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1. Introduction 
The aim of this paper is to investigate the integral operator C = I + A, 

here I — the identity operator, and the operator A is of the form 
oo 

(1) (¿«)(A)= f 
o 

where K (E and the function ^(A,^) is positively homogeneous of 
the degree -1 , i.e. 

Nonhomogeneous equation Cu = / appears when solving linear boundary 
value problems in combined domains with irregular boundary points [7, 8]. 
Besides, nontrivial solutions of the homogeneous equation Cu = 0 make it 
possible to construct solutions of one class of homogeneous linear boundary 
value problems, which play an important role in asymptotic methods theory 
[10]. 

Integral equations with the kernels represented by positively homoge-
neous of degree — 1 functions were investigated by many authors [see cf. 1, 
9, 11, 15]. The results were eventually based on the theory of Wiener-Hopf 
integral equations on a semi-axis with difference kernels [2, 3, 5, 13]. The ex-
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tensive literature on the operators with fixed point singularities is reviewed 
in [1, 13]. 

Unfortunately, those results can not be immediately applied to the equa-
tion (1). The first point is that functional spaces must be different in com-
parison with those presented in mentioned papers, and the second point is a 
necessity to investigate an influence of the function K{A,£). Moreover, tak-
ing into account the fact that the function K(\,£) in (1) can be numerically 
found from certain recurrence procedure, see [7, 8], we need to obtain weak-
est conditions on K(\,£) which allows to separate properly the operator A 
on singular and compact parts. 

2. Nota t ion , definit ions and basic facts 
We denote by Z,p'a'^(R_t_) a weighted Lebesgue space of functions p-

summable on R + with the norm ||u|| of u G Lp'a'0(M.+ ) given by 

for some a, ¡3 G R, p G [1, oo). We shall also consider a space of 
functions, having distributional derivatives u ^ G Xp 'a +-7 ,^+- '(R+) up to the 
order /, with the norm 

j=0 

These spaces are natural for the investigation of the operator A, because 
the reduction of the boundary value problems to integral equations Cu = / 
has been justified [7, 8] in these spaces only. 

Let us note that the space is not the usual Sobolev space [6]. 

Functions from and its distributional derivatives have intercon-
nected behaviour in the neighbourhood of zero and infinity. It is evident that 
for any h > 0, / € N: we have L p , 5 'p (R+) = Lp(R+), Lf'a-h^+h(R+) c 
L p ' a ^ ( R + ) , W ( ^ a ' / 3 (R + ) C L p ' a ' p ( R + ) , though the embeddings are not com-
pact. Here the spaces X°°(ii), Lp(Sl), (p G [l ,oo)) are the usual Banach 
spaces with respective norms. 

By Pa : X X we shall understand the operator of multiplication by 
the characteristic function of a set (0, a); Qa — I — Pa is the complementary 
projector to it in X . Here X ( = X ( R + ) ) is any of the defined above spaces. 

We shall distinguish the following sets from the space 
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a. Z — the closure in Z ^ R ^ . ) of the set of functions in form 

N / A \ 
(4) £ f i i W U O h i ^ j , f j i e I°°(R+); 

b. Zg C Z (6 > 0) — the set of functions /(A,£), satisfying the additional 
conditions 

(5) limsup (A2 + e r * | / (A ,0 I = limsup(A2 + £ 2 ) f | / (A ,0 I = 0; 

c. Zg C Z — the set of functions /(A,£), for which one can find fx, ¡2 G 
Z°°(R+) , fs £ Zs such that 

( 6 ) / ( A , 0 = P i ( A ) P x ( 0 / i ( j ) + Q I ( A ) Q I ( 0 / 2 ( y ) + / i ( A , f ) . 

Set Zg (as well as Z) is not dense, of course, in Z°°(R+), however it is 
"sufficiently rich", for example Cfc-1(R;j_) C Z for any natural k. 

