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1. Introduction

Recently by A.L. Bukhgeim [2] and by J. Janno and the author [5]
existence theorems for globally defined solutions to some classes of one-
dimensional nonlinear Volterra equations of convolution type or with a con-
volution majorant have been derived. The proofs use the contraction prin-
ciple in spaces C' and L, with weighted norms.

Equations of this kind arise in the theory of inverse problems for identi-
fying memory kernels in viscoelasticity and heat transfer [2], [3].

In the present paper such existence theorems are given for solutions in
spaces C' and L, with mixed norms to a related class of equations in n
dimension.

Besides an application to a first kind nonlinear Volterra equation of auto-
convolution type is briefly discussed.

2. Main result
We deal with an operator equation in R*, n > 1, of the type
¢)) u(z) + Gou(z) + K[G1u, Gaul(z) = g(z),
where z=(z1,...,2,)€D=[]1-1(0,X;), 0< X; <00, y=(31,-..,Yn) €D,

Tr

@ KU hlE) = [ [ Ko h@) e - v .. dy.

0
The solution u is sought in C(D) or in the Lebesque space Lp(D), P =

(P1y.-+yPn), 1 < P <00 (i€, 1 <p; £ 00,7=1,...,n) with mixed norm
which is obtained after taking succesively the p;-norm in z;, the p;-norm
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in z3,... the pp-norm in z, (cp. [1]). In particular, for 1 < P < oo (i.e,
1<p;<o00,i=1,...,n) we have

X2 Xa P3 1

e = (oo (J (T @) Haas) - aan) .

Further Gj, j = 0, 1,2, are operators from spaces Lp(D) to Lp, (D), where
P,=P.

In the spaces Lp(D),1 < P < 00, and in C(D) with P = oo we introduce
the equivalent weighted norms

—olz|

ullpo := e ullp, o >0,

where |z| = } 1, z;, which satisfy the relations

(3) lullpe < llullp < e lulpe,

where |X| =31, X;.

Further we define the following set of functions 9 = {M € R} —
R4, M non-decreasing in its arguments}.

Our main result is the following

THEOREM 1. Let 1 < P < 00,1 < P,P» < o0 with 1/Py + 1/P, <
14 1/P and let
GO € (LP(‘D) - LP(D))’ GJ € (LP(D) - LP,’(D))7 ] =1,2,
satisfy Lipschitz conditions of the form

(4)  [Gou ~ Govllp,e < Mo)Mo([|ullp,o llvllpo)llu — 2l P,
(5) IGju - Gjvllpe < Mj([lullpe, lvllpe)llu — vllpe, 7= 1,2,

for all o > o9 > 0, where M; € M, j = 0,1,2, and A is a decreasing
continuous function with A(c) — 0 as ¢ — 0.
Let further k be a measurable function on D x D satisfying the inequality

(6) |k(z,y)] < ko(2)k1(y)ka(z - v),
where

“kOHRoa ”kluRla ”k‘2“R2 < oo,
and Ro,Rl,Rz Z 1 with Ro Z P,

1 1 1 1
) - o<l — =<1, j=1,2
M - m<VETE<b I

(8) L+i.+_1_<1+l_(_1_+i)
Ro Rl R2 P Pl P2 )
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Then equation (1) has a unique solution u € Lp(D) for any g € Lp(D).

The same statement holds in space C(D) with P = oo if Go € (C(D) —
C(D)), G; € (C(D) — Lp,(D)), 1 < P; < o, j = 1,2, and k(z,y) =
ko(z)k1(y)ka(z — y), where ko € C(D), kj € Lp,(D), j =1,2.

COROLLARY 1. The solution u of (1) depends (locally Lipschitz) contin-
uously in the norm || - ||p on the data g. Namely, there holds the estimation

(9) llur — uellp < M(|X|,[|G1m|p,, |Gzl Py, sl |1zl P) - g1 — g2llp

for the solutions u = u; of (1) with g = g;, j = 1,2, where M € R} — Ry
is a non-decreasing function in its arguments.

