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1. Introduction
The aim of this paper is to investigate the integral operator C = I + A,
here I — the identity operator, and the operator A is of the form

(1) ()N = [ KW Ee) de,
0

where K € L®(R?), and the function ¥(),£) is positively homogeneous of
the degree -1, i.e.

TU(TA,TE) =¥(AE), AL TER,.

Nonhomogeneous equation Cu = f appears when solving linear boundary
value problems in combined domains with irregular boundary points {7, 8].
Besides, nontrivial solutions of the homogeneous equation Cu = 0 make it
possible to construct solutions of one class of homogeneous linear boundary
value problems, which play an important role in asymptotic methods theory
[10].

Integral equations with the kernels represented by positively homoge-
neous of degree — 1 functions were investigated by many authors [see cf. 1,
9, 11, 15]. The results were eventually based on the theory of Wiener—-Hopf
integral equations on a semi-axis with difference kernels [2, 3, 5, 13]. The ex-
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tensive literature on the operators with fixed point singularities is reviewed
in [1, 13].

Unfortunately, those results can not be immediately applied to the equa-
tion (1). The first point is that functional spaces must be different in com-
parison with those presented in mentioned papers, and the second point is a
necessity to investigate an influence of the function K(A,£). Moreover, tak-
ing into account the fact that the function K'(A,£) in (1) can be numerically
found from certain recurrence procedure, see [7, 8], we need to obtain weak-
est conditions on K (A,&) which allows to separate properly the operator A
on singular and compact parts.

2. Notation, definitions and basic facts

We denote by LP*#(R,) a weighted Lebesgue space of functions p-
summable on R, with the norm [jul| of u € LP*#(R,.) given by

yOL0 T - ;1’- — ga, 66(0’1)’
lul "—(Of [u(§)[Peh 566" de), pa,ﬂ(o-{gﬁ, £ € (1,),

for some o, 8 € R, p € [1,00). We shall also consider a space W, (1) *P(R,) of

functions, having distributional derivatives () ¢ LPo+76+i(R ) up to the
order [, with the norm

Iu”p L0 __ Z “u(z)”p.aﬂ,ﬁﬂ

These spaces are natural for the investigation of the operator A, because
the reduction of the boundary value problems to integral equations Cu = f
has been justified [7, 8] in these spaces only.

Let us note that the space W(’;i ®(R ) is not the usual Sobolev space [6].

Functions from W(’;ia’ﬁ (R4) and its distributional derivatives have intercon-
nected behaviour in the neighbourhood of zero and infinity. It is evident that
for any h > 0,1 € N: we have L”'%’%(R+) = LP(Ry), LPx~hAHM(R ) C
LraA(Ry), W'(’;i ®(R,) C LP*P(R,), though the embeddings are not com-
pact. Here the spaces L>*°(2), LP(), (p € {1,00)) are the usual Banach
spaces with respective norms.

By P, : X — X we shall understand the operator of multiplication by
the characteristic function of a set (0,a); Q, = I — P, is the complementary
projector to it in X. Here X (= X(R4)) is any of the defined above spaces.

We shall distinguish the following sets from the space L(R3 ):
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a. Z — the closure in L°(R?) of the set of functions in form

al A
@ > 5O (3 ) S € 2R

b. Zs C Z (§ > 0) — the set of functions f(A, ), satisfying the additional
conditions

(®)  limoup (X" + )7 1F(0, ) = fim sup(X* + )5 15161 =0;

c. 25 C Z — the set of functions f(A,§), for which one can find fi, f €
L*(R4), fs € Z5 such that

6)  f(\E)= PNPEOf (g) + QN (g) ¥ F5(00).

Set Z; (as well as Z) is not dense, of course, in L>°(R%), however it is

“sufficiently rich”, for example C*~! (]RT?,__) C Z for any natural k.
Let us consider the function
A _l
Wa,8(A,§) = pa,p(A) [Pa,ﬁ(f)/’a,ﬁ(z)] :
The following equality can be verified in a straightforward way
A A
a0 6) = BOVA(Op00-5( ¢ ) + Q1N (Noa-ao(F )+
+ [P(A)Q1(8) + Q1(A) Pr(£)] pp-a,e-5(£)-

Consequently the function wy g(A, ) depends on a difference of the param-
eters a, ( only, so we shall write

wa,ﬁ(’\yg) = wﬁ—a(’\,f)'
It is easy to see that for any a,b € R, ¢,6 € R,
(7) Wq * Wp = Wa+by we € Z;» ”wCIIOO =1

Let us consider the integral operator A, determined in (1). Through-
out the paper, we shall assume that K € L°(R?), the function ¥(A,¢) is
positively homogeneous of the degree —1 (see (2)) and satisfies the condition

(8) v(-,1) € LV*P(R,),

unless otherwise is specified. By a,, §* we denote infand sup, respectively,
over o and § for which condition (8) is true.

