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Die Arbeit beschiftigt sich mit stationdren Bifurkationsproblemen fiir
nichtlineare Gleichungen in Banachridumen. Dabei werden besonders Sym-
metrieeigenschaften des Problems betrachtet und Stabilitdt der Bifurkati-
onslosungen untersucht. Mit Hilfe der Ljapunov-Schmidt-Reduktion wird
die Untersuchung ins Endlichdimensionale verlagert. Damit kann, zumin-
dest fiir ein- bzw. zweidimensionale Bifurkationen, eine gewisse Veranschau-
lichung der Bifurkation und ihrer Stabilitdt bzw. Instabilitat erreicht wer-
den. Dies soll u.a. im Begriff der Verzweigungsenergie zum Ausdruck kom-
men.

1. Bifurkationsprobleme
Es sollen Lésungsmannigfaltigkeiten fiir Gleichungen der Form

(1) G(M\z)=0, G:AXE-F,
A Parameterraum (R oder C), E und F Banachrdume, (Ag,zo)
Losungselement, d.h., Ag € A,z € E und
G(Ao,xo) = 0,
betrachtet werden.
DEFINITION 1.1. (Mg, o) heiBt Bifurkationspunkt der Gleichung (1),
falls
1. G(Ao,l‘o) = 0,
2. es gibt Folgen von Losungselementen {(An,Zn)}nen und {(An,¥n)}nen
mit z, # y, fiir fast alle » und lim, 00 (Ar, Zx) = (Ao, To)-

Die Arbeit ist die Darlegung eines Vortrages, der vom Author auf der Tagung *VI th
Symposium on Integral Equations and their Applications’, 6-9 December 1994, Warsaw
University of Technology, gehalten wurde.



822 U. Kosel

Bemerkung 1.1. Allgemein gesagt, bedeutet Bifurkation -eine
Verinderung der Struktur der Mannigfaltigkeit der Losungselemente
von (1). Durch Definition (1.1) wird die sogenannte statische Bifurkation
beschrieben. Demgegeniiber wird fiir Gleichungen

dz

it =G(A 1)

eine dynamische Bifurkation betrachtet. In der Nachbarschaft eines
Losungselementes (Ag, o), der stationdren Lésung, beschreibt sie Erhalt
bzw. Verlust der Stabilitdt der Losungsmenge (Ao, z(t)) bei Anndherung
an Grenzzyklen bzw. beim Ubergang zu oder Entfernung von periodischen
Lésungen, genannt Hopf-Bifurkation. Bei unseren Betrachtungen spielen
solche Bifurkationen nur in Zusammenhang mit Untersuchungen zur Stabi-

litdt (s. Kap. 3) eine Rolle.

2. Symmetrieeigenschaften
Fiir die Beschreibung von Symmetrieeigenschaften werden folgende Be-
griffe und Bezeichnungen benétigt:

¢ E und F sind Banachriaume.

o L(E,E) ist der Banachraum der linearen stetigen Operatoren von E auf
E und entsprechend ist L(F,F) der Banachraum der linearen stetigen
Operatoren von F auf F.

e L(E,E) ist die Gruppe der linearen stetigen Operatoren von E auf E mit
der Hintereinanderausfiihrung als Gruppenoperation und entsprechend
L(F,F).

DEFINITION 2.1. Sei G eine Gruppe.(abstrakte Gruppe). Dann heifit
ein Homomorphismus
T:G— L(E,E)
bzw.
g—T,
Darstellung der Gruppe G auf E , Ty darstellende Operatoren und E Dar-
stellungsraum. T heiflit endlichdimensional, falls dim E < 0o. Entsprechend

S:G— L(F,F)
bzw.
g— Sy
BEISPIEL 2.1. Es sei E = C und G = {¢} die additive Gruppe in R.
Dann ist
Tyz = ze'?

eine Darstellung von G auf C.
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DEFINITION 2.2. Der Operator G heifit symmetrisch beziglich der
Gruppe G (bzw. kovariant), falls Darstellungen T auf E und S auf F exi-
stieren, so dafl firalle ge Gund 2 € E, A € A

G(A\Tyz) = 5,G()\ )

gilt.

