a family of functional shifts for the operator D induced
by a function f € H(K). Let F be an initial operator for D corresponding
to an R € Rp. Suppose, moreover, that f(h) # 0 for h € K and Ty ¢ =
{Tl/f,h}hGK € T(I(). Then

(9) Rz = f(0)Ty/snR"z forallneN, he€ K, z€kerD,
where the operators Ry, (h € K) are defined by Formula (6).

Now we assume that X is an F-space over C, i.e. a complete linear metric
space over C according to the Banach definition. In the sequel K will stand
for the disk K, (0 < p < 4+00). Let a set 2 C K contains the origin. The
function f € H(K) has the expansion (1) and limsup,_,o, V/|a.] = p71.
Define for an operator D € R(X) the following sets (cf. B[4]):

(10) s¢(D) =
= {:c €X: ZakthH'":c is convergent for all h € f?} (n € No);
k=0
(11) $5(D) = S7(D);
(12) spD)= [ s (D)
n€N,
(13) Sa(D)y= () S3(D).
geEH(K)
(14) Ex= | ] Ex, where Ex=ker(D = AI), A={A€C:\2CK}.
A€A

ProrosiTION 4 (cf. B[4]). Suppose that D € R(X) and ker D # {0}.
Then

S, E4 C Sk(D) C Sa(D) C §7°(D) C §¢(D) C dom D,
where the set S is defined by Formula (1).

Let X be a locally bounded F-space. Recall (cf. Rolewicz R[1]) that

e for a p, 0 < p < 1, there is a p-homogeneous F-norm equivalent to the
original one (Aoki-Rolewicz theorem);

o for every p, 0 < p < po = log2/log c(X), where ¢(X) is the modulus of
concavity of the space X, there is a p-homogeneous F-norm || || equivalent
to the original one (Rolewicz theorem).
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PROPOSITION 5. Suppose that X is an F-space with a p-homogeneous
norm || || (0<p<1),D € R(X) and ker D # {0}. Let

(15) Xi(D) = {z € X :limsup {/||D"z|| < 1
n—oo
if p< oo and {D"z} is bounded if p = +00}.
Then X1(D) C S¢(D).

Proof. Let z € X; and f € H(K) be arbitrarily fixed. Let p; =
lim sup,_,., ¥/||D"z| for p < +o0. Let M > 0 be such that {|[D"z|| < M
for all n € Ny, p = +00.

For all n € Ny, h € K we have ||a,h" D"z| = |a,|?|h|"?||D"z||. Hence

forhe K
limsup {/||enh"Dz|| < p1 £1 for p < o0

n—o
and

limsup {/||ah”Dnz|| =0 for p = +o0.
n—0

This implies that the scalar series Y .- ; |a.|P|R|™?||D"z]| is convergent for
all h such that |h| < p < +oo (for all h € C if p = +00, respectively). Since
X is a complete linear metric space with an invariant metric p(z,y) defined
by the equality: u(z,y) = ||z — y|| for all z,y € X, we conclude that the
series Yoo @ h" D"z is absolutely convergent forall h € K. =

Note 1. Suppose that all assumptions of Proposition 5 are satisfied.
Then S C X;(D) but the inclusion £4 C X;(D) does not hold. However,
{0} # E) = ker(D — X\I) C X1(D), X € C, if and only if |A\| < 1. Moreover,

D[X,(D)] ¢ X1(D); R[X:1(D)]c Xi(D), where R€ Rp.

Indeed, let £ € § be arbitrarily fixed. Then there is an N € N such
that D"z = 0 for all » > N. This implies that € X;(D). Suppose now
that A € C. Let z € ker(D — AI) \ {0} be arbitrarily fixed. We have
D"z = A"z and ||[D™z|| = |A|"?||z|| for all n € N. Since 0 < p < 1, we
conclude that z € X1(D) if and only if |A| < 1, i.e. E) € X1(D) if and only
if ]A\] €1(0 < p < +). Clearly, Dz € X,(D) whenever z € X;(D). Let
R € Rp be arbitrarily fixed. Since D*Rz = D* 1z forallz € X, n € N,
we conclude that Rz € X;(D) for all z € X,(D).

The following lemma, which is well-known for Banach space (cf. Hille
and Phillips HP[1}), holds also for locally bounded F-spaces (cf. Rolewicz
R[1)).

