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Hypersingular integrals and integral equations became very popular last
decade in computational mechanics. The reason is quite clear: they provide
a natural and effective means to solve problems involving discontinuities.
These are problems of cracks and interacting blocks in elasticity; thin wings
in fluid dynamics; shields in electroplating; low permeability walls and geo-
textile layers in groundwater studies, etc.

But these integrals and their direct values have a rather long history.
Direct values of hypersingular integrals became generally known as a result
of publication in 1923 of the famous Hadamard lectures on Cauchy prob-
lem for hyperbolic equations (supplemented French edition was published in
1932 [1}). J. Hadamard termed the direct values as "finite part integrals”.
They are now also widely known as Hadamard’s integrals. Many years
later, in his book ”Psychology of invention in mathematical field” edited
in 1954 (2], Hadamard wrote (my back translation from Russian): I could
no more avoid this method than the prisoner in Edgar Allen Poe’s poem
"The pit and the pendulum’ could avoid the pit in the center of his dun-
geon.”

These integrals were a great invention and became an important stimulus
to the development of distribution theory. R. Courant in his course ”Par-
tial differential equations” [3] wrote (again my back translation): ” Actually,

* This paper is an abridged version of the lecture presented at the Oak-Ridge National
Laboratory (Oak Ridge, USA, May 6, 1994) and repeated at the 6-th Symposium on
Integral Equations and Their Applications held at the Institute of Mathematics, Warsaw
University of Technology, Poland, December 6-9, 1994.
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introduction of the finite part integrals by Hadamard became an essential
motive for creation of the modern distribution theory”. :

But this development, in fact, provided such a powerful mathematical
means of investigations that, it seemed, there was no need for Hadamard’s
integrals. Indeed, an Hadamard integral is simply an explicit form of the
corresponding functional.

Interest in hypersingular integrals was revived with the development of
computers, when numerical calculations based on integral equations became
very popular, providing good reasons for using hypersingular equations. As
mentioned above, these equations provide a natural means for solving prob-
lems with discontinuities on open or closed surfaces, such as cracks or the
interacting surfaces between blocks or cracks.

Over the last decade there have been many publications on the applica-
tion of hypersingular integrals in numerical calculations (see, e.g. [4]) and,
what originally appeared to be new and complicated, now seems simple and
even naive.

Unfortunately, there is no single book or single reference that provides a
good overview of hypersingular integrals. So, it seems reasonable to present
new results, obtained recently by the author and S. G. Mogilevskaya, in
frames of some simple methodology.

1. Methodological concepts

1.1. On the term ”hypersingular integral”

The term "hypersingular integral” is used in three different ways:

(i) as a proper integral, when a field point is outside of the surface of
integration;

(ii) as a limit which results from a normal limit process, when a field
point tends to be a point of the integration surface;

(iii) as a direct value, i. e., in the sense of a finite part (Hadamard)
integral; in this case a field point is situated on the surface of integration
and we need to define how to interpret the integral.

Let us discuss in brief these three meanings and start with their source
that is singular solutions.

1.2. Singular (fundamental) solutions and potentials

Singular solutions play a key role in problems described by partial differ-
ential equations. Consider for example the two-dimensional Laplace equa-
tion. In all applications in acoustics, hydrodynamics and elasticity the main
terms entering into the differential equations are generated by the singular
solution U of the Laplace equation. Additional terms occur in elasticity prob-
lems, but the discussion of these terms can be reduced to that of Laplacian
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terms. In two-dimensional case U = —Inr/(27) while in three dimensions
U = r/(4r) where 7 is a distance between a field point x and the point ¢ at
which a unit source is acting.

Clearly, all the partial derivatives of the singular solution also represent
solutions of Laplace equation for x # £. This can be seen by differentiating
the Laplace equation — this simply changes the order of the derivatives.
Integrals over any surface, open or closed, are also solutions. Thus, we have
a large variety of potentials. Some of these functions have specific names,
e. g. single layer potential, double layer potential, hypersingular potential.
The latter for x # £ is an usual proper integral.