Let us consider the function 

Wc,AX>0 = P«AX) PaAOPa^QJ 

The following equality can be verified in a straightforward way 

+ [Pl(A)Ql(0 + Q l ( A ) P i ( 0 ] Pp-a,a-p(0-

Consequently the function w a A X i £) depends on a difference of the param-
eters a, (3 only, so we shall write 

WaA = ^ - a ( A , 0 -
It is easy to see that for any a, b £ R, c, 6 £ R + 

(7) wa-wb = wa+b, wc e Zg, ||wc||oo = 1-

Let us consider the integral operator A, determined in (1). Through-
out the paper, we shall assume that K € Z°°(R+), the function !P(A,f) is 
positively homogeneous of the degree —1 (see (2)) and satisfies the condition 

(8) ! ? ( - , l ) G l 1 ' ^ ( R + ) , 

unless otherwise is specified. By a», /?* we denote inf and sup, respectively, 
over a and (3 for which condition (8) is true. 

R e m a r k 1. It is clear that the representation of the kernel of the 
integral operator A as multiplication of two functions K, & is not unique. 
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In the fact, let a function h € Z°°(R+) satisfy the condition inffl+ |/i| > 0, 
then functions 

meet the conditions like as functions A'(A,£), !?(A,£). 

Lemma 1. Let w^K e ¿°°(R+) for some b € R and p e [ l ,oo) , a > a* , 
/? < ¡3*, f3 — a > b, then the operator A is bounded in Lp,a^{R+). 

P r o o f . We present the operator in the form 

(9) (A«) (A) = 

oo 

0 

Taking into account (7) and Lemma's conditions, it is sufficient to prove 
that the operator 

oo (10) (A„«)(A) = p - y A ) J A, Q p a A W X O P a A Q dt, 
0 

is bounded. Changing arguments A = exp(—Ai), £ = e x p ( — ) , and denoting 

(11) « (A i ) = patp(e~Xl)u(e~Xl), i (Ax) = !P(e"A\ 1 K ) / 3 ( e " A l ) , 

we obtain the operator A* : LP(R) —>• LP(R) defined as follows 
oo 

M . t ; ) ( A i ) = / f ( 6 - A ! K 6 ) ^ i . 
— oo 

The last operator is consequently represented by the form A+ = 
UA.U-1, where by U : Lp<a'P(R+) Lp(R), U~x : Lp(R) L"'a'?(*+) 
we have denoted the operators: 

[i7u](Ai) = p a A e ~ X l ) u ( e - X l ) , Ax e R; 

= A € R + . 

Because of UV~X = I and ||Z7zi||Jt,j.(m) = IM|.L»,'a'''(»+)> the operators U 
and U~x are isometrical ones. Hence, the operator A« : ¿ p , 0 i ' ^ (R + ) —• 
Lp,a,f3(R+) is by definition isometrically equivalent to the operator «4» = 
UAiU'1 : Lp(R) -»• Lp(R). It remains to notice that i> € I * ( R ) (see (8), 
(10)), and the boundedness of operators in form A* has been proved in [16] 
(see also [4, 12]). 

Observe that in the conditions of Lemma 1 instead of K € ¿°°(R+) it 
is assumed a more precise inclusion wt,K € L°°(R+). Obviously in a trivial 
case b > 0 the second point follows from the first one. But in the case b < 0 
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the parameter b makes it possible to correct for the function the relation 
between the space parameters a,¡3, defined (8). 

Lemma 2. Let p e [ l ,oo) , a > a* , ¡3* > ¡5, b e R, /3 - a > b, I e 
N, and the stronger conditions in comparison with Lemma 1 be satisfied: 
wb\s-gjK € L°°(R\) for all 5 = 0 ,1 ,2 , . . . ,/ , and G R+). 

Then the operator A : R + ) is bounded. (Here the 
derivatives of the function K is the distributional sense.) 