LEMMA 1. Let X be a locally bounded F-space and let D € R(X). The
series Yoo o a,h" D"z is absolutely convergent for all z € Xy(D), h € K
to a holomorphic function f(hD)z : K — X in every concentric circle of
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radius less than p. The function f(hD)z is strongly continuous and strongly
differentiable in K, uniformly with respect to h in any compact subset of K .

Lemma 1 immediately implies

PROPOSITION 6. Suppose that all assumptions of Lemma 1 are satisfied.
Define for f € H(K) the following families of operators:

f(hD)e = > anh"D™z;  f'(hD)e =) na,h*' D"z
n=0 n=1

for all z € X1(D), h € K. Then
(i) the families f(hD) and f'(hD) are well-defined, the function

fi(hy =) nah™' (heK)
n=1

is the derivative of the function f and f' € H(K);
(ii) if 0 € 2 C K is a limit point of 12 then

1
L i
na}zrl»o h

(iil) if 2 C K is an open set then

[f(hD) — f(0)]z = f'(0)Dz  for all z € X1(D);

—(%l-f(hD):c = f'(hD)Dz for all z € X,(D), h € 0.

LEMMA 2. Suppose that D € R(X), ker D # {0} and R € Rp. Then
R(SUE,) C §4(D),
where the sets S, E4, S;(D) are defined by Formulae (1), (14), (11), respec-
tively. Moreover,

-;—hf(hD)Rm = f'(MAh)z forallz € SUE,, he .

Proof. The equality S = P(R) and Proposition 4 together imply that
R(S) C S C Sk(D) C S§(D). Let x € E4 \ S be arbitrarily fixed. Then
there is a A € A\ {0} C C such that z € E) = ker(D — AI). For h € K we
have

f(hD)Rz = E a,h"D"Rx = agRx + E anhnD"—la: —
n=0 n=1
= aoR:c + Z anhnA"—lz = (loRIE + A..] E an(,\h)"x _
n=1 n=1
- oo SO SO

A
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This implies that Rz € S§(D) and
] 1
hllu—rvlh hl —h
Similarly, as Definition 1, we have
DEFINITION 2. (cf. B[4]). A family Ty, 0 = {Tyn}ren C Lo(X) is said
to be a family of functional shifts for an operator D € R(X) induced by a
function f € H(K) if
(16) T¢nx = f(RD)z for all h € 2, z € S§(D),
where the operator f(hD) is defined by Formula (3) and the set Sy(D) is
defined by Formula (11).

Note 2. (cf. B[4]). Suppose that D € R(X), ker D # {0} and Ty o =
{Tsr}ren is a family of functional shifts for D induced by a function f €
H(K).If z € E), A € A, then

Tirz = f(AR)z  for all h € 02.
Theorem 3.1 of B[1] and Note 2 together imply

[f(h1D) — f(hD)|Rz = f'(Mh)e (h € K). m

PRrOPOSITION 7. Let Ty, Ty o be families of functional shifts for the
operator D € R(X) induced by the functions f, f' € H(K), respectively.
Then

(i) if ho € 22 C K is a limit point of 12 then

) 1
ﬂg}lrgho ho — h

(ii) if 2 C K is an open set then

d

ETI'h = Tfr_hD = DTfl,h on SUE, forall he 1,

where S, E, are defined by Formulae (1), (14), respectively.
Note 3. (cf. B[4]). Suppose that all assumptions of Note 2 are satisfied

and Ty are continuous for A € 2. Let F be an initial operator for D
corresponding to an R € Rp. Then

(Tf,ho '—T‘f,h):l: = Tfl,hoDZ = DTfl,hoa: for all z € SU Ey;

(i) if R is continuous then

Ap(D)={z€eX:2= z R"FD"z} C Sy(D);
n=0

(ii) if D is closed then

AD)= |J Ar(D)cC Sy(D).
RERp
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DEFINITION 3. Let 0 € 2 C K be the limit point of the set 2. A
family To = {Th}ren C Lo(X) has the limit property on a set Y C X if
limp_,0 +(Th—To)x exists for every = € Y. If it is the case, then the operator
A defined as

1
(17) Az = 'llin}) E(Th —To)z forzeY =domA

is said to be an infinitesimal generator for the family T'p.

Note that the infinitesimal operator A (if exists) is well-defined. Clearly,
if X is a locally convex F-space, then any strongly continuous semigroup
Tq = {Th}ren of linear operators is a family with the limit property and
its infinitesimal generator satisfies Condition (17).