For a closed surface we can also use a following consequence of Green’s
(or in elasticity Betti’s) formula for a solution u of the Laplace equation:

ou

Ou
c(x)u(x) = U—d¥ - —udX, x¢ZL,
()u(x) Ef one = J one ¢

where ¢(x) = 1 for x inside of £, ¢(x) = 0 for x outside of X; the right-hand
side and all its partial derivatives are also solutions of the Laplace equation

for x # &.

Let us assume that ¥ is sufficiently smooth and the density ¢(§) has
continuous derivatives up to the k-th order. Then all the potentials up to
the k-th order have limit values, when x tends to xo € ¥ from any side
of . Indeed, potentials involving only tangent derivatives are continuous,
as are potentials involving normal derivatives of even orders; potentials in-
volving normal derivatives of an odd order also have limits, although these
limits in general are different, when approaching from different sides of the
surface. Thus, we have included limit values of these integrals, in particular
hypersingular integrals.

Since the potentials satisfy the Laplace equation, we can use their limit
values to satisfy prescribed boundary conditions. Hence, they can serve to
solve boundary value problems. Using them in numerical calculations, we
can approximate functions in ¥ and find quadrature rules for their limit
values. This procedure can be carried out in various ways (see e. g. [5], [8]).

Note however that not all the potentials are of real use. For example,
some of them attenuate too rapidly towards infinity. From the uniqueness
theorem it can be seen that such potentials can not serve to satisfy arbitrary
prescribed values on ¥ in external problems.

Among these potentials, the hypersingular potential is especially attrac-
tive, when considering surfaces of discontinuity of the solution. To see this,
let us consider such a surface, where the harmonic function u has discontinu-
ity and the normal derivative du/0n, = to(xg) is prescribed on X. Writing
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the solution u in the form of double layer potential
oU
u(x) = 8—-(,5({ )dx
g 9™

with unknown density ¢(¢), we have ut — u™ = —¢(¢), 1. e, #(€) = —Au,
where Au = ut — u~ is the solution discontinuity. Hence, the density has
a simple physical meaning: it represents solution discontinuities. So we can
write

oUu
u(x) = —(—-Au)dx.
()= | gag(-20

By the boundary condition limx_,xoi Ou/0n, = to(x) for each xg € X,
we obtain

0rU
hm

FI a ( Au) dY = to(Xo), Vxp € 2.

In elasticity: U is a matrix, a normal derivative is changed into a traction
operator, Au is a displacement discontinuity vector, fp(xo) is a traction
vector. Thus, we obtain the equation which solves the problem in terms
of discontinuities and which provides a clear physical interpretation of the
density: it represents a displacement discontinuity useful in considering block
interactions and cracks.

So far we have used only the limit values of potentials in order to sat-
isfy boundary conditions. Such a treatment is quite sufficient in many ap-
plications. Since it allows quadrature rules to be established and to solve
discretized problems, using the Boundary Element Method, it would appear
then that there is no need for direct values.

Meanwhile, in some cases which I shall mention below, it is useful also
to discuss direct values of potentials. Then, dealing with hypersingular po-
tential, we have integrals which do not exist in the usual improper integral
form and we need to develop special definitions in order to use direct values
of the hypersingular integrals.

1.3. Direct values of integrals
Consider the one-dimensional case of an integral

f ¢($)
with kernel ;1,; and density ¢(z). For £ < 0 this is a proper integral. For

0 < k < 1 we have the usual improper integral. If k¥ = 1 the integral can
be termed a Cauchy integral. If £ > 1 the integral is called a Hadamard



Real and complex hypersingular integrals 763

integral. Consider, for simplicity, £ being natural number (the general case
does not introduce any new features). We have

1 ey 1 dF
= O g ke

ok
i. e., the kernel is expressed by the k-th derivative of In |z|.

