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1. Introduction

A method for solving problems of elasticity with interfaces consists in
the use of contact tensors. The contact tensor is constructed as the sum of
the fundamental matrix and a compensatrix such that the transmission con-
ditions on the interface Sgo are fulfilled. A potential on the boundary S of
the whole domain having as kernel the contact tensor satisfies the differen-
tial equation and transmission conditions whereas the boundary conditions
on S lead to the boundary integral equation (BIE) for the density of the
potential.

If the interface Sgo lies inside of the boundary S the BIEs are singular
integral equations of the same kind as in the case of elastic homogeneous
bodies and the now classical theory of Michlin is applicable [4-6].

If Soo touches § we have interface corners in the two-dimensional case
and interface edges in the three-dimensional case. Because of the behaviour
of the the contact tensor the BIEs have fixed singularities at Sgo N S. In
the plane case the BIEs are locally considered in the neighbourhood of an
interface corner of Mellin convolution type and with the Mellin technique
the question of Fredholm property and asymptotics can be decided [8]. In
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the spatial case D. Mirschinka [9, 10] investigated the BIEs for bimetal
heat conduction problems with perfect and non-perfect heat contact. The
question of Fredholm property of the matrix boundary integral operator
is connected with the invertibility of local operators acting in spaces of
functions defined on the tangential half-planes to S at points of the interface
edge 0Sp0. The local operators have fixed singularities along the boundary
of the half-plane and can be written as convolution operators. The norm of
these operators in weighted L,-spaces can be estimated by the L;-norm of
the generating function.

In the present paper for the bimetal problem of elastostatics the local
operators are constructed and estimates for the norm of these operators are
derived.

2. The bimetal problem

We consider a domain D C R3 which is devided by the plane E = {z =
(z1,22,23) € R®: z3 = 0} into two domains D; = Dt = {z € D : z3 > 0},
Dy =D~ = {z € D:z3 < 0}. The Lamé constants in D; are A;, ;. We look
for a solution u = u(z) of the following boundary transmission problem:

a) The displacement u = u(z) has to satisfy the Lamé equations
(1) . pidu+ (A 4 p;)graddivu=0 in D,.

b) On the boundary S = 0D are given Dirichlet type boundary condi-
tions

(2) u(z)=w(z) for z€S
or Neumann type boundary conditions

(3) (fl_;(az,nz)u(z) =P(z) forzeS;=(SnD;)-E.

¢) On the interface Spo = D N E have to be satisfied the transmission
conditions

(4) {w(@)}* -~ {u(z)}" =0 for z € Spo,
(5) { T(Bz,nx)u(:v)}+ - { T(Bz,nx)u(z)}_ =0 forz € Soo.
(1) (0)

Here T(0z,nz)u(z) = Q#iaaT" + Aingzdivu + pi[n; X rotu] is the stress
1) ‘

vector, n, = (n1(z),n2(z),na(x)) in (3) is the outer normal of § in =z,
n; = (0,0,~1) in (5), {.}* = limz, 40, {.}” =limg—_o.
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Let G(z,y) be the contact tensor for our problem. This means
I‘)(z,y) +V(z,y) forz3 >0, y3 >0
(1
I'(z,y)+ V{z, for z3 <0, y3 <0
(6) G(z,y) = (0)( ) (z,9) 3 Y3
V(z,y) forzz >0, y3< 0

and z3 <0, y3 >0
where

1
(7) (1;)(1,3/) =

24N+ 21)
Tk — Y Tj;—Y;
(v TR O ot )
is the Kelvin fundamental matrix and V(z,y) is the compensatrix such
that the columns of G(z,y) with respect to « fulfil (1) in the half-spaces
H1=H+={.’DER3!.’E3>O},H0=H_={IL‘€R3!:B3<O},
respectively, and fulfil (4), (5) on E.
Obviously the potential of the single layer

(8) V(zip) = % [ Gz, v)e(y) dy S
S

and the potential of the double layer
1
) W(zig) = 5= [ (T(8,,1,)G(2,9)") () dyS
S

satisfy (1), (3), (4).
If we start for the Neumann problem (3) with the Ansatz u(z) = V(z;¢)
we obtain the boundary integral equation for ¢

(10) (Arr@)(z0) = 9(e0) + o= [ K(z0,0)p(3)dyS = Plao), o€ §
S

where
(11) K(z,5) = T(3:n:)G(z,y) forz € S.