Proposition 7 leads us to the following

CoROLLARY 1. Suppose that Ty p is a family of functional shifts for D
induced by a function f € H(K) and 0 € 12 is a limit point of £2. Then this
family has the limit property on the set SUE4 and f'(0)D is its infinitesimal
generator.

Proposition 6 implies

COROLLARY 2. Suppose that all assumptions of Corollary 1 are satisfied
and X is a locally bounded space F-space (in particular, a Banach space).
Then the family Ty o has the limit property on X,(D) and f'(0)D is its
infinitesimal generator, where the set X1(D) is defined by Formula (15).

On the other hand we have

THEOREM 3. Suppose that K = C, §2 C K is the interior of a spinal
semi-module (i.e. an additive semigroup which contains a ray from the origin
and an open set intersected by this ray) containing the positive real azis and
Tt 0 = {Ttn}nen is a family of functional shifts for a D € R(X) induced
by a function f € H(C), f #0. Then Ty g is a commutative semigroup with
respect to the superposition of operators on the set S U E4, i.e.

TenTep, e =Tpp,Tepx = Tshi4n,T for all t € SUFE,, hi,hy € 2,
if and only if there is an a € C such that f(h) = e®". If it is the case then
1
(18) }lbirr}) E(Tf’h ~Tso)z =aDx  for all z € SU Ey,
i.e. the operator aD is the infinitesimal generator of semigroup Tf o on
SUE,.

P roof. Sufficiency has been proved in B[2], B[4]. Necessity. Suppose that
T, is a semigroup. It follows from properties of functional shifts considered
on the set S U E, (cf. B[4]) that in this case the function f should satisfy
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the functional equation: f(t+s) = f(t)f(s) for all t, s € £2. It is well-known
(cf. Hille and Phillips HP[1], Lemma 17.3.1) that either f = 0 on {2 or there
exists a complex number « such that f(h) = e®" for all h € £2. This implies
that f(h) = e*? for all h € C. Proposition 7(i) implies the equality (18). We
therefore conclude that aD is the infinitesimal generator of the semigroup
under consideration. m

Evidently, Theorem 3 holds also in the case when either 2 = K or
2 C K contains the interior of a spinal semi-module containing the positive
real axis.

In a similar manner we obtain the following

THEOREM 4 (cf. B[4]). Suppose that all assumptions of Theorem 3 are
satisfied and the operator D is closed. Then the family Ty o is a commutative
semigroup with respect to the superposition of operators on the set Sq(D)
defined by Formula (13) if and only if there is an a € C such that f(h) = e**
foralhe K.

THEOREM 5. (cf. B[5]). Suppose that all assumptions of Theorem 3 are
satisfied and the operators Ty, (h € £2) and R € Rp are continuous. Then
Tt 0 is a commutative semigroup with respect to the superposition of oper-
ators on the set Ar(D) defined in Note 3 if and only if there is an a € C
such that f(h) = e** for h€ K.

Propositions 5 and 6 immediately imply the following

THEOREM 6. Suppose that X is a locally bounded F-space and all assump-
tions of Theorem 3 are satisfied. Then Ty o is a commutative semigroup with
respect to the superposition of operators on the set X{(D) defined by For-
mula (15) if and only if there is an a € C such that f(h) = e** (h € K) and
Formula (18) holds on X1(D). If it is the case then aD is the infinitesimal
generator of the semigroup Ty .

Note 4. In asimilar way, as in Definition 2 (Definition 1, respectively),
functional shifts may be defined as operators induced by an analytic function
f:K, > R, where K, = (—p,p), 0 < p < +00. The particular case, when
K =R, 2 C K is either R or R, f(h) = e*, has been considered in
PR[1]-[4). Clearly, also in that case results analogous to Theorems 3, 4, 5, 6
can be obtained.

For perturbed operators we get

THEOREM 7. Suppose that Ty i is a family of functional shifts for D €
R(X) induced by a function f € H(K), the operator A € Lo(X) maps SUE,
into itself, R € Rp and

(19) T},h = Tf,h(I + RA) —TsoRA for allhe 2 C K.
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If the origin is the limit point of 2 then
(20) ]im (T},h —Tio)z = f(0)(D+ Az for all z € SU Ey,

i.e. the famzly T’ i has the limit property on the set SUE}, its infinitesimal
generator is f’(O)(D + A) and T}  acts in the following manner:

T; pz = [f(hD) - f(O))(I + RA)z + f(0)z  for allz € SUE,, he Q.