We will assume that the function ¢(z) is sufficiently smooth. Then, ex-
cluding some small e-vicinity of the origin z = 0, we can integrate by parts.
This can be done for any exponent & however large. Gathering all the "good”
terms (i. e., those which have a finite value for ¢ = 0) on the right-hand side
and all the "bad” terms (i. e., each term tending to infinity as ¢ — 0) on
the left-hand side, we get

J2 42 dz 4 g(z)Inle| = $(b) In|b| - [ ¢'(z)In 2| dz,

& T

42 4z 4 ¢'(z)Infe] — 2D = @(b)In [b| — X2 — [ ¢"(2) In o] dx,
fb %f—) dz + ...

£

All the right-hand sides have limits; hence,the sums of the left-hand side
terms must also have limits, and direct values can be determined as these
limits

fob =) gz = lime_.o[f: ?%‘l dz + ¢(z)1InJe]],

s 22 4y = lim, o[ [ 22 dz + ¢/(z) Ine| — 2],

4
b
IN ig—) dz = ...
Clearly, there are analogous formulae for integrals over [a,0]. Now, we
can use small €;.Then for an interval {a, b], taken (only for simplicity) ey = ¢,
we obtain the following definitions for the direct value integrals on [a, b]:

[o %2 do = lim, o[, 22 do + [ #2) da,

a T

48 do =il e 1 17 S 0z - 249)

a

f:'b—(}:ldz:...

T

Note that the integral, corresponding to & = 1, is the well-known Cauchy
principle value integral. Thus, we can see that there is no principal differ-
ence (except historical) between singular Cauchy integrals and hypersingular
Hadamard integrals. This is also quite obvious from the clear connection of
such integrals with distribution theory. Indeed, suppose that ¢(z) is a probe
function within [a, b]. Then, the right-hand sides in the initial formulae con-
tain only integrals; hence, the definitions turn into the usual formulae of
distribution theory. It is quite obvious also that the definitions are such
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that the Newton-Leibnitz formula remains true. This means that if a direct
value integral can be formally evaluated, then simple substitution of the end
points of an interval satisfies the definition.

The same is true for two-dimensional case. The only difference is that,
instead of integrating by parts, we use its extension, Green’s formula, to
transform a surface integral into a contour integral. Note also that, just
as in the one-dimensional case, if a direct value integral can be formally
evaluated, then simple substitution of points of the contour satisfies the
definition. In the same way, we may consider, if needed, direct values of
n-dimensional integrals.

But the above is still no more than an elegant construction, a pure mental
ezercise. In applications, limit values of potentials are needed to satisfy
prescribed boundary conditions. Hence, in order to use direct values we
must define their connection with limit values.

1.4. Connection between limit and direct values

This connection becomes clear, if we consider, for simplicity, a straight
(planar) element of the surface. Then for x # x, we can transfer the tangen-
tial derivation from the fundamental solution to the density function ¢(x).
In this case we perform all the same operations as those used in defining
the direct values. Naturally, in limit x — x¢ we arrive at expressions which
coincide with the direct values. Thus, we see that the limit values of tangent
derivatives coincide with the direct values. For potentials containing normal
derivatives, the only difference is that the odd order normal derivatives gen-
erate discontinuities. Indeed, for the first normal derivative, we immediately
arrive at the well-known elementary result of potential theory. For the sec-
ond normal derivative, we can allow the fact that In r satisfies the Laplace
equation. Hence, we reduce the case to that of the tangent derivatives which
we have already discussed. The potential remains continuous. For the third
normal derivative, we use the same procedure and obtain a discontinuity,
involving the.second tangent derivative of the density...etc. The same ar-
guments apply to the three-dimensional case or to the n-dimensional case.

In elasticity we have additional terms, but these present no changes in
principle.

The above discussion indicates that there are simple formulae by which
limit values may be connected to direct values. Thus, when satisfying bound-
ary conditions, we can always express limit values via direct values. In this
way, we arrive at integral equations, involving only points on the boundary.