FOLGERUNG 2.1. Aus Definition 2.2 kénnen unmittelbar folgende Aus-
sagen gewonnen werden:

1. Ist (Xo,z0) Losungselement von (1), so ist auch (Ag,Tyxo) Losungs-
element von (1).

2. Ist (Ao, z0) Bifurkationspunkt von (1), so ist auch (Ao, Tyzo) Bifurkati-
onspunkt von (1).

3. Ist G(\,z) in (Mo, zo) partiell nach z F-differenzierbar B := G (Ao, Zo),
so ezistiert die Ableitung auch in (X, Tyxo), und es gilt Gz(Ao, Tyzo) =
S¢BTy-1 := By. (vgl. Knobloch [3])

4. E’s gzlt fir zhre Nullrdgume N(By) = Ty(N(B)) und ist B ein Noether-

Operator, so ist auch B, ein Noether-Operator mit gleichen Null- und De-
fektindez.(vgl. Knobloch [3])

DeriniTION 2.3. Es werden
Gy ={9€G,Tyz =1z}
Isotropiegruppe (Fizpunktgruppe) und
G(z):={Tyx:9€G}
Orbit von z beziglich T genannt.

BEISPIEL 2.2. In Beispiel 2.1 ist die Isotropiegruppe gegeben durch Tz =
z, d.h. z = ze'¥ also ¢ = 2kw,k € Z. Der Orbit ist gegeben durch 2z, =
z€'%, z festgehalten, d.h. Kreise.

DEerFINITION 2.4. Ein Bifurkationspunkt (Ag,zo) mit der Eigenschaft
(A0yzn) — (Ao, Zo) wird Schichtverzweigung genannt.

BEISPIEL 2.3. Im Falle eines Eigenwertes bei linearen Eigenwertproble-
men treten Schichtverzweigungen auf. Denn fir G()\,z) = Az — Az und
Az = Aoz ist (z,,A¢) Bifurkationspunkt mit z, = a,z¢,an, — 0, d.h.
Schichtverzweigung.

DEFINITION 2.5. G heifit topologische Gruppe, falls folgende Bedingun-
gen erfiillt sind:
1. G ist eine Gruppe.
2. G ist ein topologischer Hausdorffraum.
3. G — G durch g — g~ ist stetig.
4. G x G — G durch (g, h) — gh ist stetig.
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Eine topologische Gruppe heifit diskret, wenn sie keine Hiufungspunkte
enthalt.

BEISPIEL 2.4. In einem Banachraum E ist L(E,E) eine topologische
Gruppe.

DEFINITION 2.6. T heifit stetige Darstellung der topologischen Gruppe
G auf dem topologischen Raum F, wenn
1. T eine Darstellung von G auf E und
2. E xG — E durch (z,g) — T,z stetig ist.

FOoLGERUNG 2.2. Es gilt:

1. G ist eine diskrete Gruppe genau dann, wenn sie nur isolierte Flemente
enthdlt.

2. Ist ordG = k < o0, so ist G eine diskrete Gruppe.

(Vgl. Knobloch [3].)

SATZ 2.1. Ist G nichtdiskrete topologische Gruppe, ordG;, = k < oo
und T eine stetige Darstellung, so ist (Ao, o) eine Schichtverzweigung (vgl.
Knobloch [3]).

3. Begriff der Stabilitat

DErINITION 3.1. Ein Losungselement (Ao, zo) von (1) heiit linear stabil
beziglich der Evolutionsgleichung

(2) Lz = G(A\2(t), L e€L(EF),
wenn fiir alle Eigenwerte w von
wL(P = GI(’\Oa -TO)‘P,SO € E7

Rew < 0gilt. Es heifit linear instabil, wenn es einen Eigenwert mit Rew > 0
gibt. Gilt die Eigenschaft fiir einen Eigenwert wy und dem dazugehérigen
Eigenelement ¢, so wird sie als relative Stabilitdt (Instabilitdt) beziiglich
der Stérung ¢g bezeichnet.

Bemerkung 3.1.

