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1. Introduction 
A method for solving problems of elasticity with interfaces consists in 

the use of contact tensors. The contact tensor is constructed as the sum of 
the fundamental matrix and a compensatrix such that the transmission con-
ditions on the interface Soo are fulfilled. A potential on the boundary S of 
the whole domain having as kernel the contact tensor satisfies the differen-
tial equation and transmission conditions whereas the boundary conditions 
on S lead to the boundary integral equation (BIE) for the density of the 
potential. 

If the interface 5oo lies inside of the boundary S the BIEs are singular 
integral equations of the same kind as in the case of elastic homogeneous 
bodies and the now classical theory of Michlin is applicable [4-6]. 

If Soo touches S we have interface corners in the two-dimensional case 
and interface edges in the three-dimensional case. Because of the behaviour 
of the the contact tensor the BIEs have fixed singularities at Soo H 5 . In 
the plane case the BIEs are locally considered in the neighbourhood of an 
interface corner of Mellin convolution type and with the Mellin technique 
the question of Fredholm property and asymptotics can be decided [8]. In 
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the spatial case D. Mirschinka [9, 10] investigated the BIEs for bimetal 
heat conduction problems with perfect and non-perfect heat contact. The 
question of Fredholm property of the matrix boundary integral operator 
is connected with the invertibility of local operators acting in spaces of 
functions defined on the tangential half-planes to S at points of the interface 
edge dSoo- The local operators have fixed singularities along the boundary 
of the half-plane and can be written as convolution operators. The norm of 
these operators in weighted Zp-spaces can be estimated by the Zi-norm of 
the generating function. 

In the present paper for the bimetal problem of elastostatics the local 
operators are constructed and estimates for the norm of these operators are 
derived. 

2. T h e b imeta l p rob lem 

We consider a domain D C R 3 which is devided by the plane E = {x = 
(xi,x2,x3) £ R 3 : i 3 = 0} into two domains D\ = D+ = {x £ D : x3 > 0}, 
Do = D~ = {x 6 D : < 0}. The Lamé constants in D( are Aj, Hi- We look 
for a solution u = u(x) of the following boundary transmission problem: 

a) The displacement u = 11(2) has to satisfy the Lamé equations 

(1) f i j Au + (A,- -f m) grad div u = 0 in Di. 

b) On the boundary S = dD are given Dirichlet type boundary condi-
tions 

(2) u ^ ) = w (x ) for x £ S 

or Neumann type boundary conditions 

(3) T(dx, n,)u(®) = P(as) for x € Si = (S D Di) - E. 
(0 

c) On the interface 6"oo = D fi E have to be satisfied the transmission 
conditions 

(4) {u(z)}+ - {u(x)}~ = 0 f°r z e Soo, 

(5) { T(dx,nx)u(x)}+ - { T t ^ i i a X x ) } = 0 for x G S00. 
1(1) J 1(0) ) 

Here T(dx>nx)u(z) = 2 / / j + Ajn x d ivu + x rot u] is the stress 
(«) 

vector, n x = (rii(z),712(1),«3(0;)) in (3) is the outer normal of S in x, 
n x = ( 0 , 0 , - 1 ) in (5), {.}+ = limX3_>+o, {•}" = l i m ^ - o • 
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Let G(x,y) be the contact tensor for our problem. This means 

(6) G(x,y) = 

T(x,y) + V{x,y) for z3 > 0, y3 > 0 
( i ) 
T(x,y) + V(x,y) for x3 < 0, y3 < 0 

( 0 ) 

V(x,y) for x3 > 0, y3 < 0 
and x3 < 0, y3 > 0 

where 

X (U« + + (A, + 3 , * , ) ^ 

is the Kelvin fundamental matrix and V(x,y) is the compensatrix such 
that the columns of G(x,y) with respect to x fulfil (1) in the half-spaces 
JJi = H+ = {x e R 3 : z 3 > 0}, Ho = H~ = {x € R 3 : x3 < 0}, 
respectively, and fulfil (4), (5) on E. 

