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1. Introduction 
Recently by A.L. Bukhgeim [2] and by J. Janno and the author [5] 

existence theorems for globally defined solutions to some classes of one-
dimensional nonlinear Volterra equations of convolution type or with a con-
volution majorant have been derived. The proofs use the contraction prin-
ciple in spaces C and Lp with weighted norms. 

Equations of this kind arise in the theory of inverse problems for identi-
fying memory kernels in viscoelasticity and heat transfer [2], [3]. 

In the present paper such existence theorems are given for solutions in 
spaces C and Lp with mixed norms to a related class of equations in n 
dimension. 

Besides an application to a first kind nonlinear Volterra equation of auto-
convolution type is briefly discussed. 

2. Main result 
We deal with an operator equation in Rn, n > 1, of the type 

(1) «(as) + G0u(x) + K[G\u, G2u](x) = g(x), 

where x = ..., xn) G D = 0 < X , < o o , y = (yi,..., yn) G D, 

(2) # [ / i , / 2 ] ( z ) = J . . . Jk(x,y)fl(y)f2(x-y)dyl...dyn. 
o o 

The solution u is sought in C(D) or in the Lebesque space Lp(D), P = 
(pi,...,pn), 1 < P < oo (i.e., 1 < pi < oo, i = l , . . . , n ) with mixed norm 
which is obtained after taking succesively the pi-norm in i j , the p2-norm 
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in x2,... the pn-norm in xn (cp. [1]). In particular, for 1 < P < oo (i.e., 
1 < Pi < oo, i = 1 , . . . , n) we have 

IMIp = ( / • • • ( / ( / H*)\Pld*i) 2 ) 1 1 . . . d x n ) * . 
0 0 0 

Further Gj, j = 0 , 1 , 2 , are operators from spaces Lp(D) to Lp.(D), where 
Po = P. 

In the spaces Lp(D), 1 < P < 00, and in C(D) with P = oo we introduce 
the equivalent weighted norms 

IMIJV : = l | e - * | x | u| |p , * > 0, 

where |x| = xwhich satisfy the relations 

(3) M | p , . < I H I P < ^ I | H | P , . , 

where | X | = ^ = 1 
Further we define the following set of functions VJL = {M € R\ —> 

R+, M non-decreasing in its arguments}. 
Our main result is the following 

T h e o r e m 1. Let 1 < P < 00, 1 < Pu P2 < 00 with 1/PX + 1 /P 2 < 
1 + 1 ¡P and let 

Go € (LP(D) - LP(D)), Gj e ( I p ( D ) -> LP.(D)), j = 1 , 2 , 

satisfy Lipschitz conditions of the form 

(4) ||G0ti - G0v\\P,a < \(cr)M0(\\u\\p<lT, |M|Pi<r)||tt - v\\P<ff, 

(5) \\Gju - Gjv\\p<a < Mj(\\u\\p<(T, — u||pi<r, j = 1 ,2, 

for all a > cr0 > 0, where Mj G 9Jl, j = 0 ,1 ,2 , and A is a decreasing 
continuous function with A (a) 0 as a 00. 

Let further k be a measurable function on Dx D satisfying the inequality 

(6) |fc(®,2/)| < k0(x)k1(y)k2(x - y), 

where 

I N k J N k J N k < 00, 
and RQ,RI,R2 > 1 with RQ > P, 

r ÍLQ i j itj 

1 1 1 M 



Nonlinear Volterra equations 809 

Then equation (1) has a unique solution u G Lp(D) for any g G Lp(D). 
The same statement holds in space C(D) with P = oo if Go G (C(D ) —• 

C{D)), Gj G ( C ( 0 ) ip,.(JD)), 1_< Pj < oo, j = 1,2, and fc(x,y) = 
fc0(x)A;i(2/)A;2(x - t/), where k0 G C(D), i j G LPj(D), j = 1,2. 