If we use for the Dirichlet problem (2) the direct boundary integral method
with the Ansatz

1
u(z) = — EW(:D;W) + %V(z;P),
we obtain for the unknown stress P the boundary integral equation

(12) (A1P)(20) = —P(0) + % [ K(z0,9)P(3) S
S

= lim T(0z,n;)W(z;w), € S.
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In (9), (11), (12) T means T if y or z lies on S;. In both cases (10), (12)
()

we have the same integral operator with the kernel (11). In order to know
the structure of K(z,y) we have to look at V(z,y). The matrix V(z,y) is
only published in [7]. Therefore we write down V(z,y). We have for z3 > 0,
y3 <0

1 0 0
- o*U
0 0 1/ 9%,
- 8%U -_8%U - 3
H2 81‘3 _H2 8.’1:161'2 - 3 61‘131/3
- _d8%U - 92U - 92
+ ‘H2 9z10z, H2 Erzd ‘Ha 572093
- _3%U -_3%U
H, 071 8y3 Hy O, 0y3 0
__oUu __8u el
81’361}3 82131‘231;3 31:1853
- - 8%u a3y ’uU
+(H4 T3+ HS y3) T 81,0120y - dx20y3 dzadyZ |
a’u 9*U _ du
6::183/35 Bzgayg 6y35
for z3 < 0, y3 <0
1 00
_ oru
0 0 1 3
-a%u _g-2u_ - 8%u
7 5;%' 7 Br19z4 8 37 0z3
2 2 2
- _8°U - 9°U - _3°U
+ —H7 3.‘215.’52 H7 322 —HS 31‘231‘3
1
- 8% - 22U 0
8 3315.‘03 8 51‘231‘3

3 3 3
- - 8u - - 8 u - -~ 'y
('—HQ zZ3 — H10y3)81‘218z'3 (—HQ 1‘3—H10y3) 5313::25::3 (—H9 1:3-‘}-{[103,3 81:181:32)

(~HIz3-Hiyys) sl (—Hyz3—Hoyys) 5L (—~H 23+ Hiys) 22U
+ A9 23— H110Y3) 377625025 o #3=H1093) 5700, o FatH1083) 5, 007
3 3 3
—_H- - a”ru - H= a°u —H za—H= sy
(-4, ’3+H1o3/3)51'5;g (—Hg z3+ 10y3)—73,2313 (-Hg z3 103/3)—3'823
atu otu __8'u
81‘% 3x§ 8xy 8.7:231:3 8xq 3;§
- otu atu U
+H11:1:3'y3 8z 0z2 6.1:3 8z§ 8:v§ T Bz, Bzg
otu otu atu

8z, 8x3 8z20x3 T
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where the constants are

— _ (0 +3m0)(A +2pm) + po(M +3p1)(Ro + 2p0)
U7 [mo(A + 3m1) + (M + )]l (Yo + 3u0) + po(Ao + o))’
2
Hy = Hf - :
PN podm
__ #5 (A1 + 31) = p3 (Ao + 3po)
37 [ (Mo + 3p0) + po(do + po)llmo(M + 1) + (M + )]’