Obviously the potential of the single layer 

(8) V ( * ; v > ) = ^ f G(x, y)<p(y) dyS 
s 

and the potential of the double layer 

(9) W(x;cp) = ± f {T{dy,ny)G{x,y)Tfv{y)dyS 
s 

satisfy (1), (3), (4). 
If we start for the Neumann problem (3) with the Ansatz u(x) = V(z;<£>) 

we obtain the boundary integral equation for (p 

(10) (An<p)(x0) = v>(®o) + / K(x0,y)(p(y)dyS = P(®0), x0 e S 
s 

where 

(11) K{x, y) = T{dx, nx)G(x, y) for x e S. 
If we use for the Dirichlet problem (2) the direct boundary integral method 
with the Ansatz 

u(®) = - I w ( x ; w ) + i v ( ® ; P ) , 

we obtain for the unknown stress P the boundary integral equation 

(12) (A/P)(®0) = - P ( * o ) + / K(xo, y)P(y) dyS 
s 

= lim T(dx, n r ) W ( z ; w), x0 £ S. 
X— 
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In (9), (11), (12) T means T if y or x lies on 5,-. In both cases (10), (12) 

we have the same integral operator with the kernel (11). In order to know 
the structure of K(x,y) we have to look at V(x,y). The matrix V(x,y) is 
only published in [7]. Therefore we write down V(x, y). We have for > 0, 
2/3 < 0 

(13) 
1 0 0 

V(x,y) = Ei | 0 1 0 
0 0 1 

d2u 
dyi 

+ -Hr ^ 
\ * 

-H. - d U 
2 dxidx2 

2r 
2 dx\dx2 

- d2u 

TT-jru 
2 a i f 

H. - d*u 

XT- d2U \ 
3 dxtdy3 

j t - 92{7 
3 8x283/3 

+ ( ^ 3 + ^ 2 / 3 ) 

for x3 < 0, J/3 < 0 

(14) 
1 0 0 

V(x,y) = He | 0 1 0 
0 0 1 

d2U 
dx\ 

d3u d3U 93U 
dx\dy3 dx1dx2dy3 dx-idyl 

d3U d3U a3u 
9xi9x29t/3 dx\dy3 dx2dy\ 

d3U d3U d3U 
dxidyj dx2dy\ at/l 

( Hi 

+ -HZ 

- d'U 

a2u 

11- u— diu 
7 dx1dx2

 8 dxidx3 

HI a'u 
dxr -H, - d*u 

- d'U 

& 

0 / 

7 dx1dx2 

V dxj)x3 dx2dx3 

r'dx3 'dx2dx% 
d3U 

+Hux3y3 

/ 94U 94U _ d*u \ 
' 9xf9xJ 9xidx2dx3 9xj 9x| \ 

94t7 
9xi9X2 

\ d 4 ^ . 
dx^dif 

diU 
dx2dx3 

d*U 
9x29x| 

dxi / 
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where the constants are 

H - _ Hi(Xo + 3 / i 0 ) ( A 1 + 2 / j i ) + / i 0 ( A 1 + 3 ^ i ) ( A 0 + 2fi0) 
1 [mo(Ai + S f i i ) + M i ( A i + Mi)][Mi(Ao + 3Mo) + Mo(Ao + Mo)]' 

H-> = H-, — , 
M o + Mi 

H _ M o ( ^ i + 3 / i i ) - /x^(A 0 + 3/xq) 
3 + 3/i0) + Mo(A0 + Mo)][Mo(Ai + 3/ii) + Mi(*i + Mi)] ' 

jj- A1+/X1 i/4 = - MO(AI + 3^i) + MI(AI + MI)' 
Ao + Mo JJ— 

5 MAo + 3Mo) + Mo(Ao + Mo)' 
r r - r r - + 3/io 

h6 = ~ 

H7 = H6 + 

2/io(Ao + 2/xo ) ' 
* Mi - Mo 
Mo(Mo + Ml)' 

(Mo - MiX^o + Mo)(Aq + 3 / io ) JJ— _ JJ — JJ— 

8 ~ 3 ' 9 ~ 2/ÌO(AO + 2/ ÌO)MAO + 3|ìo) + /ÌO(AO + /ÌO)]' 

#10 = 
jy - (Ap + MO)2(MI - MO) 

1 1 Mo(Ao + 2 / / o ) [ m i ( ^ o + 3/io) + Mo(Ao + Mo)] ' 

For £3 < 0, sfa > 0 in (13) and for X3 > 0, 3/3 > 0 in (14) the constants 
Hhave to be replaced by H^. The H'k!" follow from H^ by changing the 
indices 0 ,1 in the Lamé constants. The function U is the piecewise harmonic 
function 

(15) U(x,y) = (|x3 | + l3/3|)ln(|z3| + + W ) - W 

where 

(16) W = y / ( X l - V l y + (x2 - y2y + (|x3 | + M ) 2 . 