Remark 1. It is clear that the representation of the kernel of the
integral operator A as multiplication of two functions K, ¥ is not unique.
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In the fact, let a function h € L*(R, ) satisfy the condition infg, |h| > 0,
then functions

K*(X,6) = K(\6)-h*1 (A /€),  #*(X,€) = ¥(X,€) - h¥H()/¢),
meet the conditions like as functions K(A,§), ¥(A,€).

LEMMA 1. Let wy K € L®(R2) for some b € R and p € [1,00), a > au,
B < B*, B—a > b, then the operator A is bounded in LP*"(R,).

Proof. We present the operator in the form
9) (Aw)() =
= 75N [ wo—amsws K (A, €)¥(X,€)pa,6(A/€)u(€)pa,s(€) de.
0

Taking into account (7) and Lemma’s conditions, it is sufficient to prove
that the operator '

10)  (Aaw)(N) = P75 [ E(X,E)pa,s(A/E)u(E)pa,s(E) dE,

is bounded. Changing arguments A = exp(—X), £ = exp(—£1), and denoting
(D) o) = paple™u(e™),  B(A) = B, Dpaple™),
we obtain the operator A, : LP(R) — LP(R) defined as follows
(A)M) = [ B(&1 — M)o(&) déy.
-0
The last operator is consequently represented by the form A, =
UA, U1, where by U : LP*A(R,) — LP(R), U7 : LP(R) — LP*A(R,)
we have denoted the operators:
[Uu)(M1) = pa,p(e™*)u(e™™), A €R;
[U~1](A) = p;}ﬁ(/\)v(—ln A), AER,.

Because of UU™! = I and ||Uu||z»w) = [ul|Ls=.5(n,), the operators U
and U-! are isometrical ones. Hence, the operator A. : LP*A(Ry) —
LP>A(R,) is by definition isometrically equivalent to the operator A, =
UAU! : LP(R) — LP(R). It remains to notice that & € L!(R) (see (8),
(10)), and the boundedness of operators in form .A. has been proved in [16]
(see also [4, 12]).

Observe that in the conditions of Lemma 1 instead of K € L*®(R%) it
is assumed a more precise inclusion wy, K € L®(R?% ). Obviously in a trivial
case b > 0 the second point follows from the first one. But in the case 6 < 0
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the parameter b makes it possible to correct for the function ¥ the relation
between the space parameters a, 3, defined (8).

LEMMA 2. Let p € [1,00), @ > a., f* > B, b e R, B-—a > b1 €
N, and the stronger conditions in comparison with Lemma 1 be satisfied:

)«363/\, K € L>(R2) for all s = 0,1,2,...,1, and ¥(-,1) € W(ll)""p(R+)

Then the operator A : LP*P(R.) — W(’;i #(R4) is bounded. (Here the

derivatives of the function K is the distributional sense.)

P roof. Without loss of generality we shall prove Lemma 2 in the case [ =
1. For this aim it is sufficient to show that the operator /\—‘%A : [PA(Ry) —
LP*P(R, ) is bounded. Let us note that the distributional derivative of the
function Au is in the form

A0 = [ ZEOov0.ou0der [ gro.ov(Ga)uod,

where ¥/(-,1) is the distributional derivative of the function ¥(-,1) with
respect to the first argument. Further, we can proceed as follows

0
~ Pa ;13()\) f "’ﬁ-a—b‘“’b*ifx W(X,€)Pa,6(A/€) - u(€)pa,p(€)dé+
+paﬁ()\) f Wa—a—b - WK (X, €) - W'(A/E,1)pat1,p41(N/E) - U(f)/’a,ﬁ(ﬁ)

Now the boundedness of the operator can be verified in a similar way as in
Lemma 1.

LEMMA 3. Letp € [l,0), a > a., 8 < B*,beR, B-a>b 6§ >0
and the function wyK' € L*(R,) satisfies the conditions (5). Then the
operator A : LPothB-h(R, ) — L[P*B(R,) is bounded for any 0 < 2h <
min{26, 8 — a — b}.