P r o o f . Without loss of generality we shall prove Lemma 2 in the case / = 
1. For this aim it is sufficient to show that the operator A ^ A : Lp ' a '^(R+ ) —• 
¿P' a ' 0 (R + ) is bounded. Let us note that the distributional derivative of the 
function Au is in the form 

n OO a 0 0 1 / \ \ 

•ft(Au)(\)= f ^JSr(A,0*(A,0i.(Ode+ f ()?(-,lU()d(, 
o o ^ ^ ' 

where 1) is the distributional derivative of the function with 
respect to the first argument. Further, we can proceed as follows 

A ̂ ( i l tO(A) = 

1 00 d 
= 7TT J wp_a-b-wb\—K->P(\,Opa,p(\IO-u(OpaAOdt+ 

PaAA) o dX 

i oo J c 
+ 7TT J w^a-b-wbK(\,O-r(X/Ç,l)pa+1,0+1(\/O-u(tfpaAOT-Pa A A) o S 

Now the boundedness of the operator can be verified in a similar way as in 
Lemma 1. 

Lemma 3. Let p G [ l ,oo) , a > a» , ¡3 < /?*, b e R, f3 - a > b, S > 0 
and the function wbK € Z ° ° ( R + ) satisfies the conditions ( 5 ) . Then the 
operator A : £ P . « + M - f c ( r + ) R + ) is bounded for any 0 < 2h < 
min{2 6,fi-a-b}. 

P r o o f . Represent the operator A in the form 

(A«)(A) = 
1 00 

= 7TT f W0-c<-b-2h-WbKlh(*,O-y()>,OPc<AX/Ou(OPoi+h,l3-h(Odt, 
PaAÀ) o 

where 7/i(A,0 = p^1_fl(\)ph,-h(^/0- So, order to prove Lemma 3 it 
is sufficient to show that wbKjh € £°°(R+). First of all note that since 
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wbK € L ° ° (R+ ) and 

7 f c ( A , 0 = 

' £h, l < A < o o , 0 < f < l , 
0 < A < 1, 1 < £ < oc, 
0 < A, £ < 1, 

AVfc,-h(A/0, 1 < A, f < oo, 
it follows immediately, that P1(A)Q1(0[7/lti>i,/i'], Q 1 ( A ) P 1 ( 0 [ t ^ 6 ^ ] 
€ ¿ ° ° (R+ ) . Consequently we need to investigate the functions w^K-fh near 
the zero and infinity points. Consider the function w b Kjh in the neigh-
bourhood of zero (0 < A, £ < 1). (The other point can be handled in an 
analogous way.) Taking into account the condition (5) and denoting t = A/£, 
we obtain: 

| | J ° i ( A ) / , i ( 0 « ' 6 - K " t a | | o o = 

= ||P1 (A)P1 (0^/f (A2 + £ 2 ) - ^ P 1 ( A ) P 1 ( 0 7 ^ ( A 2 + e 2 ) f l | o o < 

< Cmax{||Pi(A)Pi(£)Pi(i)7/ l(A2 + f2)^||oo, 

||P i (A )P i (0Qx ( i ) 7 . (A 2 +e 2 ) f l l =o }< 

<Cm*xi\\Pl(QP1(t)Zs-h(l + (t)2)t\\00, 

\\P1(X)Q1(t)Xs-ht~h(l + i-2)^|oo} < 2*C. 

This completes the proof. 

R e m a r k 2. If we assume stronger conditions in the Lemma 3, namely: 
(i ) 1) € (ii) the functions wb\*-§^K G I°° (R$.) (s = 0,1) 
satisfy (5), then it can be proved that the statement of Lemma 3 is true for 
the space W [ ' a ' p , instead of L p ' a 

To show this fact and the compactness of the inclusion into 
LP>a+hiP~h is a w a y to prove the following statement: Under the conditions 

( i ) - ( i i ) then A is a compact operator in Lp'a+h'P+h(R+). 

We do not prove Remark 2 but propose below (see Lemma 6) weaker 
conditions for the functions K,which are sufficient for the compactness 
of the operator A. Namely, we shall not assume any properties of the distri-
butional derivatives of the functions w^K, as it is in the points ( i ) - ( i i ) of 
Remark 2, but the conditions (5) for WbK with 6 = 0. 

The sets Z,Z$ play an important role. The following two Lemmas for 
the operator determined in (10), show that. 

LEMMA 4. Let p € [ 1 ,00) , a > a * , ¡3 < ¡3*, a > 0, then the operators 

PaA*Qa, QaA*Pa are compact ones in the space £p'a'^(R+). 