1. Der Begriff der Stabilitdt kommt durch die Zuordnung einer Evolutions-
gleichung (2) zustande. Diese Gleichung mufl das dynamische Verhalten
des Systems beschreiben. Beziiglich dieser Gleichung wird lineare Sta-
bilitdt untersucht. Man spricht auch von dynamischer Stabiltdt. Es
werden also dynamische Bifurkationen gesucht. Fiir den Begriff der Sta-
bilitat vergleiche man bei Zeidler [15] und Rohlig [11]. Der Fall Rew = 0
mufl gesondert untersucht werden, spielt in unseren Beispielen aber keine

Rolle.
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2. Die aufgestellten Gleichungen werden vielfach nicht von erster Ordnung
sein (z.B. Bewegungsgleichungen bei mechanischen Problemen). In die-
sem Fall ist in ein dquivalentes System erster Ordnung umzuwandeln.

DEFINITION 3.2. Es habe G(A,z) das Funktional V(A,z) als Potential,
d.h. es gilt

-VV(\z)=G(\z).
Dann heiit ein Losungselement (Ao, zo) statisch stabil, falls es V(A,z) ein
relatives Minimum erteilt.

Bemerkung 3.2. Beide Begriffe sind unter gewissen Voraussetzn-
gen dquivalent. Man vergleiche z.B. Réhlig {12]. Dort findet man fiir die
Aquivalenz die Bedingungen:

¢ Die Evolutionsgleichung hat fiir alle Anfangswerte eine Losung.
¢ Die 2. Ableitung an der Stell z¢g von V hat ein vollstetiges Inverses.

4. Ljapunov-Schmidt-Reduktion

Bemerkung 4.1. Die Umwandlung des Bifurkationsproblems fiir die
Gleichung (1) in ein endlichdimensionales Problem geht auf E. Schmidt [13]
und A.M. Ljapunov [9] zuriick. Sie soll hier unter den inzwischen bekannt
gewordenen Namen Ljapunov-Schmidt-Reduktion kurz in eiener verallge-
meinerten Form beschrieben sein. Fiir nihere Ausfihrungen und einer re-
kursiven Berechnug von Bifurkationslosungen vergleiche Kosel [4] und [5].

SATZ 4.1. Unter folgenden Voraussetzungen:

1. B := Gz(Xo,z0) existiert und ist stetig (F-Ableitung),

2. B ist ein Noetherscher Operator mit dem Nullindez a(B) = m < oo und
dem Defektindex B(B) = n < 00

und der Zerleqgung der Rdume in direkte Summen

E=EyoEF,F=FyogF~

mit

(a) ERNN(B) = {0}

(b) B(ER)=FR

(¢)dimEy = M,dmFy =N
und den Projektoren P : E — Ejp; in Richtung ER und Q : F — FE ip
Richtung F ist die Ausgangsgleichung (1) dem System
(3) QG(A’U + ’U) = 0,
(4) (I-Q)G(\u+v)=0

mit u := Pz,v := (I — P)z dquivalent.



826 U. Kosel

Bemerkung 4.2.

1. Es kann E® unter den Bedingungen (a) noch geeignet gewihlt werden.

2. Eine spezielle Zerlegung ist: Ep = N(B) und FE = R(B) (ur-
spriingliche Ljapunov-Schmidt-Reduktion), also insbesondere M = m
und N = n.

3. Von besonderem Interesse ist der Fall, wenn B~! € L(F,E) nicht exi-
stiert, d.h. N(B) # {0}. Nur in diesem Fall k6nnen Bifurkationen

auftreten.

FOLGERUNG 4.1. Die Ljapunov-Schmidt-Reduktion liefert folgendes E'r-
gebnis:
1. Auf die erste Gleichung (3) ist der Satz dber implizite Operatoren an-
wendbar, d.h., es gibt eine lokale Auflosung dieser Gleichung in der Form
(5) v=ov(Au) = (g, w);p == dojw=1u— up.

2. Einsetzen von (5) in die Gleichung (4) liefert die s.g. Verzweigungs-
gleichung. Ihre Bifurkationslésungen u = (p) erzeugen die Bifurkati-
onslosungen des Gesamtproblems in der Form

z = o(p, P(p)) + P(w).

