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Hypersingular integrals and integral equations became very popular last 
decade in computational mechanics. The reason is quite clear: they provide 
a natural and effective means to solve problems involving discontinuities. 
These are problems of cracks and interacting blocks in elasticity; thin wings 
in fluid dynamics; shields in electroplating; low permeability walls and geo-
textile layers in groundwater studies, etc. 

But these integrals and their direct values have a rather long history. 
Direct values of hypersingular integrals became generally known as a result 
of publication in 1923 of the famous Hadamard lectures on Cauchy prob-
lem for hyperbolic equations (supplemented French edition was published in 
1932 [1]). J. Hadamard termed the direct values as "finite part integrals". 
They are now also widely known as Hadamard's integrals. Many years 
later, in his book "Psychology of invention in mathematical field" edited 
in 1954 [2], Hadamard wrote (my back translation from Russian): "I could 
no more avoid this method than the prisoner in Edgar Allen Poe's poem 
'The pit and the pendulum' could avoid the pit in the center of his dun-
geon." 

These integrals were a great invention and became an important stimulus 
to the development of distribution theory. R. Courant in his course "Par-
tial differential equations" [3] wrote (again my back translation): "Actually, 

* This paper is an abridged version of the lecture presented at the Oak-Ridge National 
Laboratory (Oak Ridge, USA, May 6, 1994) and repeated at the 6-th Symposium on 
Integral Equations and Their Applications held at the Institute of Mathematics, Warsaw 
University of Technology, Poland, December 6-9, 1994. 
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introduction of the finite part integrals by Hadamard became an essential 
motive for creation of the modern distribution theory". 

But this development, in fact, provided such a powerful mathematical 
means of investigations that, it seemed, there was no need for Hadamard's 
integrals. Indeed, an Hadamard integral is simply an explicit form of the 
corresponding functional. 

Interest in hypersingular integrals was revived with the development of 
computers, when numerical calculations based on integral equations became 
very popular, providing good reasons for using hypersingular equations. As 
mentioned above, these equations provide a natural means for solving prob-
lems with discontinuities on open or closed surfaces, such as cracks or the 
interacting surfaces between blocks or cracks. 

Over the last decade there have been many publications on the applica-
tion of hypersingular integrals in numerical calculations (see, e.g. [4]) and, 
what originally appeared to be new and complicated, now seems simple and 
even naive. 

Unfortunately, there is no single book or single reference that provides a 
good overview of hypersingular integrals. So, it seems reasonable to present 
new results, obtained recently by the author and S. G. Mogilevskaya, in 
frames of some simple methodology. 

1. Methodological concepts 

1.1. On the term "hypersingular integral" 
The term "hypersingular integral" is used in three different ways: 
(i) as a proper integral, when a field point is outside of the surface of 

integration; 
(ii) as a limit which results from a normal limit process, when a field 

point tends to be a point of the integration surface; 
(iii) as a direct value, i. e., in the sense of a finite part (Hadamard) 

integral; in this case a field point is situated on the surface of integration 
and we need to define how to interpret the integral. 

Let us discuss in brief these three meanings and start with their source 
that is singular solutions. 

1.2. Singular (fundamental) solutions and potentials 
Singular solutions play a key role in problems described by partial differ-

ential equations. Consider for example the two-dimensional Laplace equa-
tion. In all applications in acoustics, hydrodynamics and elasticity the main 
terms entering into the differential equations are generated by the singular 
solution U of the Laplace equation. Additional terms occur in elasticity prob-
lems, but the discussion of these terms can be reduced to that of Laplacian 
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terms. In two-dimensional case U = —\nr/(2ir) while in three dimensions 
U = r/(47r) where r is a distance between a field point x and the point f at 
which a unit source is acting. 

Clearly, all the partial derivatives of the singular solution also represent 
solutions of Laplace equation for x ^ This can be seen by differentiating 
the Laplace equation — this simply changes the order of the derivatives. 
Integrals over any surface, open or closed, are also solutions. Thus, we have 
a large variety of potentials. Some of these functions have specific names, 
e. g. single layer potential, double layer potential, hypersingular potential. 
The latter for x ^ f is an usual proper integral. 