P r o o f . Changing arguments similarly as in (11), we obtain that the op-
erators PaA^Qa, QaA*Pa are isometrically equivalent to integral operators 
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in space Lp(R+) with kernels (from I 1 ( R ) ) depending on the sum of the 
arguments. The compactness of such operators was proved in [3] (see also 
[2, 13]). 

LEMMA 5. Let 0 < r < R < oo, p € [l ,oo), a > a* , /3 < (3*. Then the 
operator PRQrA*PRQr is compact in Lp'aif}(R+). 

P r o o f . First of all let us note that the operator PRQTA+PRQT acting 
in the space Lp,a,p(R+) is isometrically equivalent to the operator A* R in 
Lp(r,R), 

R 
A) = f (A/01/9X(A/tMOdZ/Z, X(t) = 9(t, 1 )p*At)/t, 

T 

here x € L1(R+), 1 / p + l / q = 1. Denote by M the unit ball in Lp(r,R) and 
let M = A* rM € Lp(r,R). To prove the Lemma 5 it is sufficient to show 
equicontinuity of the set M.. The boundedness of A4 follows from Lemma 1. 

First of all consider the case p — 1 

sup sup \\PRQS(X + z)v(A + z) - t>(A)||i < 
\z\<h VGM 

< sup ||«||i • sup sup I 
UÉJV ^ 

PRQ, ; ( a + z ) X ( 
A + z , A\|dX 

5 { / K ^ r ) " • * ( ? ) I f ' + J . K ? ) l f } + 
R-2 

S-z 

+ j g * « s s * { / K ) - < ? ) I f + / K ? ) I f } £ 

f 001 / /«/«+*/« -R/i \ 1 
< sup sup f x i + 7 )-x(t) dt+l f + f ) | x ( i ) W = 

o<z<ME<S,R> I 0 J | V U \ J ¿ J J 

= 1(h). 

Using the continuity in mean of functions x G L1 ( R + ) and uniform conti-
nuity of their primitives, it can be obtained that 1(h) —• 0 when h 0, 
q.e.d. 

Now assume that p > 1 and estimate the term into respective norm 

|PRQÌ(A + ZMA + Z ) - I , ( A ) | < 
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f 

+ < 0 
d-i< 

further applying Holder inequality to each integrals we obtain 

< PRQS(A + z) 
- I ^ I V . 

X 

X + z 

M 

1/9 

f ) « 

H t ) \ ' j ) 1 / P + 

+ 
1/9 

X 

X K O I ' f ) 

1/p 
< 

< PRQS(A + z) 1 -
X + z 

1/9 
M Ì / ? ( / | x ( 

2X + z 

X + z llxlh 

X + z 

Ì 

1/9 

1/p 

K o r ^ l + f) 

( / H ^ K ^ r H ? ) 
w o i ' f ) 1 ' " -

Now we can estimate the expression 

sup sup ||Pr<25(A + z)v(X + z ) - v(A)||p < 
\z\<hv£M 

sup IMWIxIll7 ' sup sup \PrQS(X + Z) 1 - ( - M ueAT IzK/i Ae<5,fi> I \A + Z / 

1/9 
X 

x PrQS^ + z) X 
fX + z \ \ d X \ 1 / p „ ^ J2X + z \ 1 / q 

X 

In view of the fact that the second integral has been considered, the net 
result holds 
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sup sup | |PHQ6(A + z)v(A + z) - t7(A)||p < 
\z\<h veM 

C o n s t ^ ^ l i l l x l l ^ + d l x H ^ ) ) 1 / ^ 

which proves the s ta tement of Lemma 5. 

L E M M A 6. Let p G [ l ,oo) , a > a» , / ? < / ? * , / ? - a > b, and w^K G Z0, 

then the operator A is compact in Lp'Q'P(R+). 

P r o o f . Fix £ > 0. From the definition (4), (5) of the set Zq it can be 
found certain r,R€ R + , and integer N, such tha t the following inequalities: 

| | !?( . , l ) | |1 '0 '^ | |P r(A)PP(0«;6/ ir | |oo < e /3 ; 

(12) l) | |1 ' a , , / J | |0/i(A)gfl(0ti>6/i ' | |oo < £/3; 

| | - A-jvlloo < £/3; 
hold. Here the function K ^ is determined in (4). By A ^ denote the operator 
with the kernel function Kp? instead of Wf,K (see (9)). 