Proof. Represent the operator A in the form
(Au)()\) =

Pa ﬁ(/\) f Wa—a—b-2h W K YR(A, £)- W (A, €)pa s( A E)u(E)path p—n(E) dE,

where y,(),€) = p;y_h(/\)ph,_h(/\/f). So, in order to prove Lemma 3 it
is sufficient to show that w,Kvy, € L(R%). First of all note that since
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wyK € L*(R%) and

&k, I<i<oo, 0<€<1,
£k, 0<A<1,1<€< o0,
}‘_hph,—h(’\/f)7 0< ’\’ £<1,
Mon_n(ME), 1< €< oo,

it follows immediately, that P(A)Q1(&)[vrweK], Q1(A)Pi(&)[yrwsK]
€ L*(R3 ). Consequently we need to investigate the functions w, Ky, near
the zero and infinity points. Consider the function wyK+y, in the neigh-
bourhood of zero (0 < A, £ < 1). (The other point can be handled in an
analogous way.) Taking into account the condition (5) and denoting ¢t = A/€,
we obtain:

IPL(A)PL(E)ws K nlloo =
= [|Py (A PL(&)wp K (A? + €)% - PLO)P(E)1n(A? + €)F |0 <
< C max{||Py(N)P(€) P (t)1h(A? + €2 |co,
[P OVPUOQLETRO? + €)E I} <
< Cmax{[| P ) PLOE A + (1)) ¥ ]| o
IPL(N)Q1()A A (1 + 172) 8|0} < 28C.
This completes the proof.

7h(’\’£) =

Remark 2. If we assume stronger conditions in the Lemma 3, namely:
(i) (-, 1) € W *P(Ry), (ii) the functions wpA* 2K € L°(R%) (s = 0,1)
satisfy (5), then it can be proved that the statement of Lemma 3 is true for
the space Wlp’a’ﬁ, instead of LP*#,

To show this fact and the compactness of the inclusion W} *# into
LP:at+hB=h i5 3 way to prove the following statement: Under the conditions
(i)-(ii) then A is a compact operator in LP-*+hA+h(R,).

We do not prove Remark 2 but propose below (see Lemma 6) weaker
conditions for the functions K, ¥, which are sufficient for the compactness
of the operator A. Namely, we shall not assume any properties of the distri-
butional derivatives of the functions ¥, w, K, as it is in the points (i)-(ii) of
Remark 2, but the conditions (5) for wy K with § = 0.

The sets Z, 25 play an important role. The following two Lemmas for
the operator A., determined in (10), show that.

LEMMA 4. Let p € [1,00), @ > a., B < f*, a > 0, then the operators
P, A,Q., Q.A.P, are compact ones in the space LP*P(R,).

Proof. Changing arguments similarly as in (11), we obtain that the op-
erators P, A,.Qq, Q. A.P, are isometrically equivalent to integral operators
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in space LP(R;) with kernels (from L!(R)) depending on the sum of the
arguments. The compactness of such operators was proved in [3] (see also
(2, 13]).

LEMMA 5. Let 0 < 7 < R < 00, p € [1,00), a > au, 8 < B*. Then the
operator PrQ,A,PrQ, is compact in LP*P(R,).

Proof. First of all let us note that the operator PrQ},A.PrQ, acting

in the space LP*P(R, ) is isometrically equivalent to the operator A} p in

L?(r, R),
R
(Ar )N = [ (MOM (M Eu©)dElE,  x(2) = ¥(2,1)pa,s(0)/t,

here x € L'(R4), 1/p+1/q = 1. Denote by A the unit ball in L?(r, R) and
let M = A} gpN € LP(r, R). To prove the Lemma 5 it is sufficient to show
equicontinuity of the set M. The boundedness of M follows from Lemma 1.

First of all consider the case p=1

sup sup [[PRQs(A + )02 +2) — v(A)lh <

Pas (342 )e(222) - x(3)]| 2 <

)@l SRl

)-x(3) 2] <
(

T f (%)
(t+£) X(t)‘d”

s/6+2/¢  Rf¢
r J)
= I(h).

R

<sup Jlully - sup  sup f
2]<h EE<E,R>

R—2z
< sup  sup { j‘ x(

o<z<hEe<s,R> | ;5

R
+ sup sup { f

X(
-h<z<0 €<8,R> LV

[o o]
< sup sup {2 f
o<z<hge<,R> L

X dt} =

6/¢ R/¢- 2/6

Using the continuity in mean of functions x € L!(R;) and uniform conti-
nuity of their primitives, it can be obtained that Z(h) — 0 when h — 0,
g.e.d.