Bemerkung 4.3. Wenn man versucht die Untersuchung auf die Un-
tersuchung des s.g. trivialen Losungselementes (Ag,0) zu transformieren,
wird i.a. eine Symmetrieeigenschaft nicht erhalten bleiben. Denn

SeG(A,z) = SgG (Ao + g, 20 + y) = G( Ao, Tyzo + Toy).

Die Symmetrie beziiglich y wére also nur fiir Tyz¢ = zo gewdhrleistet.

5. Bifurkationsausssagen und Verzweigungsgleichung

Bemerkung 5.1. In diesem Abschnitt sollen Aussagen iiber die Ver-
zweigungslosungen der Gleichung (1) aus der Verzweigungsgleichung (4)
(6) F(A\u):=(I-Q)G(Mu+ ¢(u))=0
getroffen werden. Dazu werden Hilfsmittel zusammengestellt und z. T.
hergeleitet.

Satz 5.1 (Vererbung der Kovarianz an die Verzweigungsgleichung).
(Mo, zo) sei Losungselement von (1), G(A,z) kovariant bzgl. T4, S,, und
es liege die in Satz 4.1 vorgenommene Zerlegung der Rdume vor und T'(G)
sei beschrdnkt, d.h. || Tyl < M; M e RY,g€ . Ist

(7) Gro = G7

so ist
SeF(X\u) = F(X, Tyu)
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Sg¢, Ty Einschrinkungen auf die entsprechenden Unterrdume (vgl. Knobloch
3D).
Bemerkung 5.2. (7) gestattet es das Problem auf G(0,0)

zuriickzufihren.

DerINITION 5.1. Eine Darstellung T heifit reduzibel, wenn es einen
invarianten echten Unterraum U von Ejs gibt, so daaus U C Eps fiirg € G
stets Ty(U) C Ty(Enr) folgt. Anderenfalls wird sie irreduzibel genannt.
Entsprechendes gilt fiir Riume FF und Darstellungen S, (vgl. Boerner [1]).

Bemerkung 5.3. Die Invarianz der Unterridume ist gleichwertig mit
TyP = PTy und $,Q = QS fiir alle g € G.

SATzZ 5.2. Sind die Voraussetzungen fir die Kovarianz der Verzweigungs-
gleichung entsprechend Satz 5.1 erfillt und (A,,u,), n = 1,2,... nichitri-
viale Losungen von F(A,z) = 0 und die auf Epr eingesschrinkte Darstellung
T, irreduzibel, so ist (0,0) Bifurkationspunkt (vgl. Knobloch [3]).

Satz 5.3. Sei E = F Hilbertraum,
G(Ao) = (I +AL)s + ¥(A,), L € L(E, E), ¥(), ) = of|jall), = — 0

und (1) habe den trivialen Losungszweig (A,0). Dann ist die triviale Lésung
genau dann stabil, wenn A < Rew und w betragsmdfig kleinste charakteri-
stische Zahl von —L ist (vgl. Rohlig [11]).

SATzZ 5.4 (Stabilitidt und Verzweigungsgleichung). Unter den Vorausset-
zungen von Satz 5.3 sei

(8) L = G()\,z)

eine Evolutionsgleichung zur Untersuchung der Stabilitdt. FEs gelte QL =
LP. Weiter sei

©) Li = QG(A\,u +v),

linear stabil, d.h. alle Eigenwerte haben negativen Realteil. Dann entschei-
det tdber die Stabilitdt des Bifurkationselementes allein

(10) L= (I- Q)G(\u+0),
d.h. der Anteil aus der Verzweigungsgleichung.

Beweis. Durch Projektion mit @ und (I — Q) erhilt man das zu (2)
aquivalente System
(11) QLi = QG(A, %),
(12) (I-Q)Lé=(I-Q)G(\z)
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Aufgrund der Vertauschbarkeitsregel QL = LP und u = Pz sowie v =
(I — P)z erhdlt man das System bestehend aus den Gleichungen (7) und (8)
und daraus folgt die Behauptung.

FoLGERUNG 5.1. Hat die Verzweigungsgleichung ein Potential bzw. ldft
sich in eine dquivalente Gleichung mit Potential (Vgl. Trenogin u.a. [14]
und Obert [10] ) umformen, so entsprechen deren relativen Minima stabile
Lésungen. Die fiquipotentialﬂ(iche dieses Potentials soll Verzweigungsener-
gie genannt werden.