Proof. Suppose that the family Tf o is defined by Formula (19). Then
T;y = Tro. Let © € § U E4 be arbitrarily fixed. By Proposition 7 and
Lemma 2, we get

.1 .1
lim (T n =~ Tpo)z = lim —[Trn = Tro+ (Tyn = Tro)RAJz =

.1 1
= lim - (Tyn = Tyo)e + lim - (Tyn = Tyo0)RAz =
= f/(0)Dz + f'(0)DRAz = f'(0)(D + A)x.

Let now z € SN E4 be arbitrarily fixed. By definition and our assumptions,
for all A € K we have

T} & = Ty n(I + RA)z — TsoRAz = f(hD)(I + RA)z — f(0)RAz =
= [f(hD) - f(O)]({ + RA)z + f(0)z. m

Note 5. Suppose that D € R(X), R € Rp, A € L¢(X) and the
operator I + RA is invertible. Recall that D° = D+ A € R(X) and R® =
(I+ RA) 'R e Rp (cf. for instance PR[1]). Recall also that the sum of a
closed operator and a continuous operator is again closed. So that, if D is
closed and A is continuous, then D? is closed.

Proposition 6 and Note 1 together imply the following

PROPOSITION 8. Suppose that X is a locally bounded F-space over C,
Tt q is a family of functional shifts induced by a function f € H(K), 0 €
2 C K is a limit point of 2, A € Lo(X) maps the set X;(D) defined by
Formula (15) into itself and the family T} , is defined by Formula (19). Then
Formula (20) holds on X1(D), i.e. Tt 0 has the limit property on X1(D) and
its infinitesimal generator is f'(0)(D + A).

COROLLARY 3. Suppose that all assumptions of Theorem 7 are satisfied
and f'(0) # 0. Let T} ;; be defined by Formula (19). Then the family T} ;c =
Tl/f',oT},K has the limit property on SU E 4 and its infinitesimal generator
is D+ A. Moreover

T2,z = ——{[f(hD) - f(O)[(I + RA)z + f(0)z} forz € SUE4, heK.

f’(0)
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Proof. By our assumption, 1/ f" € I[(K'), which implies f/(0) # 0 and
Tyyppz = #O)x for £ € SU E4. This, and Theorem 7 together imply that
the family T'7 ;- has the limit property on S U E, and that its infinitesimal
generator is f—,%o—)f’(O)(D +A)=D+ A n

PROPOSITION 9. Suppose that 0 € 2 C K is a limit point of 2, Ty o
is a family of functional shifts for a D € R(X) induced by a function f(™ €
H(K) and f("*t1)(0) # 0 for an arbitrarily fired n € No. Then the family

~(n 1
(21) ) = T gy Lo (n € Ny)

has the limit property on S U E4 and its infinitesimal generator is D.

Proof. Let n € Ng be arbitrarily fixed and let a family of operators be
defined by Formula (21). Then for all z € SU E, we get

7))y = 1 1 _ _
nlalfluri»o h(vah) Tio)e = nlalf?l»o h f("“)(())(Tf(n)’h Tyl =
1

f("+‘)(0) nah oh
f(0)Dz = Dz. »

(Tf(n) h = Tf(n) 0).’5 =

f("+1)(())
ProrosiTioN 10. Suppose that all assumptions of Proposition 9 are sat-
isfied and the families Ty o (K =0,1,...,n; n € Ng) are given. Then
(i) the family
__
f(ﬂ'i'l)(())

has the limit property on the set S U E4 and its infinitesimal generator is
Dn+1;

(ii) if 2 C K is an open set then

(22) T}:‘L_r)) = Tf(u)'nDn

(n) 1 d»
T, = —————— .
1,02 {f(’H'U(O) dh™ Tf,h}heﬂ

Proof. Let n € Ny be fixed and let the family T( be defined by
Formula (21). Let a family of operators be defined by Formula (22).

(i) Our assumptions and Proposition 9 together imply that for all z €
SUFEy, he 2 we have

lim (T(j;) T$)e = lim —(T,(,> » — Ty o)D"z = D(D"z) = D™*'z.
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(ii) Clearly, for all h € 12,

m_ 1 e 1 n
Tf,h - f(n+1)(0)Tf,h - f(n+1)(0)Tf(">,hD .

