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Die Arbeit beschäftigt sich mit stationären Bifurkationsproblemen für 
nichtlineare Gleichungen in Banachräumen. Dabei werden besonders Sym-
metrieeigenschaften des Problems betrachtet und Stabilität der Bifurkati-
onslösungen untersucht. Mit Hilfe der Ljapunov-Schmidt-Reduktion wird 
die Untersuchung ins Endlichdimensionale verlagert. Damit kann, zumin-
dest für ein- bzw. zweidimensionale Bifurkationen, eine gewisse Veranschau-
lichung der Bifurkation und ihrer Stabilität bzw. Instabilität erreicht wer-
den. Dies soll u.a. im Begriff der Verzweigungsenergie zum Ausdruck kom-
men. 

1. B i furkat ionsprobleme 
Es sollen Lösungsmannigfaltigkeiten für Gleichungen der Form 

(1) G(X,x) = 0, G : A x E —> F, 
A Parameterraum (R oder C), E und F Banachräume, (Ao,xo) 
Lösungselement, d.h., Ao € A, xo € E und 

G(Ao,xo) = 0, 
betrachtet werden. 

DEFINITION 1 .1 . (Ao, £O) heißt Bifurkationspunkt der Gleichung ( 1 ) , 
falls 
1. G(Ao,xo) = 0, 
2. es gibt Folgen von Lösungselementen {(A n ,x n )} n e ^ und {(An, yn)}neN 

mit xn ^ yn für fast alle n und limn_»oo(An, xn) = (Ao,a:o)-

Die Arbeit ist die Darlegung eines Vortrages, der vom Author auf der Tagung 'VI th 
Symposium on Integral Equations and their Applications', 6-9 December 1994, Warsaw 
University of Technology, gehalten wurde. 
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B e m e r k u n g 1.1. Allgemein gesagt, bedeutet Bifurkation eine 
Veränderung der Struktur der Mannigfaltigkeit der Lösungselemente 
von (1). Durch Definition (1.1) wird die sogenannte statische Bifurkation 
beschrieben. Demgegenüber wird für Gleichungen 

§ = C ( A , , ) 

eine dynamische Bifurkation betrachtet. In der Nachbarschaft eines 
Lösungselementes (Ao,xo), der stationären Lösung, beschreibt sie Erhalt 
bzw. Verlust der Stabilität der Lösungsmenge (Ao,z(i)) bei Annäherung 
an Grenzzyklen bzw. beim Übergang zu oder Entfernung von periodischen 
Lösungen, genannt Hopf-Bifurkation. Bei unseren Betrachtungen spielen 
solche Bifurkationen nur in Zusammenhang mit Untersuchungen zur Stabi-
lität (s. Kap. 3) eine Rolle. 

2. Symmetrieeigenschaften 
Für die Beschreibung von Symmetrieeigenschaften werden folgende Be-

griffe und Bezeichnungen benötigt: 
• E und F sind Banachräume. 
• L(E, E) ist der Banachraum der linearen stetigen Operatoren von E auf 

E und entsprechend ist L ( F , F ) der Banachraum der linearen stetigen 
Operatoren von F auf F. 

• £(E, E) ist die Gruppe der linearen stetigen Operatoren von E auf E mit 
der Hintereinanderausführung als Gruppenoperation und entsprechend 
£ ( F , F ) . 

DEFINITION 2.1. Sei Q eine Gruppe (abstrakte Gruppe). Dann heißt 
ein Homomorphismus 

T-.G-* C{E,E) 
bzw. 

Darstellung der Gruppe Q auf E , Tg darstellende Operatoren und E Dar-
stellungsraum. T heißt endlichdimensional, falls dimE < oo. Entsprechend 

bzw. 

9 Sg. 

BEISPIEL 2 .1 . Es sei E = C und Q = {<p} die additive Gruppe in R . 
Dann ist 

Tgz = zei{fi 

eine Darstellung von Q auf C. 
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DEFINITION 2.2. Der Operator G heißt symmetrisch bezüglich der 
Gruppe Q (bzw. kovariant), falls Darstellungen T auf E und S auf F exi-
stieren, so daß für alle g € G und x G E, A € A 

G(X,Tgx) = SgG(\,x) 

gilt. 