COROLLARY 2. The statements of Theorem 1 hold true for equation
(10) u+ Gou + F(K[G1u,Gau]) = g,

where G, j = 1,2, and K as in the theorem and F € (Lp(D) — Lp(D))
satisfies the assumptions F0 = 0 and

(11) I1Fu — Follps < M([lullpos [Iollp.o)llu — ollpo

foro > o9 > 0 with M € 9. Moreover, the statements hold true for equation
(1) with finite sum of operators K[Gy xu,G2 xul, k = 1,...,n, where P is
the same for allk =1,...,n.

Before proving Theorem 1 and Corollaries 1,2 in the next section, we
give some preparations for the proof.

At first we state Young’s inequality in the weighted norms. Let 1 <
P,Q,R < oo satisfy the relation 1/P +1/Q = 1+ 1/R. If u € Lp(D),
v € Lo(D), then uxv € Lr(D) and

(12) e *vllro < [lullpollvll.e, @20,

where * denotes convolution, i.e.
T k3]
(uxv)(z) = f ... f u(y)v(z — y)dys . ..dyn.
0 0

This follows from the relation e~?1%l(uxv) = (e=?1%lu)+(e~?1*lv) and Young’s
inequality in the mixed norms (cp. [1], Th. 1).
Further, by Holder’s inequality for 1 < R < P we have the estimations
lullre = lle™"*ullr < [[1llellullp,
and
lullre < lle=¥liglullp, 1/P +1/Q = 1/R,



810 L.v. Wolfersdorf

i.e., for 1 < R < P there hold the inequalities

(13) lullre < A@)ullpo, 1/P+1/Q =1/R,

where
A(Q) — HXil/qi,
i=1
and

(14) lullre < B(Q,0)llullp, 1/P+1/Q=1/R,

where

s =@ (L),

n 1/gi n
p@=11(5)  #0=2

i=1

with (1/¢;)1/% defined as 1 if ¢; = oo.
With the help of the inequalities (12)-(14) we estimate the operator K.

LEMMA 1. Let1 < P<o00,1 < P,P, < oo with1/Py+1/P, <1+1/P
and f; € Lp;, j = 1,2. Further let the assumptions (6)-(8) of Theorem 1 be
fulfilled. Then there hold the estimations

(15) 1KLf, falllpe < Killfillpyollf2llp 0

and

(16)  [|K[f1; folllpo < Ka(o)fellpllfillpy e (Kod = 1,2k # 5)

where K is a positive constant depending on the parameters P, P;, j = 1,2,
R;,1=0,1,2, and X;,i = 1,...,n, only, and K, is a positive function of o
and the parameters P, P;, R; continuous and decreasing in o with Ky(o) — 0
as 0 — oo for fixed values of the parameters.

Proof. By (6), Holder’s inequality and Young’s inequality (12) we have
NKLfs, Falllew < Wkollmollktlfil # kel falll sy
< kollro 151 fill @ o lR2 f2ll Q2.0 < Kollfillsy ol f2lls,0
with
Ky = ||k0”Ro”k1HR1“k2”32?
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where 1/Ro +1/S0 = 1/P with Sp > P > 1since Ry > P, 1/Q1+1/Q2 =
1+1/8,, ie.

1 1 1 1
(n Q1+Q2 P Ry
witthZ1,j=1,2,and1/Rj+1/Sj=I/Qj,i.e.

1 1 1
18 == ——=, j=12,
(18) 5@ B
with @; < R;, = 1,2. From (17) and (18) there follows

1 1 1 1 1 1

(19) §;+S_2—1+F_(R_0+R_1+R—2)'

We now choose positive S;, j = 1,2, satisfying the relation (19) and the
inequalities

(20) S <e<1-—, j=12,

so that the conditions 1 < @; < R; and 1 < §; < P;, j = 1,2, are fulfilled.
In view of (7), (8) such a choice of 5;, j = 1,2, is always possible, namely
by

1 1 1 1 1
@) mx{pFomm)<E

cmnf{i- L Lol (L1, 1)
R’ P P Ry Ry R,
for 51 and correspondingly for 52 with (19).
Finally, applying the inequalities (13) and (14) with R = §;, P = Pj, to
| fills; ,o» we obtain
fills; e < ACADSillP; 0
and
I fills;.c < B(Aj,0)fillp;

where Aj > 0 is given by 1/A; = 1/S; — 1/ P;. This yields the estimations
(15), (16) with