SATz 5.5 (Stabilitit und Symmetriegruppe). Es sei unter den Vorausset-
zungen von Satz 5.3 (Ao, To) ein stabiles (instabiles) Losungselement vom (1)
und G kovariant bzgl. G mit den Darstellungen T und §. Gilt T ist kommu-
tierend mit L und Ty-18, = I, so ist auch (Ao, Tyzo) ein stabiles (instabiles)
Lésungselement von (1).

Beweis. Zur Untersuchung der linearen Stabilitit der Losung Ty ist
die Evolutionsgleichung (2) an der Stelle Tyzg zu untersuchen. Das ergibt
wle = GI(AO’Tng)LP‘

Nach 3. in Folgerung 2.1 ergibt sich daraus
wL<p = Sng(/\o, il)o)Tg—lQD.
Nach Substitution von ¢ = Ty-1¢ und den Voraussetzungen iiber T, und
Sy erhdlt man
wL@ = G(Ao, 30)957
d.h. die Linearisierung der Evolutionsgleichung zur Untersuchung der Sta-
bilitdt der Losung z.

Bemerkung 5.6. Die Voraussetzungen iiber T" und S sind z.B. fiir
unitidre Operatoren T, (z.B. Spiegelungen) erfiillt.

6. Beispiele

BEisPIEL 6.1 (Knickstab). Fir einen in Langsrichtung belasteten Stab
138t sich nach Kosel [6] folgende Randwertaufgabe aufstellen:

d d .
E[a(s)Ea(s)] = —Psina(s)

mit o/(s) = 0,a/(1) = 0. Dabei ist a(s) der Anstieg der zu bestimmende Bie-
gelinie in Abhiingigkeit von der Bogenlange s. Die Groflen a(s) und P sind
durch die s.g. Biegesteifigkeit (sie soll im weiteren konstant angenommen
werden) und die Belastung bedingt. Die Randbedingungen ergeben sich aus
der Einspannung des Stabes und wiirden fiir die Biegeline y(z) bedeuten

¥(0) = 9(1) = 0.
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Dieser Randwertaufgabe ist mit der verallgemeinerten Greenschen Funk-
tion
1.9 142 31 g
i 58 —s+ st + 5 firt<s
K(s,t)=1 1, Vol
gaf ~lt sttt 2 fars £t
der Hammersteinschen Integralgleichung

a(s) = A j‘ K(s,t)sina(t)dt
0

dquivalent, die im Raum L?[0, 1] betrachtet werden kann. Durch Linearisie-
rung ergibt sich daraus der Operator

1
B=I1-) f K(s,t)-dt,
1]

der ein Fredholmoperator vom Index 0 ist. Seine Eigenwerte Ay = k?x?
sind einfach und die zugehdrigen normierten Eigenfunktionen sind ¢ =
V2cos krs.

Als Kovarianzgruppe kann man Z, = {1, —1} mit der Multiplikation der
beiden Elemente finden. Zugehérige Darsrtellungsoperatoren sind

Th:a—ea, T_1:0— -«
und

SliG—PG; 5_1:G—P—G.
Die fiir dieses Problem aufgestellte Verzweigungsgleichung entsprechend der
Ljapunov-Schmidt-Reduktion (s. Kap. 4) hat die Gestalt

—————_0'10;32161; +0.254° + ————022561;3 - 0.023u° — 0‘—::7
mit dem Verzweigungsparameter § := A9 — A (vgl. Kosel [6]). Sie ’erbt’ ent-
sprechend Satz 5.4 die Kovaranzeigenschaft und ergibt entsprechend Satz
5.5 Aussagen iiber die Stabilitdt gegeniiber Stérungen durch Eigenvektoren
hoherer Eigenwerte der Bifurkationslosungen. Sie hat ein Potential (eindi-

mensionaler Fall). Die Aquipotentialfliche ist in Abbildung 1 dargestellt.