FOLGERUNG 2 . 1 . Aus Definition 2 . 2 können unmittelbar folgende Aus-
sagen gewonnen werden: 
1. Ist (Ao,£o) Lösungselement von (1), so ist auch (Xo,TgXo) Lösungs-

element von (1). 
2. Ist (Ao,£o) Bifurkationspunkt von (1), so ist auch (Xo,Tgx<)) Bifurkati-

onspunkt von (1). 
3. Ist G(X,x) in (AO,3;O) partiell nach x F-differenzierbar B := Gx(Ao,Xo), 

so existiert die Ableitung auch in (Ao,T3io)» und es gilt Gx(\o,TgXo) = 
SgBTg-i := Bg. (vgl. Knobloch [3]) 

4. Es gilt für ihre Nullräume N(Bg) = Tg(N(B)) und ist B ein Noether-
Operator, so ist auch Bg ein Noether- Operator mit gleichen Null- und De-
fektindex.(vgl. Knobloch [3]) 

DEFINITION 2.3. Es werden 

Qx-= {geö,Tgx = x} 
Isotropiegruppe (Fixpunktgruppe) und 

G(x) := {Tgx :geG} 

Orbit von x bezüglich T genannt. 

BEISPIEL 2.2. In Beispiel 2.1 ist die Isotropiegruppe.gegeben durch Tgz = 
z, d.h. z = zeltfi also <p = 2kir,k £ Z. Der Orbit ist gegeben durch = 
ze'v, z festgehalten, d.h. Kreise. 

DEFINITION 2 . 4 . Ein Bifurkationspunkt (Ao,a;o) mit der Eigenschaft 
(A0, xn) —> (Ao, Xo) wird Schichtverzweigung genannt. 

BEISPIEL 2 . 3 . Im Falle eines Eigenwertes bei linearen Eigenwertproble-
men treten Schichtverzweigungen auf. Denn für G(X,x) = Ax — Xx und 
Axo = Aoxo ist (^n? Ao) Bifurkationspunkt mit xn — anxo,an 0, d.h. 
S chicht Verzweigung. 

DEFINITION 2.5. G heißt topologische Gruppe, falls folgende Bedingun-
gen erfüllt sind: 
1. G ist eine Gruppe. 
2. G ist ein topologischer Hausdorffraum. 
3. G —> G durch g g~x ist stetig. 
4. G X G G durch (g, h) —^• gh ist stetig. 



824 U. Kose l 

Eine topologische Gruppe heißt diskret, wenn sie keine Häufungspunkte 
enthält. 

BEISPIEL 2.4. In einem Banachraum E ist £ ( E , E ) eine topologische 
Gruppe. 

DEFINITION 2 .6 . T heißt stetige Darstellung der topologischen Gruppe 
Q auf dem topologischen Raum E, wenn 
1. T eine Darstellung von Q auf E und 
2. E x ? - » E durch (x,g) Tgx stetig ist. 

FOLGERUNG 2 .2 . Es gilt: 
1. Q ist eine diskrete Gruppe genau dann, wenn sie nur isolierte Elemente 

enthält. 
2. Ist ordQ = k < oo, so ist Q eine diskrete Gruppe. 
(Vgl. Knobloch [3].) 

SATZ 2 .1 . Ist Q nichtdiskrete topologische Gruppe, ordQXo = k < oo 
und T eine stetige Darstellung, so ist (Ao, XQ) eine Schichtverzweigung (vgl. 
Knobloch [3]). 

3. Begriff der Stabilität 

DEFINITION 3 .1 . Ein Lösungselement (Ao,xo) von ( 1 ) heißt linear stabil 
bezüglich der Evolutionsgleichung 

(2 ) Li = G(\,x(t)), L £ L ( E , F ) , 

wenn für alle Eigenwerte OJ von 

u>L<p = Gx(\0,x0)(p,<p E E, 

Reo; < 0 gilt. Es heißt linear instabil, wenn es einen Eigenwert mit Reu> > 0 
gibt. Gilt die Eigenschaft für einen Eigenwert u>o und dem dazugehörigen 
Eigenelement (po, so wird sie als relative Stabilität (Instabilität) bezüglich 
der Störung (fo bezeichnet. 