Now assume that p > 1 and estimate the term into respective norm

|PRQs(A + 2)v(A + 2) — (M) <
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< PrQs(A + 2) f (A—;Z)l/q—(%)l/q X(/\+Z) (5)'

+ [ (Z)llq PRQ&(/\+Z)X(/\;Z) —X(%)

further applying Hélder inequality to each integrals we obtain

AN F Atz (A+2)]de\V?
=) IR CElE)
(Jhers)”

5

9",
(F a2 ()"
|

o [Prae o (R2) = x(2)]cor %)™ <

)

d¢
u(§) T S

< PrQs(A + 2)

|u(€)IP

< PrQs(X + 2)[1 - (%) 1/9< ( ) dE)l/p.{.
+PrQs(A + z)(% . zII II1) .
<( I |Pesa+ w(2E2) -x(3) juor £ )w.

6
Now we can estimate the expression

sup sup [|Pr@s(A + 2)o(A +2) — vV, <

Jz]<h vEM
A 1/q
- ( AM) Y

2)\+z)1/q

sup [ullxll/” sup  sup  { PrQa(x+2)
dA

|z|<h AE<6,R>
1/p
——) + PrQs(A + z)(

Atz
X( € ) 3
o flpacen(2) ()])"}

In view of the fact that the second integral has been considered, the net
result holds

R
X( | PrQs() + 2)
5
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sup sup || PrQs(A + 2)v(A + 2) — v(V)||, <
|21<h vEM

Const(s, R){%llx|l1h+ (lelle(h))””},

which proves the statement of Lemma 5.

LEMMA 6. Letp € [1,0), a > a., 3 < f*, B —a > b, and wpy K € 2,
then the operator A is compact in LP*P(R,).

Proof. Fix ¢ > 0. From the definition (4), (5) of the set Zp it can be
found certain 7, R € Ry, and integer N, such that the following inequalities:

12 C, DIF P PH ) Pr(€)ws K lloo < €/3;

(12) 12 DIM*PIQR(ANQR(E)ws K lloo < €/3;
(DI P lwsK = Knlloo < €/3;

hold. Here the function K is determined in (4). By An denote the operator
with the kernel function K instead of wp K (see (9)).

Let us consider the operator B = AN— P, AN Pr—QRrRANQR.- It is evident
from (12) that ||A — B||?"*# < ¢. On the other hand the operator B can
be rewritten in the form B = PrQ,.ANQ,.Pr + Q-ANPr + QrANPRrQ +
QrPRANQR + PrANQ,. Further note that the function wg_o—3Kn in the
kernel of the operator Ay (9) appears as K in the form (4) also. It means
that Ay is the sum of the operators, determined by the composition of
bounded operators and an operator similarly as A,. This fact together with
Lemma 4 and Lemma 5 shows that the operator B (hence and A) is compact
in the space LP*A(R, ).

3. Main result

Now assume that wy K € ZJ. Then there exists functions Kj, K; and
a function K such that w,Ks € Z5, po,—sK1,pp0K2 € L*(R4), and the
following equality (6) is true
(13)  K(A, 8 = P(A)P(§)K1(A/E) + Q1(MN)Q1(§) K2(A/€) + Ks(A, ).
Denote by
(14) Ui(t) = K1(1)¥(t,1), ¥a(t) = KL()¥(¢,1).
Since ¥(-,1) € L»*A(R;) (as we have assumed everywhere in the paper),
then
(15) U € LVPTN(Ry), ¥y € LVHNA(R,).

Remark 3. In spite of the fact that the kernel of the integral operator A
is not uniquely represented as the product of two functions K, ¥ (Remark 1),
it is clear that the functions ¥;, ¥, in (14) are uniquely defined.
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Let us determine in the space LP(R) operators C;,C2

(Crv)(t) = v(t) + }?dh(t — s)v(s)ds,

C)(®)=v(t)+ [ Ba(t - s)v(s)ds,

where &1 () = ¥y(e~)e™*t, $y(t) = Wy(e™t)e P,

By the projector P from LP(R) to L?(R) we shall below understand the
operator of multiplication by the characteristic function of the set Ry C R.
Then @ shall be the complementary projector to it in LP(R).

TEOREM. Let p € [1,00), @ > ., f* > 8, B —a > b, and w, K €
Z§. Then the operator C in LP*P(R,) is isometrically equivalent with an
accuracy of a compact one to the pair operator PCy + QC2(C1P + C2Q) in
LP(R).