= — AL+
4 po(A1 + 3p1) + (M + 1)’
H- = Ao+ po
5 7 pa(Mo + 3p0) + po(Ao + po)’
_ _ Ao + 3uo
Hy = Hf — 0 T°k0
6 ! 2p0(Ao + 210)
- - H1 — o
Hy = Hy + A=k
g ¢ 7 po(po + m1)
H- = H-. H-— (1o — p1)(Ao + Ho)(Ao + 3p0)
s 377 T 2p0( Ao + 2u0)[k1 (Mo + 3p0) + pto(Ao + po))’
H,=Hy,
H= - (Ao + 10)* (11 — po)
11 —

po(Xo + 20) (111 (Ao + 3p0) + po(Ao + ko))’

For 23 < 0, y3 > 0 in (13) and for z3 > 0, y3 > 0 in (14) the constants
H have to be replaced by H;. The H;} follow from H; by changing the .
indices 0, 1 in the Lamé constants. The function U is the piecewise harmonic
function

(15) U(z,y) = (lza| + lys)) In(|s| + lys| + W) - W
where
(16) W = /(21— 91) + (22 — 32)? + (I + Jua)?

If So,S; are Cl:*-regular we have from T'(z,y) for z,y € S; in the kernel
(9 )

K(z,y) weakly singular terms and singular terms of the form

Y +2u,( ni(@ )lz I ~nil= )|Z—y|3>

From the compensatrix V(z, y) we ohtain kernels with fixed singularities for
z = y on the interface edge 9Sgo. If we omit the factors ni(z) and elastic
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constants we get in K(z,y) for z,y € 5 terms of the form

vy Y (z1 — y1)13(1’2 — y2)'4 (23 + y3)"
wy ¢ (z3 +ys + Wy)m2

(17)

with

Wi = (21— 91)2 + (22 — 42)% + (23 + 93)?
and for z € 51, y € So terms of the form
3’3 ?/3 (21 — 'yl)lg(x2 - yz)"4(23 - 3/3)'5

(18) =
w (23 —ys + W_)™

with

= V(z1— 012 + (22 — 12)? + (23 — 13)?
where 0 < l1$ 0§l2Sl,OSlQS?,OSlQ-S?,OSls33,

0<mf <7,0<m] <5,0<my<3,mE+mg=b+l+i+1+105+2

3. The local operators with fixed singularities

Let a = (a;,a3,0) € 8500, 117 the upper tangential half-plane to §; in
a,a € (0,7) the angle between II} and E,II; the lower tangential half-
plane to Sp in a,5 € (0, 7) the angle between II; and E. We consider new
co-ordinates

Ty = a1y + oy + a2ée, ¥ = a1+ anum + a2,
Ty = ay + a1y + a92be, Y2 = @y + anM + @227,
T3 = €3, Y3 = 73,

such that the &;-axis is directed tangential to 85p0. Then the kernel (18) is
a linear combination of kernels of the form

82 (&1 — m)= (& — m2)™ (& — ma)'s
wm (63 —m3 + W_)ma

with

=Vl -mP+(E-—mP+(E&E—m)?, L+l=h+1

Now we consider in the half-planes I}, Il co-ordinates t;,t, such that for
§elrf

£ = (t1,t2cosa,tysina)
and for n € II7

n = (71,72 cos B, — Ty sin ().
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Thus, to (18) is associated the local operator

(19)  (Kapu)(t,t2) =

1 }0 f (t2 sin )1 (74 sin B)2(t; — 1) (¢ cos @ — 73 cos B) o
2r Wy (te sina + o sin 8 + Wy)™2

X (t2 sina + 73 sin ﬁ)l5 u(11,72) dr1 dmy

with

Wo = \/(tl —11)2 + 82 + 1} — 2ty cos(a + B),
my+me=hL+lha+l3+1ly+1s+2

and to (17) is associated the local operator Ko = K4 -

The function u(?1,%;) is defined on RZ = {t = (t;,¢;) : t; € (~o0,00),
t; > 0}. We investigate the operator K, g in the space L, ,(R%) with the
weight function ¢]. The norm in that space is given by

(20) el = ([ tutn, )P dtrdta)”.