B e m e r k u n g 3.1. 
1. Der Begriff der Stabilität kommt durch die Zuordnung einer Evolutions-

gleichung (2) zustande. Diese Gleichung muß das dynamische Verhalten 
des Systems beschreiben. Bezüglich dieser Gleichung wird lineare Sta-
bilität untersucht. Man spricht auch von dynamischer Stabiltät. Es 
werden also dynamische Bifurkationen gesucht. Für den Begriff der Sta-
bilität vergleiche man bei Zeidler [15] und Röhlig [11]. Der Fall Reu> = 0 
muß gesondert untersucht werden, spielt in unseren Beispielen aber keine 
Rolle. 
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2. Die aufgestellten Gleichungen werden vielfach nicht von erster Ordnung 
sein (z.B. Bewegungsgleichungen bei mechanischen Problemen). In die-
sem Fall ist in ein äquivalentes System erster Ordnung umzuwandeln. 

D E F I N I T I O N 3.2. Es habe G(A,z) das Funktional V(A,z) als Potential, 
d.h. es gilt 

— W ( A , i ) = G(X,x). 
Dann heißt ein Lösungselement (A0,zo) statisch stabil, falls es V(A,x) ein 
relatives Minimum erteilt. 

B e m e r k u n g 3.2. Beide Begriffe sind unter gewissen Voraussetzn-
gen äquivalent. Man vergleiche z.B. Röhlig [12]. Dort findet man für die 
Äquivalenz die Bedingungen: 

• Die Evolutionsgleichung hat für alle Anfangswerte eine Lösung. 
• Die 2. Ableitung an der Stell XQ von V hat ein vollstetiges Inverses. 

4. Ljapunov—Schmidt-Reduktion 

B e m e r k u n g 4.1. Die Umwandlung des Bifurkationsproblems für die 
Gleichung (1) in ein endlichdimensionales Problem geht auf E. Schmidt [13] 
und A.M. Ljapunov [9] zurück. Sie soll hier unter den inzwischen bekannt 
gewordenen Namen Ljapunov-Schmidt-Reduktion kurz in eiener verallge-
meinerten Form beschrieben sein. Für nähere Ausführungen und einer re-
kursiven Berechnug von Bifurkationslösungen vergleiche Kosel [4] und [5]. 

SATZ 4.1. Unter folgenden Voraussetzungen: 
1. B := (-¡^(AojZo) existiert und ist stetig (F-Ableitung), 
2. B ist ein Noetherscher Operator mit dem Nullindex a(B) = m < oo und 

dem Defektindex ß(B) = n < oo 
und der Zerlegung der Räume in direkte Summen 

E = Em © ER, F = FN © FR 

mit 
(a) ER fl N ( 5 ) = {0} 
(b) 5 ( E * ) = F r 

(c) dim E m = M, dim F ^ = N 
und den Projektoren P : E EM in Richtung E f i und Q : F —• FR in 
Richtung FN ist die Ausgangsgleichung (1) dem System 

(3) QG(\,u + v) = 0, 

(4) (I-Q)G(X,u + v) = Q 

mit u := Px, «:=(/ — P)x äquivalent. 
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B e m e r k u n g 4.2. 
1. Es kann unter den Bedingungen (a) noch geeignet gewählt werden. 
2. Eine spezielle Zerlegung ist: E M = N ( B ) und FR = R(B) (ur-

sprüngliche Ljapunov-Schmidt-Reduktion), also insbesondere M = m 
und N = n. 

3. Von besonderem Interesse ist der Fall, wenn B~l <E L(F, E) nicht exi-
stiert, d.h. N(B) ^ {0}. Nur in diesem Fall können Bifurkationen 
auftreten. 
FOLGERUNG 4 . 1 . Die Ljapunov-Schmidt-Reduktion liefert folgendes Er-

gebnis: 
1. Auf die erste Gleichung (3) ist der Satz über implizite Operatoren an-

wendbar•, d.h., es gibt eine lokale Auflösung dieser Gleichung in der Form 
(5) v = r(A,u) =: w)\/i = X — Ao; w = u — uo-
2. Einsetzen von (5) in die Gleichung (4) liefert die s.g. Verzweigungs-

gleichung. Ihre Bifurkationslösungen u = erzeugen die Bifurkati-
onslösungen des Gesamtproblems in der Form 

x = <p(ii,tl>(ii)) + 1>(p). 

B e m e r k u n g 4.3. Wenn man versucht die Untersuchung auf die Un-
tersuchung des s.g. trivialen Lösungselementes (Ao,0) zu transformieren, 
wird i.a. eine Symmetrieeigenschaft nicht erhalten bleiben. Denn 

SgG( A,x) = SgG{\0 + fi,x0 + y) = G{\0,Tgx0+Tgy). 
Die Symmetrie bezüglich y wäre also nur für Tgxo = xo gewährleistet. 