COROLLARY 1. T/ie solution u of (1) depends (locally Lipschitz) contin-
uously in the norm || • ||p on the data g. Namely, i/iere holds the estimation 

(9) I K - tt2||p < M(\X\, IIGimllfi, ||G2ii2||p2, ||Ul||p, IMIP) • ||5L - g2\\p 

for the solutions u = Uj of (1) with g = gj, j — 1,2, where M G R\ • R+ 
is a non-decreasing function in its arguments. 

COROLLARY 2 . The statements of Theorem 1 hold true for equation 

(10) u + G0u +F(K[G1u,G2u]) = g, 

where Gj, j — 1,2, and K as in the theorem and F G (Lp(D) —> Lp(D)) 
satisfies the assumptions F0 = 0 and 

(11) ||F« - Fv\\P,0 < M(\\u\\P,||t;||pf<r)||tt - v\\p>(T 

for a > (To > 0 with M G 9Jt. Moreover, the statements hold true for equation 
(1) with finite sum of operators Kk[G\tkU,G2,ku], k = l,...,n, where P is 
the same for all k — 1,... ,n. 

Before proving Theorem 1 and Corollaries 1,2 in the next section, we 
give some preparations for the proof. 

At first we state Young's inequality in the weighted norms. Let 1 < 
P,Q,R < oo satisfy the relation 1/P + 1/Q = 1 + l/R. Hue LP(D), 
v G Lq(D), then u * v G Lr(D) and 

(12) ||«*v|k<r<IH|pf<,|M|gfff, CT>0, 

where * denotes convolution, i.e. 
Xn X\ 

(u*t>)(x)= J ... f u{y)v{x-y)dy\...dyn. 
o o 

This follows from the relation e~"^(u*v) = (e-<Tlxlu)*(e_<Tl:rlv) and Young's 
inequality in the mixed norms (cp. [1], Th. 1). 

Further, by Holder's inequality for 1 < R < P we have the estimations 

IHk«r = ||e-'W«||H<||l||glM|p,, 

and 

I H k . < ||e-^||g|H|p, 1/P+ 1/0 = 1/*, 
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i.e., for 1 < R < P there hold the inequalities 

( 1 3 ) IMIr,<t < A{Q)\\u\\P^, l / P + l / g = l/R, 

where 

A(Q) = f[xl»', 
2 — 1 

and 

(14 ) IM|k,<t < B(Q,(T)\\U\\P, 1/P+1/Q = 1/R, 

where 

B(Q,a) = B0(Q)[-) , 

n / 1 \ x / q i n 1 

with (l/g,)1/9' 
defined as 1 if qi = oo. 

With the help of the inequalities (12)-(14) we estimate the operator K . 
L e m m a 1 . Letl < P < oo, 1 < P i , P 2 < oo with 1 / P j + 1 / P 2 < 1 + 1 / P 

and f j G j = 1,2. Further let the assumptions (6)-(8) o/ Theorem 1 be 
fulfilled. Then there hold the estimations 

(15) ||A'[/1,/2]||p,CT</i'1||/1||p1,.||/2||p2,. 

and 

( 1 6 ) \\K[fuf2]\\p,c < ^ ( « O I I A I M / i l l ^ (k,j= 1 , 2 ; M i ) 

where K\ is a positive constant depending on the parameters P, PJ, j = 1,2, 
i2l, I = 0 ,1 ,2 , and X,-, i = 1 , . . . , n, orc/y, and /¿"2 is a positive function of a 
and the parameters P , P j , continuous and decreasing in a with /v"2(o") —• 0 
as a - * oo /or fixed values of the parameters. 

P r o o f . By (6), Holder's inequality and Young's inequality (12) we have 

IWi,/2]||p,. < I N k l N / i | * M / 2 | | | s 0 , , 

< PollRoll^/lllQ^II^/illQ,,. < KoWMSiMWs,,* 

with 

tfoHIMklNklNk, 
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where 1 /R0 + 1/S0 = 1 /P with S0 > P > 1 since R0 > P, l/Qi + I/Q2 = 
1 + 1/So, i.e. 