Ky =Ko [] A(4))
and =
K;(o) := Ko max[A(A2)B(A4,0),A(A1)B(A,,0)).
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3. Proof of Theorem 1

The proof follows the lines of the corresonding proof in [5].

a. By the assumptions Gg € (Lp(D) — Lp(D)), G; € (Lp(D) —
Lp;(D)),j =1,2, and Lemma 1 there is

(22) Gou + K[Glu, Gg’u] € (LP(D) — LP(D))

for the spaces Lp(D), 1 < P < oo. For the space C(D) there hold G, €
(C(D)— C(D)), G; € C(D)— Lp;(D)), 1< P; < o0, and

K[G1u,Gau] = ko - (k1G1u * k2 Gau),
where ko € C(D) and
k1Grux koGou € C(D) aswu € Cc(D),

since k1G1u € Lq,, k2Gou € Lq, with 1/Q; = 1/P;+1/R; < 1,j = 1,2,
and

by (7), (8) with P = Ry = oo (cp. [1], 10, Th. 1). Hence also
Gou + K[Glu,Ggu] c (C(E) — C(ﬁ))

b. At first we consider the auxiliary equation

(23) f+Gof =g

By contraction principle we show the existence of a solution to (23) in the
ball Byo(g) = {f : If = gllpo < p}, where p = 2|Gogllp and o > oo is
chosen as a solution of the equation

(24) Aa)Mo(p + llgllpp +l9llp) = €

with some ¢ € (0,1/2]. Due to the assumptions on A a solution ¢ of (24)
exists for any sufficiently small positive €. Further, by (4) and (24) for the
operator Agf := g — Gof of (23) in B, ,(g) we have the estimates

Ao f — Ao fallpe = [|Gofi = Gofallps < A(@)Mo(|| fillp,o )| f1 — follpe
< XNo)Mo(p + llgllpes p + gllpo)llfi = fallpe < ellfi = follpo,
so that Ap is a contraction. Moreover,
l4of = gllpe = IGofllpe < |Gof ~ Gogllp,s + |Goglip,s
< Ao)Mo(p + |lgllpos gl po)Ilf = gllp.o + |Gogllpo
<(e+1/2)p<p,
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so that Ag maps B, ,(g) into itself.

c. Now we are going to show that a unique solution of (1) exists in
the ball B, ,(f) = {v : |lu— fllpo < p} with some p,o, also using the
contraction principle. Equation (1) writes u = Au with the operator Au :=
g — Gou — K[G1u,Gau]. In view of (23) we have

f — Au = K[Gyu, Gau] + Gou — Go f
= K[G1u — G1f,Gau — G2 f] + K[G1f,Gau — G2 f]
+ K[G1u — G1f,Gaf) + K[G1f,G2f] + Gou — Gof.
Making use of the inequalities (15), (16) and (3), we obtain
(If — Aullps < K1||Giu - G1fllp, 0||G2u — G2 fl|p, 0
+ K (o)||G1 S|, |Gou — G2 fllpy0
+ K»(0)||G2 £l P, |Gru — Gi fllpy 0
+ Ky (0)|G1fllp IG2 fll P, + |Gou — Go fllp,o-
Further, by the assumptions (4), (5) we have

f - Aullpe < KaMi([|fllpe + lu— flipe, I fllpo)
XMl fllpo + llu = fllpos [ fllpo)u = fllba
+ K2 (o) [lIG1fllpy Ma(ll fll po + Nz = fllpos I f Il Po)
+ |Gl e Mi([| fllpe + llu = fllpo, 1 fllPe)]lle = fllpe
+ K3(0)||G1 £, |G2 f I P,
+ AMo)Mo(|| fllpe + llw = fllpos 1 fllpo)lle = fllpe-