This implies (cf. B[1])
1 d"

T(n) -
f@+1(0) dhn

—Tfh ®

THEOREM 8. Suppose that 0 € 2 C K is a limit point of 2, Ty o is a
family of functional shifts for a D € R(X) induced by a function f € H(K)
and 1/f) € H(K) for j = 0,...,n (n € Ny). Suppose, moreover, that
R € Rp, the operators Ay, ..., A, € Lo(X) are continuous and Ag,..., A,
map S U E, into itself. Let the families T}f}) be defined by Formula (22) and
let

(23) A(D) = i A; D7,

Then
(i) the family

(24) A o(D) = ——A,Ts oR + Z ATV

i=1

f’(0)

has the limit property on S U E4 and its infinitesimal generator is A(D);
(ii) the family Af 2(D) acts in the following manner
(-1) i-1,
Apn(D)z = Ao f(hD)Rz + Z 7P (O)A ifU D (D)D

for x € SUE,4, he 2.

f'(O)

(iil) if the operator

(25) A(I,LR)=)_ A;R™

7=0
is invertible (respectively, right invertible) then A(D) € R(X) and R 4(p) =
R™A(I, R)] ™' € R 4(p) (respectively, Rapy = R"R 4, where R4 € R 41,R))-

Proof. (i). Similarly, as in the proof of Propositions 9 and 10 (cf. also
the proof of Theorem 7), by Lemma 2, for all 2 € SU E4 we have

lim I[Afh(D) Apo(D))z = AODRx+EA Diz = Z A;D’z = A(D)z.
j=1 j=0
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Point (ii) follows from our assumptions, Point (i) and Formula (16). The
proof of Point (iii) can be found in PR[1], where we have used the identity:
A(D)R™ = A(I,R). w

Similarly, we can prove the following

THEOREM 10. Suppose that 0 € 2 C K is a limit point of 2, Ty p is a
family of functional shifts for a D € R(X) induced by a function f € H(K)
and 1/f@9) € H(K) for j = 0,...,n (n € Ny). Suppose, moreover, that
R € Rp, the operators Ay, ..., An € Lo(X) are continuous and Ag,..., A,
map S U E, into itself. Let the families T}f}, be defined by Formula (22) and
let

(26) A(D)=Y_DiA;.
i=0
Then

(i) The family
(27) A r(D) = - =TsaRA + ZTf(, .0A;
50 2
has the limit property on S U E4 and its infinitesimal generator is A(D);
(ii) If the operator

(28) A(I,R) = i R™ I A;

i=0

is invertible (respectively, right invertible) then A(D) € R(X) and Ra(py =
[A(I, R)]"'R" ¢ R a(D) (respectively, Ropy = RAR"™, where R4 € R 4(1,Ry)-

Proof. The proof of (i) is going on the same lines, as the proof of Point
(i) in Theorem 9. Point (ii) can be found in PR[1], where we have used the
identity: A(D) = D"A(I,R). m

COROLLARY 4. Suppose that all assumptions of Theorem 9 (or Theo-
rem 10) are satisfied and the operators Ag,..., A, are stationary, (i.e. are
commuting with D and R simultaneously). Then A(D) = A(D), A(I,R) =
A(I, R), the family Ay o(D) = Aj n(D) defined by Formula (24) (or For-
mula (27)) has the limit property on the set S U E, and its infinitesimal
generator is A(D).

Proof. By our assumptions, A(D)Ty,, = Ty ,A(D) for all h € K. More-
over, A(D) = A(D). This, and the equalities A(D)R"™ = A(I, R) = A(I, R)
together imply our conclusion. m
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Observe that families of operators, which appear in Theorems 7, 8, 9,
Propositions 8, 9 and Corollaries 3, 4, are not families of functional shifts if
the operators A, Ag,..., A, are not operators of multiplication by scalars.
Nevertheless, these all families have the limit property. Theorem 3 and 7
show that, in general, Theorem 4.1 and Corollary 4.1 in PR[3] (on pertur-
bations of functional shifts in the case f(h) = e*) do not hold.

We shall give now some examples of functional shifts.