1 1 , 1 1 
< 1 7 ) oT + O7 = 1 + P - % 
with Qj > 1 , j = 1,2, and 1/Rj + l / S j = 1/Qj, i.e. 

j j j 

with Qj < Rj, j = 1,2. From (17) and (18) there follows 

(19) — + — - 1 + - - f — + — + — 1 
Si S 2 P \Ro R\ R2 J 

We now choose positive Sj, j = 1,2, satisfying the relation (19) and the 
inequalities 

(20) - ¿ - < ^ - < 1 - - ^ , j = 1,2, 
r j O j It j 

so that the conditions 1 < Qj < Rj and 1 < Sj < Pj, j = 1,2, are fulfilled. 
In view of (7), (8) such a choice of Sj. j = 1,2, is always possible, namely 
by 

i l l l 1 1 l 
<21> — { f t ' ? - : * - 5 ^ 5 7 

for Si and correspondingly for S2 with (19). 
Finally, applying the inequalities (13) and (14) with R = Sj, P = Pj, to 

\\fj\\sjta, we obtain 

| | / j | | sy ,a < A(Aj)\\fj\\pjit7 

and 

\\Msh<, < B ( A j , a ) \ \ f j \ \ P n 

where A j > 0 is given by 1/A j = 1 /Sj — 1 / Pj. This yields the estimations 
(15), (16) with 

2 

j=1 
and 

K2(<7) := 7iTomax[A(A2)fl(A1,i7),A(A1)5(A2,a)]. 
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3. P r o o f o f T h e o r e m 1 
The proof follows the lines of the corresonding proof in [5]. 
a. By the assumptions G0 6 (LP(D) LP(D)), Gj € (LP(D) 

L p j ( D ) ) , j = 1 ,2 , and Lemma 1 there is 

(22) G0u + K[Glu,G2u) e (LP(D) LP(D)) 

for the spaces LP(D), 1 < P < oo. For the space C(D) there hold Go £ 
(C(2?) C ( £ ) ) , Gj e C(D) LPj(D)), 1 < Pj < oo, and 

G2«] = fco • {k\G\u * kiGiii), 

where ko G C(D) and 

fciCritt*^^« € C(D) as t i e C ( f l ) , 

since fciGiu € LQ1, k2Giu £ LQ2 wi^l/Qj = 1 / P j + 1/Rj < 1, j = 1 ,2 , 
and 

J _ J _ - J _ J _ J _ J _ 1 
Qi + 0~2 ~ Ri + R~2 + Pi + Pi < 

by (7), (8) with P = R0 = 00 (cp. [1], 10, Th . 1). Hence also 

G0U + K[G\u, G2U] e (C(D) C(D)). 

b. At first we consider the auxiliary equation 

(23) f + G0f = g. 

By contraction principle we show the existence of a solution to (23) in the 
ball BPt<7(g) = {/ : ||/ - g\\Pi<r < p}, where p = 2||G,

0fif||p and a > a0 is 
chosen as a solution of the equation 

(24) X(cr)Mo(p + \\g\\p,p+\\g\\P) = e 

with some e 6 (0 ,1 /2] . Due to the assumptions on A a solution a of (24) 
exists for any sufficiently small positive e. Further , by (4) and (24) for the 
operator Aof := g — Gof of (23) in BPt<x(g) we have the estimates 

P o / l - Mh\\p,„ = IIG0/1 - Go / 2 | | p , , < A(a)Aio(| | /l | |p ,<r) | | / l - f2\W 