The analytical simplification is obvious, i. e., we deal only with functions
and points of the surface itself. But are there any other virtues to the use
of direct values?
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1.5. On computational applications of direct values

1 see at least four applications in computational mechanics:

(1) direct values allow us to use results of well established mathematical
theories (in particular, the theory of complex variables in two-dimensional
problems or distribution theory);

(ii) they serve to simplify the derivation of new useful integral equations,
e. g., for blocky systems or for layered systems with cracks and cavities;

(iii) sometimes, but not always, they simplify the derivation of quadra-
ture rules (e. g., for complex hypersingular integrals);

(iv) they are useful in studying the accuracy of quadrature formulae and
numerical methods.

This concludes the first part of this paper. It does not contain
new analytical or computational results and is mostly of methodological
nature. In the next part it will be illustrated by some new results obtained
recently.

2. New complex and real hypersingular equations in elasticity
theory

2.1. Complex hypersingular equation for plane elasticity prob-

lems

We know that complex variables are very attractive in plane problems.
Using them, one can apply well-established classical theories of analytical
functions, singular integrals and equations (e.g., [7], [8]). Then conclusions
concerning solutions are relevant.

Computational advantages are also clear. Since modern computers han-
dle complex arithmetic, we can gain, when using in plane problems one
(complex) function of one (complex) variable. And what is much more im-
portant: the most crucial stage, that is computation of singular integrals
does not present difficulties, when applying complez variables. There are
also some additional advantages concerning accuracy control as well as time
and memory consumption for calculations.

From the other hand, as it has been mentioned, there are good reasons
to use hypersingular forms of equations, when dealing with discontinuities.
Thus, it seemed very promising to combine virtues of complex variables with
those of hypersingular equations for plane problems. The way to do this is
quite clear from the methodology described above. It was used in [9], where
presented all the subsequent details.

First of all a complex hypersingular potential is introduced as a derivative
of the Cauchy type integral. It can be used to satisfy the Laplace or Navier
plane equations. Limit values of the hypersingular potential exist. Hence,
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they can serve to satisfy prescribed boundary conditions. This can be done
without defining direct values of hypersingular integral.

Meanwhile, as mentioned, direct values are also of interest for com-
putational purposes. So, their definitions should be introduced. The way
to introduce them is quite similar to that described above for real finite-
part integrals. We exclude small ¢-vicinity of the point, use integration by
parts, collect all the "good” terms in the right-hand side, all the "bad” terms
in the left-hand side, pass to the limit, when ¢ tends to zero, and define this
limit to be ”direct value” (Hadamard, finite-part) integral. Thus, we ob-
tain a definition consistent with further applications of these integrals to
satisfy boundary conditions. The next step is to study connection between
limit values and direct values of hypersingular integrals. This connection
is expressed by formulae similar to those of Sokhotsky-Plemelj. Hence, we
can formulate boundary value problems in terms of direct values, if we like.
In complex variables these direct values have significant virtues both in
analytical and computational sense. Indeed, we can state the theorem of
holomorphity. It provides an equality necessary and sufficient for functions
#t and ¢~ to be limit values of holomorphic function ¢(z). This theorem
serves to obtain hypersingular equations not referring to their singular coun-
terparts.

A new hypersingular equation follows from these results [9]. It serves for
cracks and blocky inhomogeneous systems; for internal and external prob-
lems. For blocky systems, its advantage, as compared with real equations,
is that it contains only tractions and displacement discontinuities, i. e., the
values which enter constitutive equations for contact interaction. In partic-
ular case, the equation refers to systems of curvilinear cracks. In this case,
the index of the equation is zero. This provides a significant simplification in
numerical calculations: we do not need satisfy additional conditions as it is
the case for complex singular equations (the index of the latter is not zero).

To use complex hypersingular equations for numerical calculations, we
need quadrature rules for direct values of integrals. There are no problems in
computing such integrals over arbitrary curvilinear segment for a variety of
approximations of the density. This provides a drastic simplification of the
crucial step as compared with real equations. For instance, we have simple
quadrature formulae, if the density is approximated by a complex Lagrange
polynomial. All the coefficients are expressed by analytical formulae. For
tip elements we also have analytical quadrature formulae for any rational
exponent in asymptotic [9].