Now we choose p; > 0, o1(p) > 0¢ such that

E:My([Flle + o5 1l ) Me(li fllp + o, (IFllP)p < @, e € (0,1),
K (o)IG1 fllp, Ma (| F 1l + 25 |1l P) + G2 fll e My (Il fllp + 5 [1£1]P))e
+ K2 (o)lIGL P |G S P, + A(0)Mo([Iflp + 2, 1 fllP)p < (1 — @)p

provided p < p; and ¢ > 01(p). On account of M; € M, j = 0,1,2, then
(25) |/ — Aullps < p

ifu € Byo(f), p < p1and o > 01(p). Le., A maps the ball B, ,(f) into
itself.
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For the difference of the operator A we write
Auy — Auy = K[Gruy, Gouy) — K[Ghuy, Gouy] + Gouy — Goug
= K[Gyus - Giuz, Gauy ~ G2 f]
+ K[Giu; — Grug, G2 f] + K[Ghup — G1f, Gaup — Gaug)
+ K[G1f,Gau1 — Gaua] + Gouy — Gous.
Estimating as above, for u;,u; € B, ,(f), we obtain
||[Auy — Auz||p,o
< {AMi(\fllpo + 2, 1 FPo + P)ELM: (|| fllPe + 2, [ fllPo)p
+ K (o)||G2fllp] + Mo (| fllpo + 2, 1 fllPe + p)
X [ExMi([|fllpe + 2, I Fllpo)p + K2(0)[|G1 fllp,)

+ A(o)Mo(|| fllpe + p. I fllPe + P)Hlur — w2lpe, & 2> 00.
We choose ps > 0, 02 > 04 such that

Mi([lflle + o, I7llp + ) EL Mo ([ F1] P + o, | fllP)p + K2(a)| G2l p,]
+ Ma(||fllp + o, I Fllp + PELMi(IIFll 2 + 2, (| fllp) + Ko (o) Ga fll P,
+ Ma)Mo(|l fllp + o, 1 fllp+p) S <1

provided p < ps2, 0 > 03. Then
(26) |Auy — Aus||po < pllur — uzllpo

if 4y, uz € By (f) and p < pa, 0 2 0.

The estimations (25), (26) show that the operator A is a contraction in
B, +(f) with p < p3 = min{p1,p2}, ¢ > 03(p) = max{o1(p),02}. Hence
equation (1) has a unique solution in every ball B, ,(f) with p < p3, ¢ >

a3(p)-

d. It remains to prove the uniqueness of the solution in the whole space
Lp(D), 1< P < oo (inclusively C(D) for P = o). For this aim let u be an
arbitrary solution of (1) in Lp(D). From equations (1) and (23) we have

u— f=Gof — Gou — K[Glu,qu].
Estimating the right-hand side by means of (4) and (16) with (3), we deduce
the inequality
lu = flipe < A)Mo(l| fllp, llullp)llw = flipe
+ K2(0)[|Grull p, |G| p, -
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Since A(0), K2(0) — 0 as ¢ — oo, this implies
|l — fllpe — 0 as o — oo.

This means, any solution v € Lp(D) of equation (1) belongs to some ball
B, o(f) with p < p3 and sufficiently large o > 03(p),in which the uniqueness
of the solution has already been shown.

Theorem 1 is completely proved.

To prove Corollary 1let u; € Lp(D) be the solution of (1) for right-hand
side g; € Lp(D), = 1,2. Then

Uy — Uz = g1 — 92 + Gous — Gouy
+ K[Gyuz,Gauz] — K[G1uy, Gauq]
= g1 — g2 + Gouz — Gouy
+ K[Gyuz — Gru1, Gauz] — K[Ghu1, Gouy — Gaug).

Hence by (4), (16) and (5) we have

llur — vzllpe < [lg1 — 921lP.0 + {AMe)Mo(llu1llpe, |2l pe)
+ K2 (0)[l|Grua || P, Ma(||us || pos w2l o)
+ |G2us || p, Mi([Jua || po v || o THIu1 — u2llpo
from which taking o sufficiently large and using M; € 9, j = 0,1,2, and
(3) the estimation (9) follows.
The proof of Corollary 2 is obvious.