Proof. Using (13) and evident identities:
Py NPy (E)E1(A/€)pa,p(A)pg 5(€) = PLA)PL(E) K1 (A/€)(A/€)7,
QuNQ1(E)K2(A/E)pa,p(N)r7 5(E) = Q(N)Q1E K2 (N/E)(N/E)P,

we can reduce the operator C to the form
(16) C=1+P AP+ Q14,01 +To,
where

(A1) = p250) [ BuENNE)® pas(€)u(€) dEfE,
(Az)(X) = 250 [ B ONE pas(Eu(E) e/,

D)W = | o0 NN Eu(€) de.
0

The operator Ty is compact according to Lemma 6. The compactness of
the operators Q1 A; P, PLA;Q1 (i = 1,2) follows from similar arguments as
in Lemma 4 and Lemma 6. So the operator C is represented of the form:
C = P(I+ A))+ Q:1(I + A2) + T., where T is the compact operator.
Changing arguments similarly as in (11) we obtain the required conclusion.

This Theorem makes possible to use the results from [2, 3, 13] to inves-
tigate the operator C. Specifically, the symbol [3, 13] of the pair operator
PCy + QC; in LP(R) is identical to the symbol ¢(A,8) of the operator C in
LpB(R,). Hence
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6 ’
¢(\,8) = c,(A)li + cz(/\)—, MER, 0 = £1.

Here ¢;(A) = 1+ ¥(a — iA), c2(A) = 14 Wy(8 — i}), and #(s) is Mellin
transform of a function u(A):

(e o]

a(s)= [ u(WAtdA

0
Let us note that from (15) it follows that ¢;(A), c2(A) are analytical functions
in layers 0 < SA< B —a—b, -8+ a+ b < S < 0 respectively (or more
precisely a, —a < SA<f*—a-b,-B+a,+b< A< [* = 4.

COROLLARY 1. Under the conditions of Theorem be satisfied and ¢(),0)
#0forallAeR,0==1,C: LP*P(R,) — LP*P(R,) is a ® operator [14],
and its indez can be determined by the formula ( Theorems 3.2, 3.3 section
7 from [2)):

k =ind C = ind ¢z(A) — ind ¢1(A).
COROLLARY 2. Assume the hypotheses of Theorem, and besides:

19 ¢(X\,0)#0, AeR, = +1,

20. k=indC =0,

3%. dimkerC = 0 in space LP*P(R,). Then:

(i) the equation Cu = f has a unique solution u € LP*P(R;) for any
fe€ Lp,a,ﬁ(R+)’

(i) “truncated” equation: PRQ1/rC PRQ1/RUR = PRQ1/Rf has a unique
solution ur € LP(R~1, R), beginning from a certain R > 0. After
eztending the function ugr on the entire azis (ugr) by zero, it converges
for R — oo to the solution of the equation Cu = f with respect to
norm of the space LP*P(Ry).

Proof of Corollary 2 follows immediately from Theorem and Theorem 5.1
section 11 [2], using the stability of the index [14] and the projective process
with respect to the perturbation on a compact operator (Theorem 3.1 sec-
tion II [2]). Let us here note that the “truncated” equation is not a singular
equation but it is Fredholm’s type one. Furthermore, it is easy to show, using
the results from [2], that the Galerkin method [6] for the equation Cu = f
in Hilbert space L*»*P(R,) is valid with respect to the set of functions

¢g'ﬁ = ¢np;,lp :

_ V224, (—2ln)), 0< A< _
¢n(A)-{ 0. <A< on, n=0,1,2,...
$a(A) = —p_n1(A7Y), n=-1,-2,-3,...,

where A,(t), (n =0,1,2,...) are normed Laguerre polynomials.



792 G. S. Mishuris

COROLLARY 3. In the case when the statements of Corollary 2 and
Lemma 2 hold, the equation Cu = f has a unique solution u € I/V(r;ia’ﬁ(R+)

for any f € W/'(’;SO"‘G(R+).