Let us consider the operator B = AN —PrANPr — QnANQR. It is evident 
f rom (12) tha t ||A - 5 | | p ' a ' / 3 < e. On the other hand the operator B can 
be rewri t ten in the form B = PrQtAnQtPr + QtAnPt + QrAnPrQt + 

QtPrAnQr + PtAmQt• Further note tha t the function wp-a-bKx in the 
kernel of the operator AN (9) appears as KN in the form (4) also. It means 
tha t AN is the sum of the operators , determined by the composition of 
bounded operators and an operator similarly as A*. This fact together with 
Lemma 4 and Lemma 5 shows tha t the operator B (hence and A) is compact 
in the space Xp-0 i ' / 3(R+) . 

3. Main result 
Now assume tha t w^K £ Z$. Then there exists functions I(\, I\2 and 

a function K$ such tha t w^Ks £ Zs, po,-b^i,Pb,o^2 G £°°(R+)> and the 
following equality (6) is t rue 

(13) K(A,0 = P1(X)P1(0Ki(X/0 + Q i ( A ) Q I ( 0 # 2 ( A / 0 + A ' 5 ( A , 0 . 
Denote by 

( 1 4 ) * x ( i ) - K x i W i t , 1 ) , ¥ 2 ( t ) = K 2 ( t ) 9 ( t , 1 ) . 

Since 6 ¿ 1 , a ' ^(R.4.) (as we have assumed everywhere in the paper) , 
then 

(15) tfi G R + ) , e L 1 ' a + b ' p ( R + ) . 

R e m a r k 3. In spite of the fact t ha t the kernel of the integral operator A 
is not uniquely represented as the product of two functions K , & (Remark 1), 
it is clear t h a t the functions J^i , !^ in (14) are uniquely defined. 
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Let us determine in the space LP(R) operators C\, C2 

00 
(Cit>)(i) = v(t) + J - s)v{s) ds, 

—00 
00 

(C2v)(t) = v(t) + f <P2(t-s)v(s)ds, 
—00 

where (t) = ^ ( e - ^ e " « * , $ 2 ( 0 = 9 2 ( e - * )e - 0 t . 
By the projector P from Lp{R) to Lp(R) we shall below understand the 

operator of multiplication by the characteristic function of the set R + C R. 
Then Q shall be the complementary projector to it in Lp{R). 

T e o r e m . Let p e [ 1 , 0 0 ) , a > a*, f3* >/?,/?- a > b, and wbK G 

ZQ. Then the operator C in is isometrically equivalent with an 
accuracy of a compact one to the pair operator PC\ + QC2(C\P + C2Q) in 
Lp( R). 

P r o o f . Using (13) and evident identities: 

g 1 ( A ) Q 1 ( O A ' 2 ( A / e K , / 3 ( A > - y O = Q i ( A ) Q 1 ( 0 A ' 2 ( A / 0 ( A / 0 / 3 , 

we can reduce the operator C to the form 
(16) C = I + P1A1P1 +Q1A2Q1 + T 0 , 
where 

00 
(Ai»)(A) = p - y A ) f ! ? ! ( A / 0 ( A / 0 a P a A t M O d t / t , 

0 
00 

(A2u)(\) = p-a]p{\) f * 2 ( A / 0 ( A / 0 ' W f M i K / f , 
0 

00 
(T 0«)(A)= J K0(\,t)n*,tHt)dt-

0 
The operator To is compact according to Lemma 6. The compactness of 
the operators Q\AiP\, P\AiQ\ (i = 1,2) follows from similar arguments as 
in Lemma 4 and Lemma 6. So the operator C is represented of the form: 
C — P\(I + A\) + Qi(I + A2) + T*, where T, is the compact operator. 
Changing arguments similarly as in (11) we obtain the required conclusion. 