If So, S\ are C^-regular we have from r (x, y) for x,y 6 5,- in the kernel 

K(x,y) weakly singular terms and singular terms of the form 

From the compensatrix V(x, y) we obtain kernels with fixed singularities for 
x = y on the interface edge dSoo. If we omit the factors and elastic 
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constants we get in K(x,y) for x,y € Si terms of the form 

^ S31 Vsfa - yi) lz(x2 - y 2 )H x 3 + 2/3)'5 

(a3 + 2/3 + 

with 

W+ = >/(Xi - J/1 )2 + (®2 - 2/2 )2 + (®3 + 2/3 )2 

and for x G S i , y £ So terms of the form 

^ z'31 Vsixi ~ yi)l'3(x2 - 2/2)'*(»3 ~ 2/3)'5 

with 
W- = y/(xi - 2/1 ) 2 + (®2 - 2/2)2 + («3 - 2/3)2 

where 0 < /x < 1, 0 < Z2 < 1, 0 < 1'3 < 2, 0 < l'4-< 2, 0 < /5 < 3, 
0 < m f < 7, 0 < m f < 5, 0 < m2 < 3, m f + m2 = /1 + h + 1'3 + 1'4 + h + 2. 

3. The local operators with fixed singularities 
Let a = (a i ,a2 ,0) € 5Soo,n+ the upper tangential half-plane to Si in 

a, a € (0,7r) the angle between 11+ and £\II~ the lower tangential half-
plane to So in a,/3 £ (0,7r) the angle between II~ and E. We consider new 
co-ordinates 

xi - ai + a n f i + a i 2 6> 2/i = a i + auVi + ai2*?2, 
x2 = a 2 + a 2 i £ i + a 2 2 f 2 , 2/2 = 02 + « 2 1 ^ 1 + « 2 2 % , 

S3 = 6 , 2/3 = Tfy, 

such that the £i-axis is directed tangential to dSoo- Then the kernel (18) is 
a linear combination of kernels of the form 

with 

W- = - m ? + ( 6 - + ( 6 - m)2 , h + U = i'3 + r4. 

Now we consider in the half-planes 11+, IT" co-ordinates ti , i2 such that for 
e e n + 

^ = (¿1, i2 cos a, i2 sin a ) 

and for rj G II~ 

V = ( r i? r 2 cos/3, —r2 sin/3). 
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Thus, to (18) is associated the local operator 

( 1 9 ) {Ka,f3u)(tl,t2) = 

J _ j? y (t2 sin a ) ' 1 ( r 2 sin ¡5)h(tx - r i ) ' 3 ( * 2 cos a - r 2 cos/?)'* 
2 * % J W 0 m i ( i 2 sin a + r 2 sin f3 + W0)m* X 

X (t2 sin a + t2 sin /3)'5 u{t\ , r 2 ) dr\ dr2 

with 

Wo = - n)2 + t\ + T\ - 2t2r2 cos(a + (3), 

mi + m2 = h + l2 + l3 + l4 + h + 2 

and to (17) is associated the local operator Ka = Ka,a-
The function u(ti,t2) is defined on R + = { t = (t\,t2) : t\ G (—00,00), 

t2 > 0 } . We investigate the operator Ka,p in the space Lpn{R^.) with the 
weight function t1. The norm in that space is given by 

( 2 0 ) I H I p , 7 = ( f f Wt1,t2)\>qdtldt2)1/P. 

K 

In R + we define a multiplication 

St = ( « l , 5 2 ) ( i l , i 2 ) = (s2*l + 5 l ,5 2 f 2 ) . 

With that product R + becomes a non-commutative group which we denote 

by G. The group G is isomorphic to the group of the matrices ( } j 
\ h h J 

with the usual matrix multiplication. The group G is also isomorphic to 
the group of affine transformations on R if ( f i , i 2 ) € G defines the mapping 
(h,t2)(t) = t2t + tx. The inverse of t = (ti,t2) G G is given by t - 1 = 
( - h / t 2 , l / t 2 ) . 

Beside the space Z/p/Y(R^_) we consider for functions defined on G the 
space LP(G) with the norm 

(21) IMUp(G) = ( / \u(t)\» dp(t))l/P 

G 

where dp(t) = t2ldt\dt2 is the right Haar measure (cf. [3]). 