COROLLARY 4. Let f—a > b and wy K € Z§ for certain § > 0 be (instead
of B—a 2> band wK € Z§) in the hypotheses of Theorem (see Lemma 3).
Besides, presuppose that the conditions 1-3 of Corollary 2 hold not only for
the values a, B8 but for a+h, f—h with certain h (0 < 2h < min{26, ~a~b})
also. Then, as it follows from Corollary 2, the equation Cu = f has the
unique common solution u € LP*P(Ry) in each of the spaces LP*P(R,),
LpoathB=h(R ) (LP*PF(Ry) C LPotmP=h(R ) and for the convergence of
the projective process the following estimate holds

llu - TRl >tM0H = o(RH), R — oo,

In fact, from Theorem 2.1 section 11.2 [13] it follows that |ju—%g||P*? <
D||f = PrQ1/rSIP*?, ||lu = Trpl|Po* 7P~ < Dy f ~ PRQ1/rf||PotmP-",
where the constants D, D, do not depend on the value of R and the function
f. It remains to be noted that

llu— GgulfPe*™P=* < Dy R7M|f = PrQ1/RFIP*P.

Of course, in the space LP*P(R;) the estimate for the convergence is
weaker.

Let us here note that if the hypothesis of Corollary 4 are satisfied then the
functions ¢1(A), c2(A) do not have any zeros in the corresponding domains
of analyticity 0 < SA < h, ~h < GSA 0.

Now assume that the functions ¢;()), c2(A) do not satisfy the conditions
of Corollary 4 and have numerous zeros in respective layers. By a;; (I =
1,2; j =1,2,...,m;) we denote all different zeros of these functions in the
regions 0 < SA < h, —h < SX < 0, respectively, p;; — their multiplicity.
Then it can be shown the following corollary

COROLLARY 5. Let p € [1,00), @ > ay, f*> 6,6 > 0,8 —-a > b and
wpK € Z§. Besides, let the following conditions be satisfied for a certain
0 < 2h < min{28,8 — a — b}:

10. cl(/\) # 0, Cz(A) 75 0,
20, ci(A+ ih) # 0, es(X — ih) # 0.

Then any nontrivial solution of the homogeneous equation Cug = 0 in the
space LP*thB=t furnishes the asymptotics

my
uo(A) = ,\-a{ SoXm P A+ oA, A0,
Jj=1
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ma
uo(X) = AP { 3 N¥e Pyy(in ,\)} +o(A?), - oo
i=1

Here P;; denote polynomials of the degree not greater then p;; — 1.

Proof. We take advantage of the representation of the operator C as
in (16): C = I+ PLA1 PA+ Q142Q1 + Ts Py + T5Q1. According to Lemma 3
it is easy to see that the operators: T; P : Lpothf=h _, (LP'“"@) —
LpB=h TeQ, : [pothB-h _, ([pa.B)y _ [Pathl are bounded. Af-
ter exchanging the arguments similarly as in (11) and denoting ¢(t) =
Pathy,f-hy (€ )u(e™) with by = h/2, we arrive to the pair operator C*
in space eM ! [P(R)

A0+ [ Bi(t—)0(s)ds + (TA)D), 0<t< oo

(CT)(t) = eo
$(t)+ [ B3t — s)g(s)ds + (TF$)(t), —o0 <1< 0.

Here &3(t) = (e t)e~(ath)t @3(t) = Wy(e~t)e(h1=A)t, Let us note that
Ty : emlLP(R) - e~MtLP(R), Ty : eMIILP(R) — e"!LP(R) are bounded
operators, and from (8) one can conclude that &7 € e~ I{IL1(R). At this
point the statement of Corollary 5 follows from the results of Appen-
dix [2].

COROLLARY 6. It is evident that any nontrivial solution of the homo-
geneous equation from Corollary 5 can be represented in the form: up =
v + w, where v € W(’;;)a“’ﬁ'h(]lh) for anyn € N, w € LP»*P(R,). Be-
sides, if we assume that the conditions of Lemma 2 are also satisfied, then

€ W(';ja’p (R4) with the respective value of 1.

Remark 4. Corollary 3 and Corollary 6 make possible to obtain some
simple result on a regularity of solutions of the equations. In fact it is ev-
ident that W(’Zja’ﬁ(R+) C Wi(Q) (2 = (¢,1/¢)) for any € € (0,1). Here
WJ(R,) is the usual Sobolew space [6]. Then from the embedding theorem

[6] it follows that W/™"(Ry) C C"(Ry) ifr+1 € Nand r <1—1/p
(r £ 1-1 for p = 1). Moreover, the behaviour of these functions and its
classical derivatives near zero and infinity points can be investigated by their
asymptotics.

In conclusion, let us note that results of the paper can easily be extended
on systems of the singular equations with analogous kernels. Those systems

present some boundary value problems (see [8]).
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