Numerical results for cracks [9], and recently produced calculations for
two and four interacting blocks, confirm efficiency and accuracy of the
method employing complex hypersingular equations.
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2.2. Hypersingular equation for three-dimensional blocky
systems
Another example refers to elasticity problems for three-dimensional
blocky systems. Such systems can present rock, grains or composite con-
struction. Consider the case of p isotropic elastic blocks. For the ¢-th block
with the boundary B’ we have a hypersingular equation (see, e.g., [10], [11])

dx)oi(x) = [ [T(Ex)]e'(€)dE - [ Qi(x,6)u’(€)dz,
B B
where c‘(x) = 1, if x is inside of the i-th block, ¢f(x) = 0, if x is outside of
it, and ¢*(x) = 1/2, if x belongs to its boundary B?, 0! is a traction vector,
u' is a displacement vector,

TI'(X, E) = [Tn(£)Ul(£ax)]ta Ql(xaf) = Tn(z)T1(xa£),

U*(x,£) is Kelvin’s matrix, Tp(z) is the traction operator.

It is essential that matrices T and Q’ can be represented in a form

i1 i i_ 2t
T_l—ViTV’ Q—l—l/i v
where pi is a shear modulus of the i-th block, v* is its Poisson’s ratio.
Matrices T?, Q! depend only on Poisson’s ratio (and do not depend on
shear modulus).

Suppose that Poisson’s ratios are the same for all the blocks v* = v,
i=1,...,p. Hence, T} = T!, Q! = Q,. Then dividing a hypersingular
equation for each ¢-th block by 2u/(1 — v) and summing over ¢, one gets an
hypersingular equation

%ag(x)a(x)— [ a1 ()T (€0 o(€)dT+ [ Qu(x,)Au(€)dE =0, x€B,
B B

where a; = 0.5(1 — v)(1/ut = 1/p7), az = 0.5(1 — v)(1/p* + 1/pu7™), (%)
is a traction in the point x, Au = ut — u~ is a displacement discontinuity,
the normal n is fixed on the contacting surfaces of the blocks, the sign
”plus” ("minus”) corresponds to the block for which the normal n is outward
(inward), for external boundaries the normal n is assumed to be outward
and 1/~ =0,u” =0.

The derived hypersingular equation contains only tractions and displace-
ment discontinuities on contacts of blocks. These are just the values entering
constitutive equations for contact interaction. Hence, we do not need to find
limit values u* and u~, but only their difference u* — u~. The number of
unknowns on contacts becomes twice less as compared with other methods.

In a case when Poisson’s ratios of the blocks are not equal, we can use
Taylor’s expansion over deviations of v* from some fixed value v. Then we
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arrive at a chain of such equations; only their right-hand sides change at
each successive step.

3. Conclusions

The conclusions can be summarized as follows:

(i) The hypersingular potentials provide a natural and effective means for
solving problems involving discontinuities on surfaces of cracks, interacting
blocks, shields used in electroplating or low permeability walls and geotextile
layers in groundwater flow studies.

(ii) The limit values of hypersingular integrals have a clear physical
meaning and can be applied directly in numerical computations. Bound-
ary equations obtained in this form can be solved by using approximations
and quadrature rules derived for limit values. The direct values of hypersin-
gular integrals, although introduced formally, are also of practical use, due
to their simple connection with limit values, and the ability they provide for
dealing with points and functions on the integration surface only.

(iii) Complez hypersingular equations can serve to use virtues of complex
variables and to overcome the main difficulty: computation of hypersingular
integrals over curvilinear contours. In important applications they have zero
index what simplifies numerical solution. Numerical results confirm high
efficiency of employing complex hypersingular equations.

(iv) New real hypersingular equations for three-dimensional blocky sys-
tems may serve to diminish the number of unknowns when accounting for
contact interaction.
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