LEMMA 1. The mapping r P i 7 defined by (rP i 7ti)(ix, t2) = t2p u(t ) is an 

isometric isomorphism from Lpn(R+) onto Lp(G). 
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Indeed, we have 

n „ 1±L 
lh>,7<,,(G) = IIV «(t)||^(G)= JJ\t2" uWtfdhdti 

K 

= f f \u(t)\ni dtl dt2 = 

K 

In Lp(G) we consider the convolution 

(22) (u*t>)(t) = f u(ts-1)v(s)dp(s) 
G 

~ f f u f t 1 - S i — ,—)v(s1,s2)—ds1ds2. 
Ji \ S2 s2 J s2 R+ 

For the operator Tvu — u * v generated by a function v the following Lemma 
is valid (cf. [3, 9, 10]). 

LEMMA 2. Let v £ Z i ( G ) , p > 1. Then Tv is a linear bounded operator 
from LP(G) in Lp(G) and for the norm it holds 

\\Tvu\\Lp{G) < | |V | |Z , I ( G)! |W| |L P (G) -

If the generating function v is positive then the operator norm of Tv is 

II Tv\\ = |M|Ll(G). 

In order to apply Lemma 2 we write as a convolution operator. 
Therefore we substitute in (19) 

(23) r = ( n , r 2 ) = t s " 1 = ( i i , i 2 ) ( i i , « 2 ) _ 1 = (*i - sxt2s2l ,t2s2l). 

The functional determinant has the value tiTl 'T2l — tZsZ3. Then elemen-9(sii«2) 1 1 

tary calculations yield 

(24) {TvnKa,pu){ t ) = 

_ 1 r r h " (s2 sina) '1(sin/?) '2si3(s2 cosa - cos/3)'1 

~ 27T J J Am 1 (¿2 sin a + sin ¡5 + A)m2 

R+ 

x(s 2 sin a + sin /3 ) ' 5 u( t s - 1 )— dsi ds2 
-S2 

where 

A = y/s\ +s22 + 1 - 2s2 cos(a + P). 
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I f w e o b s e r v e 

/ \ " 
(TP,7U)(T) = l ^ J U(T) 

t h e n ( 2 4 ) c a n b e w r i t t e n a s c o n v o l u t i o n 

(25) (Tp,yKaf0v)(t) = (TP„U * fc«f)(t) 

w i t h t h e g e n e r a t i n g f u n c t i o n 

(26) s) = 

1+7 | j 

1 « j V 1 s i n ' 1 a s i n ' 2 / 3 ( 5 2 c o s o — C O S / 3 ) ' 4 ( S 2 s i n a + s i n / ? ) ' 5 

~ 2ir Ami (s2 s i n a + s i n ¡3 + A)™* 

T H E O R E M 1 . Let k e ¿ l ( G ) , p > 1 . Then Ka<p is a linear bounded 

operator from in Lpn{R+) and for the operator norm the estimate 

\\KcA < | | L l ( G ) 

holds. 

P r o o f . L e t u £ Z - p j 7 ( R ^ ) , t h e n rvnu € Lp{G) a n d ||T P i .y t i||L ( g ) = 

| | u | | P i 7 . F r o m ( 2 5 ) a n d L e m m a 2 w e c o n c l u d e t h a t T P t l I { a ^ u 6 i p ( G ) . 

T h e r e f o r e K a ^ u G Z P ) 7 ( R + ) a n d 

= \ \ K T F I I l i ( G ) I M I P , 7 -

N o w i t r e m a i n s t o e s t i m a t e t h e L i ( G ) - n o r m o f t h e g e n e r a t i n g f u n c t i o n 

O b v i o u s l y w e h a v e 

1+-» 

I u a , P ( \ i 1 S 2 P ( s 2 s i n a ) ' 1 s i n ' 2 fl(s2 c o s a — c o s / 3 ) ' 4 ( s 2 s i n a + s i n / ? ) ' 5 

Ifcp,'-y ( s ) l < ^ A m i + m 2 _ , 3 • 

T h e i n e q u a l i t y 0 < s 2 + ( s 2 c o s a — c o s / ? ) 2 i s e q u i v a l e n t t o t h e i n e q u a l i t y 

( $ 2 s i n a - f s i n / ? ) 2 < A2, 

t h e i n e q u a l i t y 0 < s 2 + ( s 2 s i n a - f s i n f3)2 i s e q u i v a l e n t t o 

( ^ 2 c o s a — c o s / ? ) 2 < A 2 

a n d 

(s2 s i n a)2 < (s2 s i n a + s i n f3)2 < A2. 

