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1. Introduction
The inverse problem (P) for the parabolic in Petrovskii’s sense system
in R¥

(1.1) giu(t, z) = AAu(t,z) + F(t, z)

with the function F of the form

(1.2) F(t,z) = H(t,z) f(t) + w(t,z), (t,z)€]0,T[x%,
where

(1.3) 2 = {(z1,2) : 23 + 2% < a?},

A is a given real k X k matrix, H is a given & x k matrix-valued function
H: [0,T]x 25 (t,z)— H(t,z) € R,
w is a given R¥-valued function
w:[0,T] x 25 (t,z) — w(t,z) € R,
consists in determining the unknown R¥-valued functions u and f:
w:[0,T]x 23 (t,z) — u(t,z) € R¥,
£:00,T]>t— f(t) € RF,
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satisfying the system (1.1) and the usual initial and boundary Fourier con-
ditions (first Fourier problem) which are overspecified by the additional
measurement of the function u(t,z) at the point z € INT £2, i.e.

(1.4) u(t, &) = h(t) fort € [0,T],
where k is a given R¥-valued function
h:[0,T] 3t~ h(t) € R".

A similar problem was investigated by M. Majchrowski, J. Rogulski in
[6] but for £2 =]0, 1] only.

The method of solving our problem is by resolving it into the system of
Volterra integral equations of the second kind. At first we have to find the
solution of an auxiliary problem (F1) for the system (1.1) with the initial
and boundary conditions:

(1.5.1) u(0,2)=g(z) forz € 02,
(1.5.2) wu(t,z)=0 for (¢t,z) € [0,T] x 812,

where g is a given R*-valued function
g: 23z - g(z) e R

Such first Fourier problem (F1) was investigated in detail in [1]. Solution
of the problem (F1) is represented in a sum of two integrals being coun-
terparts of the Poisson-Weierstrass and the potential of a plane domain.
Kernels of these potentials are represented by the matrix-function G. The
form of G and the properties of this matrix-function are discussed in [1]. The
representation of solution of the problem (F1) with G being used allows us
to solve an inverse problem by an application of the theory of systems of
Volterra integral equations.

Inverse problems formulated for the above systems are in a sense some
kind of problems discussed in Control Theory. In our paper the source F in
a system of diffusion equations becomes an unknown function as well as u
itself. This sort of problems is discussed in Cannon’s papers 2], [3], [4], [5],
[7], and others papers (see [8]).

2. Assumptions
We make the following assumptions for the functions H, w, g,k and for
the matrix A:

(2.1) H(t,z) = 0 for (¢t,2) € [0,T] x 812, H(t,2) is invertible for every
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t € [0,T], and the function

H : {0, 7] x [0, ] x [0,21T] — R¥’
which we define by

fI(t,p,’y) := H(t, pcosy,psiny)

is of the class C! and of the class C? relative to the second variable and of
the class C* relative to the third variable and

S 35 - _
g,y—sﬂ(tapao) = a—,/EH(ta P,2H) for s € {Oa 1,2’3}’
o+
———H exist, are continuous, bounded and equal zero
0v'0p?

on 912 for | € {1,2},
(2.2) w(t,z)=0 for (t,z) € [0,T] x 812, the function
@ : [0,T] x [0, a] x-[0,21T] - R*
which we define by
(2, p,7) := w(t, pcosy,psiny)

is of the class C! and of the class C? relative to the second variable and of
the class C* relative to the third variable and

a° i
Wﬁj(tap’o) = a,y_—sﬂ;(t?pvzn) for s € {Oa 1’2?3},

oi+2
0v!'9p?
on 902 for I € {1,2},
(2.3) h(0) = g(2) and A is of class C?,
(24) g(z) =0 for z € 942, the function
g:[0,a] x [0,2IT] - R

W exist, are continuous, bounded and equal zero

which we define by
g(p,7) := g(pcosy,psiny)
is of the class C? and of the class C* relative to the second variable and

o5 . 95
57—5‘9(.0, 0) = -(‘?‘)’_Sg(p’ 2H) for s € {0’ 1’273}a
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§i+2

37’3p2g

on 912 for | € {1,2},

exist, are continuous, bounded and equal zero

(2.5) all eigenvalues of A have positive real parts.

We impose an additional condition in the form: we require that there
exists lims_o Zu(t, ).

3. Existence of a solution of the problem (P)

From [1], Theorem 5.1, it follows the existence of a function v : [0,T] x
2 — RF, which is a solution of the problem (F1) with F = 0.
Put U(t,z) = u(t,z) — v(t,z) and observe that problem (P) becomes

0 =U+ 0 —v = AAU + AAv + H(t, 2) f(t) + w(t,z), for (t,z) €]0,T[x 2,

ot ot
U(0,z)+ v(0,z) = g(z), forz € 02,
U(t,z) +v(t,z) =0, for(t,z)€[0,T)x 1%,
U(t,2) + v(t,3) = h(t), forte[0,T].