This Theorem makes possible to use the results from [2, 3, 13] to inves-
tigate the operator C. Specifically, the symbol [3, 13] of the pair operator 
PC\ + QC2 in LP(R) is identical to the symbol c(A,0) of the operator C in 
Lp>a'P(R+). Hence 
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c(A,0) = C l ( A ) ^ + C 2 ( A ) i y ^ A e l , 6 = ±1. 

Here Ci(A) = 1 + - ¿A), c2(A) = 1 + W2(/3 - iX), and «(5) is Mellin 
transform of a function u(A): 

00 

u(s)= f u{X)Xa~1dX. 
0 

Let us note that from (15) it follows that Cj(A), c2(A) are analytical functions 
in layers 0 < 5sX < (3 — a — b, — f3 + a + b < SsX < 0 respectively (or more 
precisely a . - a < 5A < /3* - a - 6, - / ? + a , + b < QA < f3* - ¡3. 

C O R O L L A R Y 1. Under the conditions of Theorem be satisfied and c(A, 6) 
/ 0 for all A e R , 0 = ±1 ,C : LP'a^(K+) R + ) is a $ operator [14], 
and its index can be determined by the formula (Theorems 3.2, 3.3 section 
7 from [2]): 

k = ind C = ind c2(A) — ind ci(A). 
C O R O L L A R Y 2 . Assume the hypotheses of Theorem, and besides: 

1°. c(A,0) ^ 0, A € R, 9 = ±1, 
2°. k = i ndC = 0, 
3°. d imkerC = 0 in space R + ) . Then: 
(i) the equation Cu = f has a unique solution u € 2/p'°f''3(]R+) for any 

f € R+), 
(ii) "truncated" equation: PRQI/RCPRQI/RUR = PRQI/RJ has a unique 

solution UR E Lp(R~l,R), beginning from a certain R > 0. After 
extending the function UR on the entire axis (UR) by zero, it converges 
for R —* 00 to the solution of the equation Cu = / with respect to 
norm of the space Lp,a>P(R+). 

Proof of Corollary 2 follows immediately from Theorem and Theorem 5.1 
section 11 [2], using the stability of the index [14] and the projective process 
with respect to the perturbation on a compact operator (Theorem 3.1 sec-
tion II [2]). Let us here note that the "truncated" equation is not a singular 
equation but it is Fredholm's type one. Furthermore, it is easy to show, using 
the results from [2], that the Galerkin method [6] for the equation Cu = f 
in Hilbert space ¿2 , 0 , '^(R+) is valid with respect to the set of functions 

= 4>nP~]p : 

< M A ) = A), 0 < A < 1; „ = 0> 1 > 2 f _ 
I. 0, 1 < A < 00, 

<f>n(A) = -</._„_! (A"1), n = - 1 , - 2 , - 3 , . . . , 

where An(t), (n = 0 ,1 ,2 , . . . ) are normed Laguerre polynomials. 
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COROLLARY 3. In the case when the statements of Corollary 2 and 

Lemma 2 hold, the equation Cu = / has a unique solution u £ 

for any f e W[f'p(R+). 

COROLLARY 4. Let /3 — a > b andwbK £ Z% for certain S > 0 be (instead 

of (3 — a > b and w^K € ZQ) in the hypotheses of Theorem (see Lemma 3). 
Besides, presuppose that the conditions 1-3 of Corollary 2 hold not only for 

the values a, (3 but for a+h, f3—h with certain h (0 < 2h < min{2£, f3—a—b}) 

also. Then, as it follows from Corollary 2, the equation Cu = / has the 

unique common solution u e Xp,0i,^(R+) in each of the spaces £p'a'^(R+), 

Lr<a+h>P-tl(R+) (LP'a'P(R+) C and for the convergence of 

the projective process the following estimate holds 

\\u-uR\\p'a+h'/3-h = o(R~h), R^ oo. 

In fact, from Theorem 2.1 section 11.2 [13] it follows that ||fi-«B||p'or,/J < 
D\\f-PnQi/Rf\\p'a'^ Wu-UR^+h^-h < Dh\\f-PRQ1/Rf\\P'°'+h<0-h, 

where the constants D, Dh do not depend on the value of R and the function 
/. It remains to be noted that 

11« - uRihf^h^-h < Dh R~h\\f - PRQ1/Rf\\p'a'p. 