Remark. As it can be seen from the proof, the assertions of Theorem 1
hold true for general equations of form (1) with G;, 7 = 0,1,2, as in the
theorem and with a bilinear operator K € (Lp, (D) x Lp,(D) — Lp(D))
which fulfills the estimations (15), (16).

4. Volterra equation of first kind
We apply Theorem 1 to the first kind two-dimensional Volterra equation
of auto-convolution type

Iz I3

(27) [ [ w@)(z - y)dy dys = f(2),

where z = (z1712L€ D= (O,Xl) X (0’X2)a y= (yl,y2) € D> f € CI(E)
WIt_}_l_ f.‘n.z‘z € C(D) or LP(D)) P = (P17P2)a 1 < p1p2 £ o0, and v €
C(D) N Cy(D) is the solution of the Darboux problem (cf. [4], Chap. 14)

(28) Lv(zy,22) = vzygp + a(z)vg, + b(2)vg, + ¢(z)v = F(z,u(z)) in D
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with the initial conditions
(29) v(21,0)=¢(z1)in 0 <23 < X1 v(0,22) = YP(z2) in 0 <z < Xs.

We assume that the coefficients a,b,c € C(D) and the initial data ¢,
are absolutely continuous with derivatives ¢' € L.(0,X1), ¥’ € L.(0,X3),
r > 1, and ¢(0) = ¥(0) = 1. Further, the function F is continuous and
satisfies a (uniform in z) Lipschitz condition with respect to u.

The solution v of (28), (29) can be represented by the Riemann function
R of L (cf. [4], p. 394). Namely, we have

T2 I

(30)  w(z)=p(z)+¥(z) -1+ [ [ R(z,y)G(y,u(y))dy: dyn,

where
(31) G(z,u) = F(z,u) — h(z)
h(z) = a(2)¢(z1) + b(2)P'(22) + c(z){p(21) + P(22) — 1}.

Differentiating (27) with respect to z; and z,, we obtain the following
second kind integral equation of form (1)

(32) u(z)+ Tu(yl,xZ)‘P,(zl —y)dy + Tu(a’l,yz)lﬁ'(fcz = 32)dy;
+ [ [ u@lPE -y u@ - v) - bz - 3) - Hlul(z - y)ldss dys = g(),
0 0

where g(z) = foyzy() and

2 I

(33)  Hlul(@)=c(z) [ [ R(z,6)G(E u(€))der dt;
0 0

+ a(z)[ f R(z1, 22521, £2)G(21, &25 u(21, £2))
0

T2 I3

[ [ Rer(2, 066 u(©)dba deo)

+b(0)| [ Rlar,z2:6,22)G (61,225 u(Es, 22))
0

r2 1

+ [ [ Ba(a 066 w(©)da der]-
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Equation (32) is equivalent to (27) if the compatibility conditions
(34) f((El,O):OiIlOS.’ElSXl, f(O,CI)g):OiIlOSJ)2SX2

are fulfilled.
To equation (32) Theorem 1 can be applied yielding the following

THEOREM 2. Under the above assumptions about the data a,b,c, F, ¢, 9
integral equation (27) has a unique solution w € C(D) or u € Lp(D),
P = (p1,m), 1 < p1op2 < 00 for any f € C1(D) with foz, € C(D) or
fz12, € Lp(D), respectively, satisfying the compatibility conditions (34).

Sketch of proof. In view of the continuity of the Riemann functon
R and its derivatives R, , R, (see [4], p. 394) and the assumed continuity
and Lipschitz condition of F’ the assumptions on the operators G;, j = 1,2,
in Theorem 1 are fulfilled with P; = P, and the assumptions on the kernel
k with Rg = Ry = Ry = 00. It remains to show that the linear operator Gy
defined by

(35) Gou(z)= j} u(y1, z2)x(z1 — p1)dy = ‘7‘1“(1'1 - y1,22)x(y1)dn
0 0

for given x € L.(0,X;1), > 1, (and the corresponding one with z1,¥;
and z3,y; changed) is an operator in C(D) and Lp(D) and fulfills a Lips-
chitz condition of form (4). But the first property is obvious by the second
integral representation in (35). And the second property follows from the
estimations