5. Bifurkationsausssagen und Verzweigungsgleichung 
B e m e r k u n g 5.1. In diesem Abschnitt sollen Aussagen über die Ver-

zweigungslösungen der Gleichung (1) aus der Verzweigungsgleichung (4) 

(6) F(\,u):=(I-Q)G(\,u + <p(u)) = 0 
getroffen werden. Dazu werden Hilfsmittel zusammengestellt und z. T. 
hergeleitet. 

SATZ 5.1 (Vererbung der Kovarianz an die Verzweigungsgleichung). 
sei Lösungselement von (1), G(A,x) kovariant bzgl. Tg,Sg, und 

es liege die in Satz 4.1 vorgenommene Zerlegung der Räume vor und T(Q) 
sei beschränkt, d.h. ||Ta|| < I ; l 6 G Q• Ist 

(7) Qx o = G, 
so ist 

SgF(X,u) = F(\,Tgu) 
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Sg,Tg Einschränkungen auf die entsprechenden Unterräume (vgl. Knobloch 
[3])-

B e m e r k u n g 5.2. (7) gestattet es das Problem auf G(0,0) 
zurückzuführen. 

D E F I N I T I O N 5.1. Eine Darstellung T heißt reduzibel, wenn es einen 
invarianten echten Unterraum U von Ej\f gibt, so daß aus U C Ej^ für g £ G 
stets T 3 (U) C T 3 (Em) folgt. Anderenfalls wird sie irreduzibel genannt. 
Entsprechendes gilt für Räume und Darstellungen Sg (vgl. Boerner [1]). 

B e m e r k u n g 5.3. Die Invarianz der Unterräume ist gleichwertig mit 
TgP = PTg und SgQ = QSg für alle g eG. 

SATZ 5 . 2 . Sind die Voraussetzungen für die Kovarianz der Verzweigungs-
gleichung entsprechend Satz 5 . 1 erfüllt und ( A n , u n ) , n = 1 , 2 , . . . nichttri-
viale Lösungen von F(X, x) — 0 und die auf E^f eingesschränkte Darstellung 
Tg irreduzibel, so ist (0,0) Bifurkationspunkt (vgl. Knobloch [3]). 

SATZ 5 . 3 . Sei E = F Hilbertraum, 

G(X,x) = (7 + XL)x + tf(A,x),Le L(E,E),V(\,x) = o(| |x| |) ,z 0 

und ( 1 ) habe den trivialen Lösungszweig ( A , 0 ) . Dann ist die triviale Lösung 
genau dann stabil, wenn A < Reu; und u betragsmäßig kleinste charakteri-
stische Zahl von —L ist (vgl. Röhlig [11]). 

SATZ 5 . 4 (Stabilität und Verzweigungsgleichung). Unter den Vorausset-
zungen von Satz 5.3 sei 

(8) Lx = G( X,x) 

eine Evolutionsgleichung zur Untersuchung der Stabilität. Es gelte QL = 
LP. Weiter sei 

(9) Lü = QG(\,u+v), 

linear stabil, d.h. alle Eigenwerte haben negativen Realteil. Dann entschei-
det über die Stabilität des Bifurkationselementes allein 

(10) Lv = (I-Q)G(X,u + v), 

d.h. der Anteil aus der Verzweigungsgleichung. 

B e w e i s . Durch Projektion mit Q und ( / — Q) erhält man das zu (2) 
äquivalente System 

(11) 
(12) 

QLx = QG{ X,x), 
(I-Q)Lx = (I-Q)G(X,x) 
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Aufgrund der Vertauschbarkeitsregel QL = LP und u = Px sowie v = 
(/ — P)x erhält man das System bestehend aus den Gleichungen (7) und (8) 
und daraus folgt die Behauptung. 

FOLGERUNG 5 . 1 . Hat die Verzweigungsgleichung ein Potential bzw. läßt 
sich in eine äquivalente Gleichung mit Potential (Vgl. Trenogin u.a. [14] 
und Obert [10] ) umformen, so entsprechen deren relativen Minima stabile 
Lösungen. Die Äquipotentialfläche dieses Potentials soll Verzweigungsener-
gie genannt werden. 