Of course, in the space Lp'a,l3(R+) the estimate for the convergence is 
weaker. 

Let us here note that if the hypothesis of Corollary 4 are satisfied then the 
functions Ci(A), c2 (A) do not have any zeros in the corresponding domains 
of analyticity 0 < QA < h, —h < SA < 0. 

Now assume that the functions ci(A), 02(A) do not satisfy the conditions 
of Corollary 4 and have numerous zeros in respective layers. By aij (I = 
1,2; j = 1,2, . . . , mi) we denote all different zeros of these functions in the 
regions 0 < 9A < h, —h < 9A < 0, respectively, pij — their multiplicity. 
Then it can be shown the following corollary 

COROLLARY 5. Let p e [ l , oo ) , a > a* , /?* > 6 > 0, f3 - a > b and 

WBK € ZG. Besides, let the following conditions be satisfied for a certain 

0 < 2 h < min{26,/3- a - b}: 

1°. C l ( A ) / 0 , c 2 ( A ) # 0 , 
2°. ci (A + ih) / 0, c 2 (A - ih) ^ 0. 

Then any nontrivial solution of the homogeneous equation Cu0 = 0 in the 

space Lp,a+h'P~h furnishes the asymptotics 

MI 

u0(A) = A - * { J 2 A i a i ' P i i ( l nA ) } + o{A"a), A —> 0, 
j=1 
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«o(A) = A - ^ j J3A<a«P2,-(lnA)} + o(A""), A oo. 

i=i 
Here P[j denote polynomials of the degree not greater then pij — 1. 

P r o o f . We take advantage of the representation of the operator C as 
in (16): C = I + PiAiPi + QIA2QI + TSPX + TSQX. According to Lemma 3 
it is easy to see that the operators: T sPi : LP.«+M-fc (#>.«./») 
Lr>,a,p-h^ T s q i . LP,a+h,p-h (Lp,a,p) Lp,a+k,p a r e bounded. Af-
ter exchanging the arguments similarly as in (11) and denoting <j>(t) = 
Pa+k1,p-h1{e~t)u(e~t) with hi = h/2, we arrive to the pair operator C* 
in space ehl^Lp(R) 

(oo 

<f>(t)+ f $l(t-s)4>(s)ds+(T?<f>){t), 0 < t < oo; 
4>(t) + f #5(t - s)(f>(s) ds + (TZ4>)(t), -00 < t < 0. 

o 

Here = = !P2(e - i)e ( ' l l- / 3 ) i . Let us note that 
T* : e^I ' lL^R) -» R), T2* : e ^ l ' I ^ R ) e ^ L ^ R ) are bounded 
operators, and from (8) one can conclude that 6 e~' l ll ili/1(R). At this 
point the statement of Corollary 5 follows from the results of Appen-
dix [2]. 

COROLLARY 6. It is evident that any nontrivial solution of the homo-
geneous equation from Corollary 5 can be represented in the form: UQ = 
v + w, where v 6 W(

p^+h'p~h(R+) for any n e N,v> € Lp-a ' /3(R+). Be-
sides, if we assume that the conditions of Lemma 2 are also satisfied, then 
w G with the respective value of I. 

R e m a r k 4. Corollary 3 and Corollary 6 make possible to obtain some 
simple result on a regularity of solutions of the equations. In fact it is ev-
ident that W$ a , / J (R + ) C W£(ile) (fi , = ( e , l / 0 ) for any £ € (0,1). Here 
Wj,(Sle) is the usual Sobolew space [6]. Then from the embedding theorem 
[6] it follows that Wfca,>3(R+) C C r(R+) if r + 1 € N and r < / - l/p 
(r < I — 1 for p = 1). Moreover, the behaviour of these functions and its 
classical derivatives near zero and infinity points can be investigated by their 
asymptotics. 

In conclusion, let us note that results of the paper can easily be extended 
on systems of the singular equations with analogous kernels. Those systems 
present some boundary value problems (see [8]). 
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