S i n c e m i + m 2 = l i + I 2 + ¡ 3 + 14 1 / 5 + 2 w e o b t a i n 

( 2 7 ) \k^(s)\ < s i n ' 2 / 3 V 1 A " ' 2 " 2 . 

B e c a u s e o f 0 < l 2 < 1 w e c a l c u l a t e t h e L i ( G ) - n o r m f o r t h e t w o c a s e s l 2 — 0 

a n d l 2 = 1 . 
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For /2 = 0 we have with /i = 

27T sf + s\ + 1 - 252 cos (a + ß) Li( G) 
^ CO o o 

~ 9 7 / f 2tt J a j + + 1 - 252 cos (a + ß) s2 
ds\ ds2 

1 00 s ^ - 1 

~ 2 / v / l + 5i - 2 5 2 cosia + yS )^ 2 

= . o
 1 

2 I y/1 + s\ + 252 cos (a + p - 7T) J 
* P ^ c o ^ a + / ? - * » i f 0 < ^ < 1. 
2 sm(7r/z) 

The last equation follows from the table of Mellin transforms (cf. [2], 
6.2.(17)). Thus, we have a finite Zi(G)-norm for 

(28) 1 + 7 
0 < < 1. 

If the weight exponent 7 = 0 then this condition is fulfilled for p > 1. For 
-y = 0, p = 2 ( f i = 1/2) the function P_i/2 can be expressed by the complete 
elliptic integral of the second kind (cf. [1], 8.13.9.) 

/ / „ u 2 r J . a + ß-n\ 
P _ 1 / 2 ( r o s ( a + / ? - * ) ) = - f f i sin — ^ J . 

For ¡2 = 1 we calculate 
1 

N, := 
So sin ß 

2lT ^sj+sj + l - 252 cos(a + ßf 
-I OO OO u • n 

_ J _ r r ¿2 s m ß 
9 ir J J 

¿i(G) 

0 -OO Vs! + 4 + 1 - 2^2 COS (a + ß) 52 
• ds\ ds2 

_ sin/3 n 
7T J 

= i f M 

- - d . / » ^ - ^ ^ ? - ' » if 0 < /i < 2 
sin(o: + ß — 7T) sin(7r /J.) 

(cf. [2], 6.2.(12)). For a + ß — 7r = 0 we obtain for the norm the value (cf. 
[2], 6.2.(6)) 

1 + s\ - 252 cos (a + ß) dS2 

1 + 252 cos(a + ß - i r ) }( /0 
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Ni = -sin¡34 ~ 1 
sin(7i7f) 

For 7 = 0, p — 2 (n = 1 / 2 ) we have 

sin 1 sin ¡3 
Na = s i n / 3 - — i r - - x-5-. 

sin(a + /? — 7r) 2 c!t, sin 2 

Since the condition 0 < ¿i < 2 does not restrict the condition (28) from 
Theorem 1 it follows 

T h e o r e m 2. If p > 1, — 1 < 7 < p - 1, then is a linear bounded 
operator from Z P ) 7 ( R + ) in 2 / P i 7 (R+) . 

In connection with the bimetal problem for the heat equation in [9] the 
operator 

( G » ( i i , < 2 ) = 
1 rr ¿2 sin <p 

2n K2+ Vih-riY+tl + Ti -2t2T2cos<p 

0 < <p < 7r, appeared. This operator can be written as 

sin (p (p 
Gvv = I(v/2v = 2 cos - Kv/2v 

with 
= 1, l2 = 0, l3 = 0, h = 0, /5 = 0, mi = 3, m2 = 0. 

The generating function is according to (26) 

1 • ^ _ 1 sin <p s2 p 

9p,i = 7TZ . 3 • 
V 4 + S2 + 1 - 2s2 COS <P 

Since gpn is positive the operator norm of Gv is equal to the Li(G)-norm 
of gPty. From the calculation of Niit follows (/x = 

11 r 11 11« 11 sin[/t(y>-T)] sm[n(* - y)] 
= \\9p,i U i ( G ) = - s m y — . — — — = — — - — " sm(y - 7r) sm[7r(/i + l)j sin(7r/i) 

if and only if 0 < /1 + 1 < 2. Thus we have in accordance with [9, 10] the 
result that the operator Gv is bounded in i P i 7 ( R ^ ) if and only if — p — 1 < 
7 < P ~ 1, P > 1-

For 7 = 0, p = 2 we have 

I I G J = ||<72 ,o||Z/i(G) = c o s ^ . 
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