< \(<T)M0(P+ \\g\\PTA,p+ \\g\\p,.)\\fi - h\\p,, < e\\h - H\\p,*, 

so t h a t Ao is a contraction. Moreover, 

Hof - g\\p,c = \\Gof\\p,<7 < \\Gof - G0g\\p,a + \\G0g\\P,a 

< X(a)M0(p + |M|p ,„ \\g\M\\f - g\\p,a + \\G0g\W 

< ( £ + 1 / 2 ) p < p, 
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so that Aq maps BPt<T(g) into itself. 
c. Now we are going to show that a unique solution of (1) exists in 

the ball B p , a ( f ) = {u : ||u — /||p,<7 < p} with some p, cr, also using the 
contraction principle. Equation (1) writes u — Au with the operator Au := 
g — Gqu — K[G\U, G2u]. In view of (23) we have 

f - A u = K[Gw, G2u} + G0U - G0f 

= K[G\u - G1f,G2u - G 2 f ) + K[Gif,G2u - G 2 f } 

+ K[Gw - G i f , G 2 f ] + K [ G \ f , G 2 f ] + G0u - G 0 f . 

Making use of the inequalities (15), (16) and (3), we obtain 

11/ - Au\\PtV < K^Gm - Gif\\pli(r\\G2u - G2f\\p2t(T 

+ K2(<T)\\G1f\\Pl\\G2u-G2f\\pa,v 

+ K2(<T)\\G2f\\P2\\G1u-G1f\\Pli. 

+ K2(a)\\Gif\\p1 \\G2f\\p2 + | | G o « - G0f\\P,a. 

Further, by the assumptions (4), (5) we have 

11/ - Au\\P, < KMiWfWp,« + ||tt - f\\P>a, \\f\\P,a) 

xM2( | | / | |P i ( r + ||tt - /||P,CT, | | / | | P , . ) | | U - / | | 2 P , . 

+ /i2(a)[| |G1/ | |p1M2(| |/ | |p,<7 + ||tt - / | | P , a , II/UP,,) 

+ l l ^ / l l p . M i d l / H p , , + ||U - /||Pi<7, | | / | M ] | | u - f \ \ P , 

+ A - 2 ( < 7 ) | | G 1 / | | P 1 | | G 2 / | | P 2 

+ A ( < T ) M O ( | | / | | P ) < 7 + ||U - / | | P i „ | | / | |p,.) | |U - f\\p,a-

Now we choose p\ > 0, (?\{p) > Co such that 

A'iMxdl/Hp + p, | | / | | P ) M 2 ( | | / | | P + p, \\f\\P)p < a, a E ( 0 , 1 ) , 

^2(cr)[ | |G1/ | |p1M2( | | / | |p + p, II /Hp) + ^ (11/Hp + />, \\f\\P)]p 

+ K2(a)\\Gif\\p1 | | G 2 / | | P 2 + A ( < R ) M o ( | | / | | p + p, \\f\\P)p < ( 1 - a)p 

provided p < pi and a > <Ti(p). On account of Mj G 9JT, j = 0,1,2, then 

( 2 5 ) | | / — Au\\Pt(r < p 

if u 6 B p < a ( f ) , p < p\ and a > <xi(p). I.e., A maps the ball B p > a { f ) into 
itself. 



814 L.v. Wolfersdorf 

For the difference of the operator A we write 

Au2 - Aui = K[G\Ui,G2ui) - K[Giu2,G2ui] + GqUi - G0u2 

= K[G1u1-G1u2,G2u1-G2f] 

+ K[Gim - GlU2,G2f] + K[GIU2 - G x / , G 2 « i - G2u2] 

+ A - [ G i / , G 2 t t i - G2U2] + G 0 « i - G0U2. 

Estimating as above, for u\,u2 € Bp^(f), we obtain 

||i4«i - Au2\\Pt(, 

< {M^W/UP,* + P, II/IIp,. + p)[K,M2{\\f\\p,° + P, \\f\\p,«)P 

+ K2(a)\\G2f\\P2] + M2{\\f\\p,° + p, H/IIp,, + p) 

x [KiMi(\\f\\pt<7 + p, \\f\\P,a)p + K^WGJWP,] 

+ X(a)M0(\\f\\p,a + P, \\f\\p,c + P)}IK - u2||p,a > a 0 . 