SATZ 5.5 (Stabilität und Symmetriegruppe). Es sei unter den Vorausset-
zungen von Satz 5.3 (Ao, xo) e 2 n stabiles (instabiles) Lösungselement vom (1) 
und G kovariant bzgl. Q mit den Darstellungen T und S. Gilt T ist kommu-
tierend mit L undTg-iSg = I, so ist auch (Xo,Tgxo) ein stabiles (instabiles) 
Lösungselement von (1). 

B e w e i s . Zur Untersuchung der linearen Stabilität der Lösung Tgxo ist 
die Evolutionsgleichung (2) an der Stelle Tgx0 zu untersuchen. Das ergibt 

uLip = Gx(X0,Tgx0)<p. 

Nach 3. in Folgerung 2.1 ergibt sich daraus 

wL<p = SgGx(Xo,xo)Tg-i(p. 
Nach Substitution von (p = Tg-np und den Voraussetzungen über Tg und 
Sg erhält man 

uLtp = Gx(X0,x0)<p, 
d.h. die Linearisierung der Evolutionsgleichung zur Untersuchung der Sta-
bilität der Lösung x. 

B e m e r k u n g 5.6. Die Voraussetzungen über T und S sind z.B. für 
unitäre Operatoren Tg (z.B. Spiegelungen) erfüllt. 

6. Beispiele 

BEISPIEL 6 . 1 (Knickstab). Für einen in Längsrichtung belasteten Stab 
läßt sich nach Kosel [6] folgende Randwertaufgabe aufstellen: 

-7-[a(5)-7-a(s)] = -P sin a(s) 
ds ds 

mit a'(s) = 0 ,a ' ( l ) = 0. Dabeiist a(s) der Anstieg der zu bestimmende Bie-
gelinie in Abhängigkeit von der Bogenlänge s. Die Größen a(s) und P sind 
durch die s.g. Biegesteifigkeit (sie soll im weiteren konstant angenommen 
werden) und die Belastung bedingt. Die Randbedingungen ergeben sich aus 
der Einspannung des Stabes und würden für die Biegeline y(x) bedeuten 
y(0) = »(1) = 0. 
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Dieser Randwertaufgabe ist mit der verallgemeinerten Greenschen Funk-
tion 

w , ( U 2 - s + h 2 + 7 für t < s 
K(s, t ) = { ? 2 3 

v ' ( U 2 - t + \t2 + i für s < t 

der Hammersteinschen Integralgleichung 
l 

a ( s ) = \ f K(s, t ) s i n a(t)dt 

o 
äquivalent, die im Raum L2[0,1] betrachtet werden kann. Durch Linearisie-
rung ergibt sich daraus der Operator 

l 
B = I - A f K(s, t ) • dt, 

o 
der ein Fredholmoperator vom Index 0 ist. Seine Eigenwerte A^ = k2ir2 

sind einfach und die zugehörigen normierten Eigenfunktionen sind ipk = 
\/2cos kirs. 

Als Kovarianzgruppe kann man Zi = { 1 , - 1 } mit der Multiplikation der 
beiden Elemente finden. Zugehörige Darsrtellungsoperatoren sind 

Ti : o. —> a; T_i : a —> —a 

und 
S\ : G —> G\ S—i : G —• —G. 

Die für dieses Problem aufgestellte Verzweigungsgleichung entsprechend der 
Ljapunov-Schmidt-Reduktion (s. Kap. 4) hat die Gestalt 

0.101321, , 0.025. , , 0.07 
0 = ; 6u + 0.25u3 + —;—6n - 0.023u5 - - — + . . . 

k K k 

mit dem Verzweigungsparameter 6 := Ao — A (vgl. Kosel [6]). Sie 'erbt ' ent-
sprechend Satz 5.4 die Kovaranzeigenschaft und ergibt entsprechend Satz 
5.5 Aussagen über die Stabilität gegenüber Störungen durch Eigenvektoren 
höherer Eigenwerte der Bifurkationslösungen. Sie hat ein Potential (eindi-
mensionaler Fall). Die Äquipotentialfläche ist in Abbildung 1 dargestellt. 