For a closed surface we can also use a following consequence of Green's 
(or in elasticity Betti's) formula for a solution u of the Laplace equation: 

where c(x) = 1 for x inside of E, c(x) = 0 for x outside of E; the right-hand 
side and all its partial derivatives are also solutions of the Laplace equation 
for x ^ f . 

Let us assume that E is sufficiently smooth and the density <f>(£) has 
continuous derivatives up to the k-th order. Then all the potentials up to 
the k-th order have limit values, when x tends to xo G E from any side 
of E. Indeed, potentials involving only tangent derivatives are continuous, 
as are potentials involving normal derivatives of even orders; potentials in-
volving normal derivatives of an odd order also have limits, although these 
limits in general are different, when approaching from different sides of the 
surface. Thus, we have included limit values of these integrals, in particular 
hypersingular integrals. 

Since the potentials satisfy the Laplace equation, we can use their limit 
values to satisfy prescribed boundary conditions. Hence, they can serve to 
solve boundary value problems. Using them in numerical calculations, we 
can approximate functions in E and find quadrature rules for their limit 
values. This procedure can be carried out in various ways (see e. g. [5], [8]). 

Note however that not all the potentials are of real use. For example, 
some of them attenuate too rapidly towards infinity. From the uniqueness 
theorem it can be seen that such potentials can not serve to satisfy arbitrary 
prescribed values on E in external problems. 

Among these potentials, the hypersingular potential is especially attrac-
tive, when considering surfaces of discontinuity of the solution. To see this, 
let us consider such a surface, where the harmonic function u has discontinu-
ity and the normal derivative du/dnx = ¿o(xo) is prescribed on E. Writing 



762 A. M. L i n k o v 

the solution u in the form of double layer potential 

with unknown density <f>(£), we have u+ — u~ = — <{>(£), i. e., = —Au, 
where Au — u+ — u~ is the solution discontinuity. Hence, the density has 
a simple physical meaning: it represents solution discontinuities. So we can 
write 

By the boundary condition limx_>x± du/dnx = io(xo) for each xo G S, 
we obtain 

In elasticity: U is a matrix, a normal derivative is changed into a traction 
operator, Au is a displacement discontinuity vector, io(xo) is a traction 
vector. Thus, we obtain the equation which solves the problem in terms 
of discontinuities and which provides a clear physical interpretation of the 
density: it represents a displacement discontinuity useful in considering block 
interactions and cracks. 

So far we have used only the limit values of potentials in order to sat-
isfy boundary conditions. Such a treatment is quite sufficient in many ap-
plications. Since it allows quadrature rules to be established and to solve 
discretized problems, using the Boundary Element Method, it would appear 
then that there is no need for direct values. 

Meanwhile, in some cases which I shall mention below, it is useful also 
to discuss direct values of potentials. Then, dealing with hypersingular po-
tential, we have integrals which do not exist in the usual improper integral 
form and we need to develop special definitions in order to use direct values 
of the hypersingular integrals. 

1.3. Direct values of integrals 
Consider the one-dimensional case of an integral 

with kernel p- and density 4>{x). For k < 0 this is a proper integral. For 
0 < k < 1 we have the usual improper integral. If k = 1 the integral can 
be termed a Cauchy integral. If k > 1 the integral is called a Hadamard 

o 
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integral. Consider, for simplicity, k being natural number (the general case 
does not introduce any new features). We have 

i. e., the kernel is expressed by the A;-th derivative of In |x|. 
We will assume that the function <j>(x) is sufficiently smooth. Then, ex-

cluding some small e-vicinity of the origin x = 0, we can integrate by parts. 
This can be done for any exponent k however large. Gathering all the "good" 
terms (i. e., those which have a finite value for e = 0) on the right-hand side 
and all the "bad" terms (i. e., each term tending to infinity as e —> 0) on 
the left-hand side, we get 