Hence we obtain the following problem (P0) with unknown functions U

and f

(3.1) %U(t,x) = AAU(t,z) + H(t,2) f(t) + w(t, ),
for (t,z) €]0,T[x 12,
(3.2) U(0,z)=0, forze £,
(3.3) U(t,z)=0, for(t,z)e[0,T]x a1,
(3.4)  U(t,#) = h(t) - v(t, %), forte[0,T], € INT Q.

It follows from [1], Theorem 5.2, that for a given f the problem (3.1-3) has
a solution.

THEOREM 3.1 If the functions H,w, h, satisfy assumptions (2.1-3) then
there ezxist continuous functions

U:[0,T)] x 2 - R,
f:[0,T) - R¥,

such that the derivatives 8tU, 3‘2 U, —;U where i € {1,2} are defined and
continuous on ]0,T[x 12, and the pair (U, f) satisfies (3.1-4).
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Proof. From Theorem 5.2 in [1] it follows that the problem (3.1-3) has
the solution v, given by the formula (for F = Hf + w)

(3.5) v(t,r,B)
27 a

=% ft [f [fpG(t—n,r,p,ﬁ—7)f(n,p,7)dp]d7]dn
0 0 0

where v3(t,7,8) := va(t, 7 cos 8, rsin ), F(t, r,B) := F(t,r cos 3, sin §) and
the matrix-function G is given in [1] by the formula (3.3). Then applying
condition (3.4), we obtain the following system of equations for the func-
tion f.

a

(3.6) % ft [?[fpG(t—n,ro,p,ﬂo—7)7f‘(n,p,7)dp]d7]dn
0 0 0

= h(t) - 51(t7 TO,IBO),

where v;(t, 7, 8) := v1(¢,7cos 8, rsin 8), v; is the mentioned above solution
of the problem F1 with F = 0 (see [1] theorem 5.1) and has the form

a

2r
w8 == [ | [ pGtr,0.8 7)o, 7)de]dv,
0

0

(o cos By, Tosin fp) = 2 € INT £2,
F(n, p,7) = H(n, p,7)f(n) + @(n, p,7),
H(n, p,7) := H(n, pcosy, psiny),
w(n, p,7) := w(n,pcosy,psiny).

The equation (3.6) is a system of Volterra integral equations of the first kind
for the function f of the form

t

(3.7) J N@,m)f(nydn = ¥(2), teo,T],

0

where the matrix-valued function N(¢,7) and the R*-valued function ¥ are
defined as follows:

a

2 7 ~
N = = [ [ J pG(t =n,70,0,60 - 7)H(n,p,7)dp]d7, for n <4,
0 0
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U(t) := h(t) — v1(t, 0, Bo)

t 27 a
+% J [ / [ J #G(t = 1,70, p, B0 —7)5(n,p,7)dp] dv] dn,
0 0 0

for t € [0,T].

By definition of the matrix-function G (see [1]), we obtain another form of
the kernel of the equation (3.7)

N(t,7) = Zzexp( (knm )2(t—n)A) Hom ()

n=0m=1

where

Hpm(n) = Jn (ﬂn m )[COS nfo H (77) + sin nfo H (77)],

1 2
Hn.m(n) T 5na27r[¢]n+1(ﬂn,m)]2
2m a p
X f [ f pcosn'y.]n (/‘L'n,m;)
0 [}
x f(n, p,7)dp|dy, (n,m) € (NU{0}) x N,
2 2
Hpm(n) :=

5na27r[Jn+1(/‘n,m )]2
2w a
- p
< [ ] s (et

x H(n,p.)dp]dy,  (n,m) € (NU{0}) x N

For fixed n € [0,7] and < ¢t we analogously observe as in the proof of
Theorem 5.1 in [1] that

H(n,z) = Z Z H, (1), where &= (rqcosfy,rosinfp).

n=0m=1

Hence for every t € [0,T] we have

(3.8) N(t,1) Z Z TH, . (t) = H(z, ),

n=0m=1

where I is the unit matrix.



Inverse problem 757

Since the matrix H(¢,2) is invertible for every t € [0,T], the matrix
N(t,t) is also invertible for every ¢t € [0,T]. From [1] see Theorem 4.1) it
follows that the kernel N(¢,7) is continuous function on a closed triangle
0<p<Lt<LT.

Also from the same theorem it follows that the function Ny(¢,7) given
by the formula

1 oo 00 1 2
Ni(t,m) = ) Z Z ll‘121,,m exp (_ (l‘n,m E) (t- U)A) Hr,m (n),
n=0m=1

is continuous on the closed triangle 0 < n <t < T.

Differentiating both sides of (3.7) we obtain a system of Volterra integral
equations of the second kind for the function f

(3.9) N1+ [ Ne(t,)f(n)dn = ¥'(2).
0

From (3.8) and (3.9) we obtain

(3.10) @&+ [ K(t,m)f(n)dn = H(t, 57 ¥'(2),

where the kernel K(¢,7) = H(t,2)"'Ny(¢,n) is continuous on the closed
triangle 0 < 7 <t < T. Hence the equation (3.10) has a unique continuous
solution f : [0,T] — RF*. Taking F = Hf +w, the R*-valued function U = v,
given by the formula (3.5) is the solution of the problem (F1). Hence we
obtain the function U which together with f has all properties listed in
Theorem 3.1.
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