EXAMPLE 1. Let K = 2 = C, X = H(C) (with the topology of uniform
convergence on compact sets). Let D = %. Then § = X. Let

F(h) =) agh*eh,
k=0

where ag,...,an,a9 = 0,01,...,a, € C\ {0} and ay,...,a, are not nec-
essarily commensurable. Clearly, for all z € X
o0 hn'
(*P2)(t) = 3 =™ () =a(t+h).
n=0

Thus functional shifts induced by the function f are of the form:

n
(Traz)(t) = Y axh*a®(t + arh) for @ € H(C), t,h € C.
k=0
Indeed, Formula (8) implies that

n n

(Tt pz)(t) = z akthk( i @%’h)_"an) = Z akhkz(k)(t + aih).

k=0 n=0 k=0
In particular, if
f(h) = acosah + bsinBh, (a,beC, a,B € R),
then
(Tjr2)(8) = -;—[(a — ib)a(t + iak) + (a + ib)((t — iah)].

EXAMPLE 2. Let X and D be defined as in Example 1. Then R = fot €
Rp and the operators I — AR are invertible for all A € C. Let A = R.
Clearly, A satisfies all assumptions of Theorem 4. For all z € X we have
(R22)(t) = [j(t — s)z(s)ds and Tyoz = f(0)z = apx. The family T} k
defined by Formula (1.17) is then of the form

(Trpz)(t) =
= {[Tsn+ (Tr.x — Tro)R*)z}(t) =
= [f(kD)z + f(hD)R*z — f(0)R*z](t) =
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= [P e+ R2) — aoR] 1) =

k=0

= [aoRZx + a he*"P Rz + Ze"‘"hD(DQz + D*?z — agR*z (t) =

k=2
t+arh o0
=ah [ z(s)ds]— ) ach*[zB(t + arh) + axh) + 25Dt + arh)).
0 k=2

The infinitesimal operator for the family T i is
d t
! —_ J—
FOND+4)= a3 + Of)

If a; = f'(0) # 0 then the family T7 ; = al'lT}yK has the limit property
and its infinitesimal operatoris D + A = & + fot
EXAMPLE 3. Let X and D be defined as in Example 1. Assume that the

function f € X can be represented in the form: f = e9, where g(h) = e® €
X, a € C. Then functional shifts induced by the function f are of the form

(e o]

(Tynz)(t) = E i(t_'*;_l'f‘_n_h_) forze X, t,he C.
n=0 :

EXAMPLE 4. Let X and D be defined as in Example 1. Assume that the
function f € X can be represented in the form: f = e9, where g(h) = h?,

ie. f(h)= eh®. Then functional shifts induced by the function f are of the
form

X 2n
(Trpa)t) =Y hn—'a:(z")(t) forz € X, t,h € C.
n=0 ‘

In particular,
h2D? 1 h2D? . 1. .
e P cost = —2—[cos(t—h)+cos(t+h)]; e sint = §[sm(t—h)—sm(t+h)].
ExXAMPLE 5. Let X = H(K), where K = {h € C : |h] < 1}. Let
Dz = {,z+dz, where d € K\{0}. Clearly, D € R(X). By an easy induction,
we get

n
D"z = Z (Z) d*z®)  forze X, neN.
k=0

Let f(h) = t&; for h € K. Then functional shifts induced by the function
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f are of the form \

1 h d ,
Tf'hz—l—dhf(l—dha)x forz € X, he K.

Indeed, for all z € X and h € K we have
Tynz = f(hD)z = Y h"D"z = Z (Z) d" k() =

n=0 =0 k=0
_ oo 0 g k oo e m+k hm+kdm :L‘(k)z
k
k=0 n=k k=0 *m=0
= [ wman] ket = f) (1 — )=+ kg8
k=0 m=0 k=0

1 h 1 hod
_ 2B — d
1—dhk§=:0(1—dh) l—dhf(l—dhdt)x'

ExAMPLE 6. Let X be the space of all sequences {z,} such that z, € C
for n € N. Let D be the operator of the forward shift: D{z,} = {zn41}. It
is easy to verify that D € R(X) and that the operator R defined as follows:
R{z,} = {xn—-1}, where z,_x = 0if k > n, is a right inverse of D. Moreover,
the space X equipped with the topology of coordinatewise convergence is
an F-space and X = Ag(D) (cf. PR[2]). Let

: n
f(h) = Zakehk where a,,...,a, € C.
k=1
Then functional shifts induced by the function f are of the form

o0

A™
Tf h{mn} = Zak Z W{xn_*.km} for {.’L‘n} € X.
k=1 m=0 '
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