We choose p2 > 0, a2 > GQ such that 

M ^ H / H p + p, ||/||p + P)[KxM2[\\f\\p + P, \\f\\p)P + ^2(^)||G2/||p2] 

+ M2(||/||p + p, ||/||p + p)[KiMi(\\f\\p + p, \\f\\P)p + A'2(a)||Gi/||p,] 

+ A(<t)Mo(||/||p + p, ||/||p + p) < ^ < 1 

provided p < p2, a > a2. Then 

(26) \\Aui - Au2\\Pi<r < /¿||ui - u2||p,<r 

if ui,u2 e BPttr(f) and p < p2,a> a2. 
The estimations (25), (26) show that the operator A is a contraction in 

Bp ,<t( / ) with p < ps = min{/9i , /9 2 } , <r > cr3(p) = m a x { a i ( p ) , a 2 } . Hence 
equation (1) has a unique solution in every ball BPt<r(f) with p < p^, cr > 
<?3 (p)-

d. It remains to prove the uniqueness of the solution in the whole space 
Lp(D), 1 < P < oo (inclusively C(D) for P = oo). For this aim let u be an 
arbitrary solution of (1) in Lp(D). From equations (1) and (23) we have 

u — f = Gof — GQU — K[G\U, G2u]. 

Estimating the right-hand side by means of (4) and (16) with (3), we deduce 
the inequality 

11« - /||p,<7 < A(<r)Mo(||/||p, |M|p)lh - f\\p„ 

+ tf2(cr)||G'lii||p1||G'2«||p2. 
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Since \(<7),K2((t) —> 0 as a —• oo, this implies 

- f\\p,a —> 0 as a oo. 

This means, any solution u G Lp(D) of equation (1) belongs to some ball Bp,a{f) with p < pz and sufficiently large a > 03(p), in which the uniqueness 
of the solution has already been shown. 

Theorem 1 is completely proved. 
To prove Corollary 1 let Uj E Lp(D) be the solution of (1) for right-hand 

side g, 6 LP(D), j = 1 , 2 . Then 

«1 - U2 = gi - 92 + G0U2 - GqUI 

+ K[Gxu2,G2u2] - /¡r[Gi«i,G2tti] 

= 9\ ~ 92 + GQU2 - Go-til 

+ K[G\u2 - GiUi,G2u2] - K[GiUi,G2ui - G2u2]. 

Hence by (4) , (16) and (5 ) we have 

IN -ti2||p,a < Hffi -92\\P,<t + {A(ff)M0(||ui||piff,||«2||p,<T) 

+ 74:2(cT)[||G1til||p1M2(||Ul||p,(T,||U2||p,<r) 

+ ||G2li2||p2Mi(||«i||p){r||'U2||p)(r]}||Ui - U2\\p,<r 

from which taking a sufficiently large and using Mj € 9Ji, j = 0 , 1 , 2 , and 
(3) the estimation (9 ) follows. 

The proof of Corollary 2 is obvious. 

R e m a r k . As it can be seen from the proof, the assertions of Theorem 1 
hold true for general equations of form (1) with Gj, j = 0 , 1 , 2 , as in the 
theorem and with a bilinear operator K € (Lp1(D) X Lp2(D) —> LP
which fulfills the estimations (15) , (16) . 

4. Volterra equation of first kind 
We apply Theorem 1 to the first kind two-dimensional Volterra equation 

of auto-convolution type 

X2 Xi (27) f J u(y)v(x - y)dy\ dy2 = /(x), 
0 0 

where x = (xux2)_<Z D = ( 0 , * i ) x ( 0 , X 2 ) , y = {yuy2) € D, f G CX(D) 
with fXltX2 € C(D) or LP(D), P = ( p i , p 2 ) , 1 < p\p2 < 00, and v 6 
C(D)n C2(D) is the solution of the Darboux problem (cf. [4], Chap. 14) 

(28) ¿ u ( x i , x 2 ) = vXlX2 + a(x)vXl -(- b(x)vX2 + c(x)v = F ( x , u ( x ) ) in
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with the initial conditions 

(29) v(xi, 0) = ip(xi) in 0 < xx < Xx u(0, x2) = ip(x2) in 0 < x2 < X2. 