0= s o

Verzweigungsenergie
i den Knicksiab,

Die Darstellung erfolgt im Fenster —0.25 < § < 0.25
= —0.25 < y < 0.25. Die Flache wurde zur Erkennbarkeit
Abbildung 1 der Verhaltnisse mit dem Faktor 500 erhdht.
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Die triviale Losung u = 0 ist als Minimum bis § = 0 (bis etwa Mitte der
Graphik) erkennbar und enspricht einer stabilen Lésung. Dariber hinaus
sind 3 Losungen erkennbar. Die triviale Lésung als relatives Mazimum, en-
spricht einer instabilen Bifurkationslésung, und 2 nichttriviale Lésungen als
Minima, ensprechen stabilen Lésungen. Das paarweise Auftreten entspricht
den Symmetrieeigenschaften.

BEISPIEL 6.2 (Elastischer Ring). Die elastische Linie eines von aufien
durch Druck p belasteten in seiner Ruhelage kreisférmigen Ringes wird durch
die Minima des Funktionals (Energie des Ringes)

27
V) = [ )17+ 2alils) - a()a(s)] s
0
bestimmt. Dabei ist k(s) die Krimmung der Biegeline (z(s), y(s)) ihre Ko-
ordinatendarstellung sowie s die Bogenlinge. Der Krimmung k(s) = 1 ent-
spricht also die Ruhelage. Das Problem ist dquivalent der Aufgabenstellung
zur Bestimmung von v(s) := k(s) — 1 mit der Differentialgleichung

i(s) + Mo(s) = —Bv*(s)(v(s) + 3),
den Randbedingungen
v(0) = v(27),9(0) = v(27)
und der Nebenbedingung

27

f v(s)ds = 0.

: .
B ist ein zubestimmender Parameter und A ein Parameter der durch den
Druck p bestimmt ist und die Verzweigung der Losungen bewirkt. Fiir die
Herleitung er Aufgabenstellung und Losung vergleiche Kosel [7]. Die Unter-
suchung wird in L?[0,2r] gefiihrt. Als Kovarianzgruppe kann die additive
Gruppe von R gewihlt werden. Im obigen Problem ist die Darstellung T
eine Verschiebung im Argument von v(s) und die duflere Darstellung § ist
die identische Abbildung.

Als Eigenwerte des linearen Bestandtexls e1geben sich A\ = k2 Sie

sind 2-fach mit den Eigenfunktionen ¢, )(s) = o cosks und ¢, )(s)
% sin ks. Werden beide Verzwelgungsparameter Zu einem komplexen Pa-

1ks

rameter zusammengefat und die Eigenfunktionen zu vi(s) = so

erhilt man mit dem Parameter p := (A — k2)3(4n’§’:_1) die Verzwelgungsglei-
chung

0=pz+222+..
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Die Darstellungsoperatoren in der Verzweigungsgleichung sind 7', und be-
deuten Multiplikation mit €'™ und S, Multiplikation mit e'¥. Die Verzwei-
gungsgleichung besitzt ein Potential

1
v:%(22+y2}+1(32+y2]2+...

Es sind die Voraussetzungen von Satz 5.4 und Satz 5.5 erfiillt. Die Verzwei-
gungsgleichung und damit das Potential erbt die Kovarianzeigenschaft und
ihren relativen Minima entsprechen die gegeniiber Stérungen durch Eigen-
vektoren hoherer Eigenwerte stabilen Bifurkationslésungen. In Abbildung 2
ist die Aquipotentialfliche fiir 4 < 0 dargestellt.

Verzweigungsenergie
des elastischen Ringes

Die Darstellung erfolgt im Fenster |z| < 0.5. Die Flache
wurde zur Erkennbarkeit der Verhiltnisse mit dem
Abbildung 2 Faktor 500 erhoht.

Es gibt ein Minimum, dem die stabile triviale Losung entspricht.
In Abbildung 3 ist die Aquipotentialfliche fir up > 0 dargestellt.

| Lo

_ Die Darstellung erfolgt im Fenster |z| < 0.5. Die Flache
: wurde zur Erkennbarkeit der Verhiltnisse mit dem
Abbildung 3 Faktor 500 erhéht.