/1 + <t>(x) In |e| = <f>(b)In |b| - / / <£'(z)ln \x\ dx, 
f> ^dx + <j>'(x)\n |£| - = <f>'(b) In \b\ - Op - J£

b 4>"{x) In

All the right-hand sides have limits; hence,the sums of the left-hand side 
terms must also have limits, and direct values can be determined as these 
limits 

/0
6 dx = lim^oLC ^dx + <j>{x) In M], 

Si = l im_o[ / e
6 + <f>>(x) In | e | -

Clearly, there are analogous formulae for integrals over [a,0]. Now, we 
can use small £\ .Then for an interval [a, 6], taken (only for simplicity) = £, 
we obtain the following definitions for the direct value integrals on [a, 6]: 

fa ^ d x = lim^o[JT * f d z + Jc
b dx], 

fa
b ^dx = lim^o[/.- dx + J? ^dx-

fb Hp. dx = . . . J a x-* 

Note that the integral, corresponding to A: = 1, is the well-known Cauchy 
principle value integral. Thus, we can see that there is no principal differ-
ence (except historical) between singular Cauchy integrals and hypersingular 
Hadamard integrals. This is also quite obvious from the clear connection of 
such integrals with distribution theory. Indeed, suppose that <f>{x) is a probe 
function within [a, 6]. Then, the right-hand sides in the initial formulae con-
tain only integrals; hence, the definitions turn into the usual formulae of 
distribution theory. It is quite obvious also that the definitions are such 
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that the Newton-Leibnitz formula remains true. This means that if a direct 
value integral can be formally evaluated, then simple substitution of the end 
points of an interval satisfies the definition. 

The same is true for two-dimensional case. The only difference is that, 
instead of integrating by parts, we use its extension, Green's formula, to 
transform a surface integral into a contour integral. Note also that, just 
as in the one-dimensional case, if a direct value integral can be formally 
evaluated, then simple, substitution of points of the contour satisfies the 
definition. In the same way, we may consider, if needed, direct values of 
n-dimensional integrals. 

But the above is still no more than an elegant construction, a pure mental 
exercise. In applications, limit values of potentials are needed to satisfy 
prescribed boundary conditions. Hence, in order to use direct values we 
must define their connection with limit values. 

1.4. Connection between limit and direct values 
This connection becomes clear, if we consider, for simplicity, a straight 

(planar) element of the surface. Then for x / x 0 we can transfer the tangen-
tial derivation from the fundamental solution to the density function (f>(x). 
In this case we perform all the same operations as those used in defining 
the direct values. Naturally, in limit x —> xo we arrive at expressions which 
coincide with the direct values. Thus, we see that the limit values of tangent 
derivatives coincide with the direct values. For potentials containing normal 
derivatives, the only difference is that the odd order normal derivatives gen-
erate discontinuities. Indeed, for the first normal derivative, we immediately 
arrive at the well-known elementary result of potential theory. For the sec-
ond normal derivative, we can allow the fact that In r satisfies the Laplace 
equation. Hence, we reduce the case to that of the tangent derivatives which 
we have already discussed. The potential remains continuous. For the third 
normal derivative, we use the same procedure and obtain a discontinuity, 
involving the second tangent derivative of the density.. .etc. The same ar-
guments apply to the three-dimensional case or to the n-dimensional case. 

In elasticity we have additional terms, but these present no changes in 
principle. 

The above discussion indicates that there are simple formulae by which 
limit values may be connected to direct values. Thus, when satisfying bound-
ary conditions, we can always express limit values via direct values. In this 
way, we arrive at integral equations, involving only points on the boundary. 

The analytical simplification is obvious, i. e., we deal only with functions 
and points of the surface itself. But are there any other virtues to the use 
of direct values? 
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1.5. On computational applications of direct values 
I see at least four applications in computational mechanics: 
(i) direct values allow us to use results of well established mathematical 

theories (in particular, the theory of complex variables in two-dimensional 
problems or distribution theory); 

(ii) they serve to simplify the derivation of new useful integral equations, 
e. g., for blocky systems or for layered systems with cracks and cavities; 

(iii) sometimes, but not always, they simplify the derivation of quadra-
ture rules (e. g., for complex hypersingular integrals); 

(iv) they are useful in studying the accuracy of quadrature formulae and 
numerical methods. 