T3
[1Got)lco,0 = ess su;l))|e_"(’1+‘”2) f u(y1, z2)x(z1 — ¥1)dy|
z€ 0

£
< esssup [ e 7l |y(y;, 25)|e 1=V x (21 — 1) dyn
z€D
0

X1
|l uflco,o f e~ |x(€1)]dé;
0

IN

1 1/s
<l 1 < Il (2 ol

by applying Hélder’s inequality to the integral over x, where 1/s =1-1/r >
0 and || - || is the norm in L,(0,X;), and
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X2

X1
IGoulleg = ([ ([ emomtert=
0 0

)4 1

1 P1 ;% P2
X l f u(yl,zg)x(zl - yl)dyll d:rl) d.’I)g)
0

Xg X] Ty
< ( fe—apzzz( f ( fe—ayl|u(y1,x2)|e—a(rx—y1)
0 o o0

P2 1

X |x(z1 - y1)|d3/1)p1d171) " d932) "2

P2

X, X,
< ( fe_”pzzz( fe—”plzl|u($1,~’vz)|p1d$1] o
0 0

x | jle_"5l|x(§1)|d§1)mdz2)%
0

1\'* 11
< Il e < e () lulleas 3 +5 =1,

by applying Young’s inequality to the inner integral in the variable z; and
then Holder’s inequality to the integral over x again.

Remarks: 1. In case of constant coefficients a, b, c instead of (32) the
following simpler integral equation can be used:

(36)  w(@)t [ (vl —w)+be(zr — w)ldn

+ f"(xl’w)[w(“ — y2) + ap(z2 — ¥2)]dy2
0

T2 I3

+ [ [ w@F (- y,u(z - y))dy dy2 = Lf(z).
o 0

2. By extending the proof of Theorem 1, in C(D) there can also be
handled problems in which the initial conditions (29) have more general
form

(37) vz, (71,0) = Mz1)u(z1,0) + @o(z1),
(38) v2,(0,22) = p(z2)u(0,22) + Yo(22)
together with v(0,0) = 1. Here A, 9 € L.(0,X;) and p,%o € L.(0,X>),



Nonlinear Volterra equations 819

r > 1. This leads to additional one-dimensional integrals in (32) of the kind

(39) T u(y1, T2) M1 — y1)u(z1 — 0, 0)dy

T2
+ [ (@, 1)u(z2 - 12)u(0,22 — 12)dyz.
0

For these integrals the related estimations’in the proof of Theorem 1 can
be carried out, too. Namely, for instance, there holds

T
I:= max [e=@+22) [ A(zy — g)l|ua(yn,22)l[wa(21 — 91, 0)ldyn]
0

zeD
Ty .
S max [C—Uzz f IA(Il - yl)le_ayli’u,l(yl,;pz)le_a(fl—yl)
z€D 0

X|uz(zq — yl,O)Idw] < néax[e“”&‘lug({l,O)l]
1

X1
xngp:i,x[e"””2 IT;E}X(C—MIIM(M’M)D] f [A(&1)ldér
0

< (IMllieallo,eollu2lla,00

since for the function Us(zy,2;) = e’”(’1+’”2)|u2(z1,z2)| we have Uz(z,,0)
S ma.x,;z Uz((l?l,zg).
Analogously,
I < A(o)|Jurllo,00ll22]loo
with

X,
Ao) = f IA(&1)|e~ % dé; — 0 as o — oo,
0

and

I < A(o)llualloollu2]]o,00
with
1

1/s
— — 0 as o0 — oo,
so

e
Ma(e) =max [ N1 = n)le™ " din < Al
Ty 0
where 1/s=1-1/r > 0.
If only one initial condition is of form (37) or (38), then one can also

work in a space with mixed norm, namely with max-norm in one variable
and with p-norm, 1 < p < oo, in the other variable.
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Moreover, we remark that taking ; = 0 and =2 = 0 into equation (32)
with the integrals (39) in a first step one can determine the functions u(0, )
and u(z,0), respctively, from one-dimensional convolution equations, and
then inserting these functions in the integrals (39) obtain these ones as
additional linear integral operators in equation (32).
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