R%
In R_2,_ we define a multiplication
st = (s1,82)(t1,t2) = (s2t1 + 81, 8283).
With that product R2 becomes a non-commutative group which we denote

by G. The group G is isomorphic to the group of the matrices ( tll t(; )
with the usual matrix multiplication. The group G is also isomorphic to
the group of affine transformations on R if (¢1,¢;) € G defines the mapping
(t1,t2)(t) = tat + t1. The inverse of t = (¢1,t3) € G is given by t~! =
(—t1/ta, 1/t3).

Beside the space L, (R3) we consider for functions defined on G the
space L,(G) with the norm

(21) lellzy@ = ( f T do®)”
G

where dp(t) = t;1dt1dt; is the right Haar measure (cf. [3]).

14y
LEMMA 1. The mapping 7, ., defined by (1, yu)(t1,t2) = t,° u(t) is an
isometric isomorphism from L, ,(R2) onto L,(G).
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Indeed, we have
149 14y
Impntlll, ey = 2" v, () = ff |ty u(t)|Pty ! dty diy
R}

= [[ lu(®)P] dty dty = [Jull?,
R?

In L,(G) we consider the convolution

(22)  (uxo)(t)= f u(ts™)u(s) dp(s)
ff (tl - 31_ Z_2> 0(31,82)-1— dsy ds;.

For the operator T,u = u*v generated by a function » the following Lemma
is valid (cf. [3, 9, 10]).

LEMMA 2. Let v € L,(G), p > 1. Then T, is a linear bounded operator
Jrom L,(G) in L,(G) and for the norm it holds

| IToullz,(e) < Illyeylluli,(c)-
If the generating function v is positive then the operator norm of T, is
1Tl = lIllzy(a)-

In order to apply Lemma 2 we write 7, , K4 g as a convolution operator.
Therefore we substitute in (19)

(23) T= (T],T2) = tS_l = (tl,tg)(sl,52)'1 = (t1 - sltgsz,_l,tgs{l).

The functional determinant has the value gg%:z% = t}s;°. Then elemen-
tary calculations yield

(24)  (mprKapu)(t) =

1_.'.1
1 ff t,” (s2sin &) (sin §)2s4(sy cos a — cos B)H y
T or A™1(sy sin a + sin § + A)™2

1
X (82 sin & + sin ,H)I5u(ts"1)s— dsy ds,
2

where

A=4/s? + 82+ 1— 25 cos(a + f).
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If we observe

1+
t2\ *
() = (2) 7 utn)
then (24) can be written as convolution

(25) (TpvKa,pu)(t) = (1pyu * ka’ﬁ)(t)
with the generating function
(26) k“"@ (s) =

+

140
1 si“’s2 " sin'* asin'? B(sy cos a — cos B)H (52 sin @ + sin ﬂ)‘5

or Am™i(sysin @ + sin § + A)™2
THEOREM 1. Let ko‘ge € Li(G),p > 1. Then K, g is a linear bounded
operator from Ly ,(R2) in L, ,(R% ) and for the operator norm the estimate

[ Kasll < gy llLaca)

holds.

Proof. Let u € L,,(R%), then 7, ,u € Ly(G) and ||7p4ullL,(c) =
|lz||p,y- From (25) and Lemma 2 we conclude that 7, ,K,gu € Ly(G).
Therefore K, gu € L, 4(R3) and

| K o,p%llp,y = “TpnI‘a,ﬁu”L,(G) < ”ka'ﬂ”Ll(G)”TPry"“L,,(G)

= “k:,’—?”Ll(G)”u”pﬂ'
Now it remains to estimate the L;(G)-norm of the generating function
k;"',{? . Obviously we have