This concludes the first part of this paper. It does not contain 
new analytical or computational results and is mostly of methodological 
nature. In the next part it will be illustrated by some new results obtained 
recently. 

2. N e w complex and real hypersingular equations in elasticity 
theory 

2.1. Complex hypersingular equation for plane elasticity prob-
lems 

We know that complex variables are very attractive in plane problems. 
Using them, one can apply well-established classical theories of analytical 
functions, singular integrals and equations (e.g., [7], [8]). Then conclusions 
concerning solutions are relevant. 

Computational advantages are also clear. Since modern computers han-
dle complex arithmetic, we can gain, when using in plane problems one 
(complex) function of one (complex) variable. And what is much more im-
portant: the most crucial stage, that is computation of singular integrals 
does not present difficulties, when applying complex variables. There are 
also some additional advantages concerning accuracy control as well as time 
and memory consumption for calculations. 

From the other hand, as it has been mentioned, there are good reasons 
to use hypersingular forms of equations, when dealing with discontinuities. 
Thus, it seemed very promising to combine virtues of complex variables with 
those of hypersingular equations for plane problems. The way to do this is 
quite clear from the methodology described above. It was used in [9], where 
presented all the subsequent details. 

First of all a complex hypersingular potential is introduced as a derivative 
of the Cauchy type integral. It can be used to satisfy the Laplace or Navier 
plane equations. Limit values of the hypersingular potential exist. Hence, 
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they can serve to satisfy prescribed boundary conditions. This can be done 
without defining direct values of hypersingular integral. 

Meanwhile, as mentioned, direct values are also of interest for com-
putational purposes. So, their definitions should be introduced. The way 
to introduce them is quite similar to that described above for real finite-
part integrals. We exclude small ¿-vicinity of the point, use integration by 
parts , collect all the "good" terms in the right-hand side, all the "bad" terms 
in the left-hand side, pass to the limit, when £ tends to zero, and define this 
limit to be "direct value" (Hadamard, finite-part) integral. Thus, we ob-
tain a definition consistent with further applications of these integrals to 
satisfy boundary conditions. The next step is to study connection between 
limit values and direct values of hypersingular integrals. This connection 
is expressed by formulae similar to those of Sokhotsky-Plemelj. Hence, we 
can formulate boundary value problems in terms of direct values, if we like. 
In complex variables these direct values have significant virtues both in 
analytical and computational sense. Indeed, we can state the theorem of 
holomorphity. It provides an equality necessary and sufficient for functions 
<j>+ and 4>~ to be limit values of holomorphic function <f>(z). This theorem 
serves to obtain hypersingular equations not referring to their singular coun-
terparts . 

A new hypersingular equation follows from these results [9]. It serves for 
cracks and blocky inhomogeneous systems; for internal and external prob-
lems. For blocky systems, its advantage, as compared with real equations, 
is that it contains only tractions and displacement discontinuities, i. e., the 
values which enter constitutive equations for contact interaction. In partic-
ular case, the equation refers to systems of curvilinear cracks. In this case, 
the index of the equation is zero. This provides a significant simplification in 
numerical calculations: we do not need satisfy additional conditions as it is 
the case for complex singular equations (the index of the latter is not zero). 

To use complex hypersingular equations for numerical calculations, we 
need quadrature rules for direct values of integrals. There are no problems in 
computing such integrals over arbitrary curvilinear segment for a variety of 
approximations of the density. This provides a drastic simplification of the 
crucial step as compared with real equations. For instance, we have simple 
quadrature formulae, if the density is approximated by a complex Lagrange 
polynomial. All the coefficients are expressed by analytical formulae. For 
tip elements we also have analytical quadrature formulae for any rational 
exponent in asymptotic [9]. 