We assume that the coefficients a,b,c 6 C(D) and the initial data (p,tp 
are absolutely continuous with derivatives (p' G Lr(0,Xi), ip' € Lr(0,X2), 
r > 1, and y?(0) = V'(O) = 1- Further, the function F is continuous and 
satisfies a (uniform in x) Lipschitz condition with respect to u. 

The solution v of (28), (29) can be represented by the Riemann function 
R of L (cf. [4], p. 394). Namely, we have 

X2 
(30) v(x) = <p(Xl) + il>(x2) - 1 + J J R(x,y)G(y,u(y))dyidy2, 

o o 

where 

(31) G(x, u) = F(x, u) - h(x) 

h(x) = a(x)<p'(xi) + b(x)il>'(x2) + c(z){y?(a>i) + i>(x2) - 1}. 

Differentiating (27) with respect to x\ and x2, we obtain the following 
second kind integral equation of form (1) 

Xl X2 
(32) u ( x ) + j u(yi,x2)<f'(xi - yi)dyi + f u(x1} y2)^'{x2 - y2)dy2 

o o 
X2 X\ 

+ f f u(y)[F(x - y, u(x - y)) - h(x - y) - H[u](x - y)]dyx dy2 = g(x), 
o o 

where g(x) = fXlX2(x) and 
X2 Xi 

(33) JT[u](®) = c ( x ) / f R(z,()G(f, *(())<%! d(2 

0 0 

+ a(ar) J R(x1,x2;x1,^)G(x1,^2',u(xi,^2)) 
o 

+ J f RXl(x,0GUA0)dÇidÇ2] 
o o 

+ 6(a;)[ J R(xi,x2;^i,x2)G(^i,x2-,u(^,x2)) 
o 

+ J f RXl(x,OG(t,u(OWidt2\. 
0 0 
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Equat ion (32) is equivalent to (27) if the compatibility conditions 

(34) / (a? i ,0) = 0 in 0 < xx < Xu / ( 0 , x 2 ) = 0 in 0 < z 2 < 

are fulfilled. 
To equation (32) Theorem 1 can be applied yielding the following 

T H E O R E M 2 . Under the above assumptions about the data a,b,c, F,ip,i/> 
integral equation (27) has a unique solution u £ C(D) or u € Lp(D), 
p = (pi>i>2), 1 < Pi,P2 < 00 for any f G C i ( - D ) with fXlX2 € C(D) or 
fXlX2 G Lp(D), respectively, satisfying the compatibility conditions (34). 

S k e t c h o f p r o o f . In view of the continuity of the Riemann functon 
R and its derivatives RXl, RX2 (see [4], p. 394) and the assumed continuity 
and Lipschitz condition of F the assumptions on the operators Gj, j = 1 ,2 , 
in Theorem 1 are fulfilled with Pj = P, and the assumptions on the kernel 
k with Ro = Ri = R2 = oo- It remains to show tha t the linear operator Go 
defined by 

(35) G0u(x)= f u(yl,x2)x{x\-y\)dyi= f u(xx - yi,x2)x(yi)dyi 
o o 

for given x £ Lr(0,Xi), r > 1, (and the corresponding one with £1,3/1 
and £2»2/2 changed) is an operator in C(D) and Lp(D) and fulfills a Lips-
chitz condition of form (4). But the first property is obvious by the second 
integral representation in (35). And the second property follows f rom the 
estimations 

IIGottlloo,* = ess sup \e-*lx*+**) f u(yi,x2)X(x1-yl)dy1\ 
xeD J 

Xi 
< ess sup f e-a^+^\u{yux2)\e-c^-y^\x(x1-yl)\dy1 

reD J 

< i m u „ f e - ^ i x m d h 
o 

< I M U . H x I M K ^ I U < l l x l l ^ ^ ' ^ l h i l l o o , . 