1y
* (s sin @) sin'2 B(s; cos & — cos B)"(sy sin & + sin ﬂ)'5
Amitmae—I3

k&P (s)| < —

The inequality 0 < s2 + (s3 cos a — cos B)? is equivalent to the inequality
(s2sin @ + sin )2 < A?,
the inequality 0 < s? + (s sin @ + sin 8)? is equivalent to
(s2 cos a — cos 3)° < A?
and
(s2sina)? < (s2sina + sin 3)? < A2,
Since my +ma =13 + Iy + 13 + 14 4+ I5 + 2 we obtain

o 1 . s ST
(27) |kp".‘ya(s)|5 2—7-r~sm12 Bs,” ATk,

Because of 0 < [; < 1 we calculate the L;(G)-norm for the two cases [, = 0
and I, = 1.
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For I3 = 0 we have with pu = —l'"—

1 sy
2 s2 + 82 +1— 235 cos(a + )

o0 00

sy 1
f _{o 82+ 52+ 1—2s;cos(a+ ) s, 5; do1dse

Li(G)

5=

u—1
52

0
o0
dss
6[ 1+ 82 — 2s; cos(a + 3)

| = N

1
T2 {\/1 + s% + 253 cos(a+ 3 - 7(‘)}(“)
_ 7 Pur(cos(a+f—m))
2 sin(mp)

if0<pu<l.

The last equation follows from the table of Mellin transforms (cf. [2],
6.2.(17)). Thus, we have a finite L;(G)-norm for

(28) 0<—:1<1

If the weight exponent ¥ = 0 then this condition is fulfilled for p > 1. For
v =0,p =2 (u = 1/2) the function P_;/; can be expressed by the complete
elliptic integral of the second kind (cf. [1], 8.13.9.)

Pyafoos(a+ 5= 1)) = 2 (sin ZEEZT ),
For I; = 1 we calculate
1 sh sin
Nl = 2_. 2 ﬂ i
W\/S%-i-sg + 1 —2s; cos(a + ) lLi(@)
LT T sy sin 8 1
_ = . 1
T or f f dsy ds,

0 -0 \/sl+32+1—252cos(a+ﬂ) 52
-1

_smﬂf sy
oo : 1+32—232cos(a+ﬂ)

_sinf { 1 }
Tor 1+ 82 +2sycos(a+ B —m) ()
_ o sinf(p— 1)@+ B~ 7)
= —sinfi sin(a + § — 7)sin(7u)
(cf. [2], 6.2.(12)). For @ + 8 — m = 0 we obtain for the norm the value (cf.
2], 6.2.(6))

if 0<p<?
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For y=0,p=2 (g = 1/2) we have
sin °‘+ﬂ =1 sing
1n(a+ﬂ—-7r) 2 gip &8 °‘+ﬁ'

Since the condition 0 < g < 2 does not restrict the condition (28) from
Theorem 1 it follows

N1:S'

THEOREM 2. If p > 1, =1 < ¥ < p—1, then K, s is a linear bounded
operator from Ly, ,(R%) in L, ,(R2).

In connection with the bimetal problem for the heat equation in [9] the
operator

(G«:”)(tl,tz) =

t, sin
ff : Ld v(T17 T2) dTl dT27
(t — )2+ 2+ T — 2Ty coscp

0<p<m, appeared. This operator can be written as
sin ¢ @
Gov= = % K, /2v = 2cos 5 K0
with
112‘1, 12=0, l3=0, l4=0, 15‘-:0, m1=3, m2=0.
The generating function is according to (26)

l+‘7+1
o = 1 sine s,°
PY T 5o 3"
2 V2 + 82+ 1—2s3cos¢

Since g, is positive the operator norm of G, is equal to the L1(G)-norm

of gp. From the calculation of Njit follows (1 = __1:")
sin[u(p — )] sin[p(r — )]
G = _ _
NGoll = llgpllzi(e) = —sin Spsm((p T~ sin(ma)

if and only if 0 < g 4+ 1 < 2. Thus we have in accordance with [9, 10] the
result that the operator G, is bounded in L,,(R%)if and only if —p—1 <
Yy<p-1,p21.

For v = 0, p = 2 we have

®
|G oll = llg2,0llL,(q) = cos 3
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