Numerical results for cracks [9], and recently produced calculations for 
two and four interacting blocks, confirm efficiency and accuracy of the 
method employing complex hypersingular equations. 
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2.2. Hypersingular equation for three-dimensional blocky 
sys t ems 

Another example refers to elasticity problems for three-dimensional 
blocky systems. Such systems can present rock, grains or composite con-
struction. Consider the case of p isotropic elastic blocks. For the i-th block 
with the boundary B1 we have a hypersingular equation (see, e.g., [10], [11]) 

c f ( x K ( x ) = f [ T % X ) M O d S - f Q i ( x , 0 u , ' ( 0 d E , 
B' B' 

where c '(x) = 1, if x is inside of the z'-th block, c '(x) = 0, if x is outside of 
it, and c '(x) = 1/2, if x belongs to its boundary B\ a% is a traction vector, 
u' is a displacement vector, 

T ' ( x , 0 = [ T ^ U ^ x ) ] ' , Q ' (x ,£ ) = T n ( ; c ) T ' ( x , 0 , 
U ' (x ,£ ) is Kelvin's matrix, T ^ ) is the traction operator. 
It is essential that matrices T 1 and Q ! can be represented in a form 

1 • 2u' 
T* = - T l , Q ' = - t—jQy, 

1 — vl 1 — v1 

where /x' is a shear modulus of the z'-th block, v* is its Poisson's ratio. 
Matrices TJ,, Q}, depend only on Poisson's ratio (and do not depend on 
shear modulus). 

Suppose that Poisson's ratios are the same for all the blocks vx — v, 
i = 1 Hence, TJ, = TJ,, Q%

u = Q,,. Then dividing a hypersingular 
equation for each i-th block by 2/^/(1 — v) and summing over i, one gets an 
hypersingular equation 

| a 2 ( x ) ( r ( x ) - / a i ( 0 [ T „ ( i , x ) ] V ( 0 r f £ + / Q „ ( x , 0 A u ( 0 d Y . = 0, x eB, 
B B 

where ax = 0.5(1 - i / ) ( - l / / i " ) , a2 = 0.5(1 - v ) ( l / n + + 1 / / * " ) , ct(x) 

is a traction in the point x , Au = u + — u~ is a displacement discontinuity, 
the normal n is fixed on the contacting surfaces of the blocks, the sign 
"plus" ("minus") corresponds to the block for which the normal n is outward 
(inward), for external boundaries the normal n is assumed to be outward 
and l / f i ~ = 0, u~ = 0. 

The derived hypersingular equation contains only tractions and displace-
ment discontinuities on contacts of blocks. These are just the values entering 
constitutive equations for contact interaction. Hence, we do not need to find 
limit values u + and u - , but only their difference u + — u~. The number of 
unknowns on contacts becomes twice less as compared with other methods. 

In a case when Poisson's ratios of the blocks are not equal, we can use 
Taylor's expansion over deviations of v' from some fixed value v. Then we 
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arrive at a chain of such equations; only their right-hand sides change at 
each successive step. 

3. Conclusions 
The conclusions can be summarized as follows: 
(i) The hypersingular potentials provide a natural and effective means for 

solving problems involving discontinuities on surfaces of cracks, interacting 
blocks, shields used in electroplating or low permeability walls and geotextile 
layers in groundwater flow studies. 

(ii) The limit values of hypersingular integrals have a clear physical 
meaning and can be applied directly in numerical computations. Bound-
ary equations obtained in this form can be solved by using approximations 
and quadrature rules derived for limit values. The direct values of hypersin-
gular integrals, although introduced formally, are also of practical use, due 
to their simple connection with limit values, and the ability they provide for 
dealing with points and functions on the integration surface only. 

(iii) Complex hypersingular equations can serve to use virtues of complex 
variables and to overcome the main difficulty: computation of hypersingular 
integrals over curvilinear contours. In important applications they have zero 
index what simplifies numerical solution. Numerical results confirm high 
efficiency of employing complex hypersingular equations. 

(iv) New real hypersingular equations for three-dimensional blocky sys-
tems may serve to diminish the number of unknowns when accounting for 
contact interaction. 
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