by applying Holder's inequality to the integral over x , where 1/s = 1 — 1 /r > 
0 and || • | | r is the norm in I / r ( 0 , X i ) , and 
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X? Xi 
0 0 
. p i . £2. . 

x J f u(y1,x2)x(xi - y\)dyi dx^j  P 1 dx2J 
0 

< ( / ( f e-^\u(yi,x2)\e-"^-y^ 
0 0 0 

p1 £2. x - yi)\dy^) dx  P 1 dx^j " 2  

0 0 

£2. 
PI 

< I lx l l r lk-^IMI«!!^ < l + - = h \saJ r s 
by applying Young's inequality to the inner integral in the variable xi and 
then Holder's inequality to the integral over x again. 

R e m a r k s : 1. In case of constant coefficients a,b,c instead of (32) the 
following simpler integral equation can be used: 

Xi 
(36) u(x)+ f u(y1,x2)[ip'(x1-y1) + bcp(x1-y1)]dy1 

0 

+ f u(xi,y2)[ip'(x2 - y2) + atp(x2 - y2)]dy2 0 X2 Xi 
+ f J u(y)F(x - y,u(x - y))dyx dy2 = Lf(x). 

0 0 

2. By extending the proof of Theorem 1, in C(D) there can also be 
handled problems in which the initial conditions (29) have more general 
form 

(37) «^(arijO) = A(xi)u(xi, 0) + <po(xi), 
(38) vX2(0, x2) = n(x2)u(0, x2) + ip0(x2) 
together with t>(0,0) = 1. Here X,<po € Lr(0,Xi) and V'o € Lr(0,X2), 
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r > 1. This leads to additional one-dimensional integrals in (32) of the kind 
Xl 

(39) J u(y1,x2)X(xi - yi)u(a>i - yi,0)dyl 
o 

X? 

+ f u(x1,y2)n(x2 - y2)u(0,x2 - y2)dy2. 
o 

For these integrals the related estimations'in the proof of Theorem 1 can 
be carried out, too. Namely, for instance, there holds 

xeD 

Xl 
I := max 

o 
X-i 

< max 

e - e ( x 1 + x 2 ) J | A ( a ; i _ S f l ) | | „ 1 ( y 1 , X 2 ) | | „ 2 ( a 5 l - y i , 0 ) | d V l 

0 

x€D 

x |u 2 ( X l - z/i,0)|<fyij < maxIc-^'lttjiii.O)!] J ii 

x m ^ e - ^ m a x f e " " 1 ! « i ( ® i , « 2 ) | ) ] f I A ( 6 M i 
X2 Xi J 0 

< | | A | | l | M k o o | M k o o 

since for the function U2(xx,x2) = e_<T(:Cl+a;3)|u2(®i»®2)| we have U2(x^,0) 
< max l 2 U2(xi,x2). 

Analogously, 

/ < A((7)||tt1||ff,00||ti2||oo 
with 

A(cr) = J |A (6 ) | e - < 7 i l ^i -> 0 as a oo, 
o 

and 

I < Al(^)|K||oo||«2|U,oo 
with 

Xl / 1 \ 1 / s 

—> 0 as a —»• oo, Ax(a) = max f |A(xx - y i ) | e ~ ^ d V l < | | A | | r f — ) X! J \saj 
where 1/5 = 1 — 1/r > 0. 

If only one initial condition is of form (37) or (38), then one can also 
work in a space with mixed norm, namely with max-norm in one variable 
and with p-norm, 1 < p < oo, in the other variable. 
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Moreover, we remark that taking x\ = 0 and = 0 into equation (32) 
with the integrals (39) in a first step one can determine the functions u(0, X2) 
and u(xi ,0) , respctively, from one-dimensional convolution equations, and 
then inserting these functions in the integrals (39) obtain these ones as 
additional linear integral operators in equation (32). 
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