Es gibt ein ringformiges relatives Minimum, dem die nichtiriviale
Lésung, d.h. die entsprechende Biegeline des Ringes entspricht. Sie ist
stabil und zu erkennen ist die Symmetrieeigenschaft der Aufgabe. Weiter
ist ein relatives Mazimum zu erkennen, dem die instabile triviale Losung
entspricht.

BeisPIEL 6.3 (Kanalstromung). Es wird die Geschwindigkeit @ =
(u,v,w)T der Stromung einer zihen Fliissigkeit in einem waagerecht lie-
genden Kanal

K :={(z,9,2):[0,a] x [0, h] X (—00,00)},
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und dem Temperaturfeld ¢ € (—o0,00) bedingt durch eine Temperatur-
differenz t; — t an Ober- und Unterseite betrachtet. Fiir Voraussetzun-
gen und Annahmen fir das mathematische Modell bestehend aus den sta-
tinaren Navier-Stokes-Gleichungen, Energie- und Massebilanz sowie Rand-
bedingungen vergleiche man Kosel und R&hlig [8]. Das Problem wird zu
einem ebenen Problem in der Querschnittsfliche des Kanals entkoppelt,
und es ergeben sich die Bifurkkationslosung zur Ruhelage der Stromung
v = 0,v = 0und § = ¢ — cy im Raum E = H, x H, X H, mit
H, = L:(Q) n C**P[Q],8 € (0,1),Q = {(z,y) : [0,a] x [0,h]} quellfreier
Funktionen u,v aus den Gleichungen
nAu — vuy — vuy =0,
nAv — uvy — vy + gab = 0,
KOS — uby — véy + cy = 0.
Der Operator G entsprechend den allgemeinen Bezeichnungen ist aus der lin-
ken Seite dieser Gleichungen durch Projektion in den Raum der quellfreien
Funktionen zu bestimmen. Esist § = t—¢; + cy die Temperaturabweichung.
Fir die vorkommenden Konstanten vergleiche man [8]. Die Quellfreiheit
wird durch ensprechende Ansatze fiir die Funktionen erreicht (vergleiche [8]).
Das Problem ist kovariant beziiglich der Gruppe G = Z, P Z,, 72, = {-1,1}
wie in Beispiel 6.1 und elementweiser Multiplikation, mit den unitiren Dar-
stellungen R, S, T, wobei R? = §* =T? = I,R§S = SR=T,RT = TR =
S,ST = TS = R gilt. Die inneren Darstellungen (Transformation durch
Tg) sind R,‘, S,‘,Ti
Riu(z,y) = —u(a - z,y)
Rv(z,y) = v(a—z,y)
Rié(z,y) = 6(a - 2,y)
S;u(:c, y) = u(:z:, h - y)
Siv(z,y) = —v(z,h —y)
Sib(z,y) = —b(z,h - y)
Tiu(a% y) = _u(a‘ - mvh - y)
Tiv(z,y) = —-v(a—z,h—y)
T,'(S(.’L‘, y) = —6(0’ -z, h — y)'

Die dufleren Darstellungen (Transformation durch S, in Matrizendarstel-

lung) sind:
0 0
1 0 ].
0 -1

-1 00 1 0 0
R.=| 0o 10}, S.=(0 -10]), T.=
0 0 1 0 0 1

1
0
0
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Durch den Ansatz fiir die Quellfreiheit kann die duflere Transformation auch
durch T, realisiert werden. Damit sind die Voraussetzungen von Satz 5.4
und Satz 5.5 erfiillt. Fiir eine detailierte Betrachtung sei auf (8] bzw. [11]
verwiesen.

Ergebnis fiir die Strémungen, die als Zirkulationen in der Querebene zum
Kanal auftreten (Konvektionsrollen) sind:

o Transformationen durch R sind Spiegelungen an der Achse z = § und
Umkehrung der Drehrichtung.

¢ Transformationen durch § sind Spiegelungen an der Achse y = % und
Umkehrung der Drehrichtung.

o Transformationen durch R sind Spiegelungen an der Achse z = ¢ und

= —;‘— und Beibehaltung der Drehrichtung.
Gegeniiber allen diesen Transformationen sind die auftretenden Stromungen
gleichzeitig stabil oder instabil gegeniiber Storungen durch Eigenvektoren
hoherer Eigenwerte.
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