Die Darstellung erfolgt im Fenster - 0 . 2 5 < 6 < 0.25 
—0.25 < y < 0.25. Die Fläche wurde zur Erkennbarkeit 

Abbildung 1 der Verhältnisse mit dem Faktor 500 erhöht. 
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Die triviale Lösung u = 0 ist als Minimum bis 6 = 0 (bis etwa Mitte der 
Graphik) erkennbar und enspricht einer stabilen Lösung. Darüber hinaus 
sind 3 Lösungen erkennbar. Die triviale Lösung als relatives Maximum, en-
spricht einer instabilen Bifurkationslösung, und 2 nichttriviale Lösungen als 
Minima, ensprechen stabilen Lösungen. Das paarweise Auftreten entspricht 
den Symmetrieeigenschaften. 

BEISPIEL 6.2 (Elastischer Ring). Die elastische Linie eines von außen 
durch Druck p belasteten in seiner Ruhelage "kreisförmigen Ringes wird durch 
die Minima des Funktionais (Energie des Ringes) 

2tt 
V(>) = f (k(s) - l)2 + ^(x(s)y(s) - x(s))y(s) ds 

bestimmt. Dabei ist k(s) die Krümmung der Biegeline (z(.s), y{$)) ihre Ko-
ordinatendarstellung sowie s die Bogenlänge. Der Krümmung k(s) = 1 ent-
spricht also die Ruhelage. Das Problem ist äquivalent der Aufgabenstellung 
zur Bestimmung von v(s) := k(s) — 1 mit der Differentialgleichung 

ü(s) + Xv(s) = -ßv2(s)(v(s) + 3), 

den Randbedingungen 

v(0) = U(2tt), ¿(0) = Ü(2TT) 

und der Nebenbedingung 
2 TT f v(s) ds = 0. 

0 
ß ist ein zubestimmender Parameter und A ein Parameter der durch den 
Druck p bestimmt ist und die Verzweigung der Lösungen bewirkt. Für die 
Herleitung er Aufgabenstellung und Lösung vergleiche Kosel [7]. Die Unter-
suchung wird in L2 [0,2ir] geführt. Als Kovarianzgruppe kann die additive 
Gruppe von R gewählt werden. Im obigen Problem ist die Darstellung T 
eine Verschiebung im Argument von v(s) und die äußere Darstellung S ist 
die identische Abbildung. 

Als Eigenwerte des linearen Bestandteils ergeben sich Afc = k2. Sie 
sind 2-fach mit den Eigenfunktionen = cos ks und = 

sin ks. Werden beide Verzweigungsparameter zu einem komplexen Pa-
rameter zusammengefaßt und die Eigenfunktionen zu Vk(s) = 2^e 'kSi s o 

erhält man mit dem Parameter /u := (A — k2)3*™+1j die Verzweigungsglei-
chung 

0 = ßz + z2z + .. 
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Die Darstellungsoperatoren in der Verzweigungsgleichung sind TT und be-
deuten Multiplikation mit etT und Multiplikation mit el(p. Die Verzwei-
gungsgleichung besitzt ein Potential 

v = ^(x2 + y2) + \(x2 + y2)2 + . . . 

Es sind die Voraussetzungen von Satz 5.4 und Satz 5.5 erfüllt. Die Verzwei-
gungsgleichung und damit das Potential erbt die Kovarianzeigenschaft und 
ihren relativen Minima entsprechen die gegenüber Störungen durch Eigen-
vektoren höherer Eigenwerte stabilen Bifurkationslösungen. In Abbildung 2 
ist die Äquipotentialfläche für fi < 0 dargestellt. 

Die Darstellung erfolgt im Feilster \z\ < 0.5. Die Fläche 
wurde zur Erkennbarkeit der Verhältnisse mit dem 

Abbildung 2 Faktor 500 erhöht. 

Es gibt ein Minimum, dem die stabile triviale Lösung entspricht. 
In Abbildung 3 ist die Äquipotentialfläche für ß > 0 dargestellt. 

Die Darstellung erfolgt im Fenster \z\ < 0.5. Die Fläche 
wurde zur Erkennbarkeit der Verhältnisse mit dem 

Abbildung 3 Faktor 500 erhöht. 

Es gibt ein ringförmiges relatives Minimum, dem die nichttriviale 
Lösung, d.h. die entsprechende Biegeline des Ringes entspricht. Sie ist 
stabil und zu erkennen ist die Symmetrieeigenschaft der Aufgabe. Weiter 
ist ein relatives Maximum zu erkennen, dem die instabile triviale Lösung 
entspricht. 

B E I S P I E L 6.3 (Kanalströmung). Es wird die Geschwindigkeit u = 
(u, v, w)T der Strömung einer zähen Flüssigkeit in einem waagerecht lie-
genden Kanal 

K := { ( x , y, z) : [0, a] X [0, h] X ( - o o , o o ) } , 

Verzweigungsenergie 
des e las t i schen R inges 

Verzweigungsenergie 
des e las t ischen R inges 
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und dem Temperaturfeld t G ( - 0 0 , 0 0 ) bedingt durch eine Temperatur-
differenz t\ — ¿2 an Ober- und Unterseite betrachtet . Für Voraussetzun-
gen und Annahmen für das mathemat ische Modell bestehend aus den sta-
t inären Navier-Stokes-Gleichungen, Energie- und Massebilanz sowie Rand-
bedingungen vergleiche m a n Kosel und Röhlig [8]. Das Problem wird zu 
einem ebenen Problem in der Querschnittsfläche des Kanals entkoppelt , 
und es ergeben sich die Bifurkkationslösung zur Ruhelage der Strömung 
u = 0 ,u = 0 und S = /1 — cy im Raum E = Ha x Ha x Ha mit 
Ha = L2{5l)r\C2+P[Sl],ß e (0 ,1) , fi = {(ar,y) : [0,o] x [0 ,h]} quellfreier 
Funktionen u, v aus den Gleichungen 

rjAu — uux — vuy = 0, 

rjAv — uvx — vvy + gaS 0, 

kA«5 — uöx — vSy -f cy = 0. 

Der Operator G entsprechend den allgemeinen Bezeichnungen ist aus der lin-
ken Seite dieser Gleichungen durch Projekt ion in den Raum der quellfreien 
Funktionen zu bestimmen. Es ist S = t —+ cy die Temperaturabweichung. 
Für die vorkommenden Konstanten vergleiche man [8]. Die Quellfreiheit 
wird durch ensprechende Ansätze für die Funktionen erreicht (vergleiche [8]). 
Das Problem ist kovariant bezüglich der Gruppe Q = Z2(0) Z2, Z2 = {—1,1} 
wie in Beispiel 6.1 und elementweiser Multiplikation, mit den unitären Dar-
stellungen R,S,T, wobei R2 = S2 = T2 = I,RS = SR = T,RT = TR = 
S,ST = TS = R gilt. Die inneren Darstellungen (Transformation durch 
Tg) sind Ri,ShTi 

Riu(x,y) = -u(a - x,y) 

Riv(x,y) = v(a-x,y) 

RiS(x,y) = S(a- x,y) 

Siu(x,y) = u(x,h-y) 

Siv(x,y) = -v(x,h- y) 

SiS(x,y) = -6(x,h- y) 

Tiu(x, y) - — u(a — x,h — y) 

Tiv(x, y) = -v(a - x , h - y ) 

TiS(x, y) = -8(a - x , h - y). 

Die äußeren Darstellungen (Transformation durch Sg in Matrizendarstel-
lung) sind: 

/ - I 0 0 \ / I 0 0 \ / I 0 0 \ 
Ä a = 0 1 0 , Sa = 0 - 1 0 , Ta = 0 1 0 . 

\ 0 0 1 / \ 0 0 1 / \ 0 0 - 1 / 
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Durch den A n s a t z für die Quellfreiheit kann die äußere Transformat ion auch 
durch Tg realisiert werden. D a m i t sind die Voraussetzungen von Satz 5 . 4 
und Satz 5 . 5 erfüllt. F ü r eine detailierte B e t r a c h t u n g sei a u f [8] bzw. [11] 
verwiesen. 

Ergebnis für die S t römungen, die als Zirkulationen in der Querebene zum 
K a n a l auf t re ten (Konvektionsrollen) sind: 

• Transformat ionen durch R sind Spiegelungen an der Achse x = f und 
U m k e h r u n g der Drehrichtung. 

• Transformat ionen durch S sind Spiegelungen an der Achse y — £ und 
U m k e h r u n g der Drehrichtung. 

• Transformat ionen durch R sind Spiegelungen an der Achse x — f und 

y = j und Beibehal tung der Drehrichtung. 
Gegenüber allen diesen Transformat ionen sind die auftretenden St römungen 
gleichzeitig stabil oder instabil gegenüber Störungen durch Eigenvektoren 
höherer Eigenwerte . 
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