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1. Introduct ion 
The inverse problem (P) for the parabolic in Petrovskii's sense system 

in R k 

q 
(1.1) — u(t,x) = AAu(t,x) + W(t,x) 

(J V 

with the function F of the form 

(1.2) F(t,x) = W(t,x)f(t) + w(t,x), (t,x) e]0,T[xn, 

where 

(1.3) N = { (x i ,x 2 ) : x\ + X2
2 < a2}, 

A is a given real k X k matrix, H is a given k X k matrix-valued function 

H : [0, T] x 71 9 (t, x) i • H(t, x) G 

w is a given Revalued function 

w : [0,T] x 12 9 ( t ,x ) w( t ,x ) 6 R k , 

consists in determining the unknown Revalued functions u and / : 

u : [0, T] x H 9 (t, x) u(t, x) £ Rk, 

f :[0,T}3t» f{t)£Rk, 
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satisfying the system (1.1) and the usual initial and boundary Fourier con-
ditions (first Fourier problem) which are overspecified by the additional 
measurement of the function u(t,x) at the point x € INT J7, i.e. 

(1.4) u(t, x) = h(t) for t € [0, T\, 

where h is a given Revalued function 

h : [0,T] 9 t i-> h(t) e R*. 

A similar problem was investigated by M. Majchrowski, J. Rogulski in 
[6] but for Q =]0,1[ only. 

The method of solving our problem is by resolving it into the system of 
Volterra integral equations of the second kind. At first we have to find the 
solution of an auxiliary problem (Fl) for the system (1.1) with the initial 
and boundary conditions: 

(1.5.1) u(0, x) = g(x) for x £ f2, 

(1.5.2) tt(i,a:) = 0 for (t,x) G [0,T] x d£2, 

where g is a given Revalued function 

g : 72 9 x -> g(x) £ Rfc. 

Such first Fourier problem (Fl ) was investigated in detail in [1]. Solution 
of the problem (Fl ) is represented in a sum of two integrals being coun-
terparts of the Poisson-Weierstrass and the potential of a plane domain. 
Kernels of these potentials are represented by the matrix-function G. The 
form of G and the properties of this matrix-function are discussed in [1]. The 
representation of solution of the problem (Fl ) with G being used allows us 
to solve an inverse problem by an application of the theory of systems of 
Volterra integral equations. 

Inverse problems formulated for the above systems are in a sense some 
kind of problems discussed in Control Theory. In our paper the source F in 
a system of diffusion equations becomes an unknown function as well as u 
itself. This sort of problems is discussed in Cannon's papers [2], [3], [4], [5], 
[7], and others papers (see [8]). 

2. Assumptions 
We make the following assumptions for the functions H, w,g,h and for 

the matrix A: 

(2.1) H(t,x) = 0 for ( t ,x) 6 [0,T] x d£2, H( / , i ) is invertible for every 
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t G [0,T], and the function 

H : [0,T] x [0,o] x [0,211] Rfc2 

which we define by 

H(t,P,7) := E ( t , p c o s y , p s i n j ) 

is of the class C1 and of the class C2 relative to the second variable and of 
the class C 4 relative to the third variable and 

d s . d s ~ 
H ( i ' Z9' °) = q^S H C ' P ' 2 I T ) for 5 G {0,1,2,3}, 

H exist, are continuous, bounded and equal zero d~fldp2 

on dQ for I € {1,2}, 

(2.2) w(t, x) = 0 for (t, x) e [0, T] x dQ, the function 

w : [0,T] x [0, a] x-[0,2II] Rk 

which we define by 

w(t,p, 7 ) w(t,p cos~Y,ps'm~/) 

is of the class C1 and of the class C2 relative to the second variable and of 
the class C 4 relative to the third variable and 

d s d s 

^ w ( t , p , 0 ) = - ^ w ( t , p , 2 U ) for 5 € {0,1,2,3}, 

di+2 w exist, are continuous, bounded and equal zero 
d f ldp2 

on dQ for I e {1,2}, 

(2.3) /i(0) = g(x) and h is of class C \ 

(2.4) g(x) = 0 for x € dQ, the function 

g : [0, a] x [0,211] -» Rk 

which we define by 

9 { p , l ) •= 5(pcos7,/>sin7) 

is of the class C2 and of the class C 4 relative to the second variable and 
8 s

 x d s „ 
d ^ s 9 ( p , 0) = - ^ g ( p , 2 T l ) for a € {0,1,2,3}, 
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d'+2 _ 
— - 7 7 — 0 exist, are continuous, bounded and equal zero 
ayap2 

on dfi for I e {1,2}, 

(2.5) all eigenvalues of A have positive real parts. 

We impose an additional condition in the form: we require that there 
exists limt_»o ~§iu(t, x)• 

3. Exis tence of a solut ion of t h e problem ( P ) 
From [1], Theorem 5.1, it follows the existence of a function v : [0,T] X 

Q —• Rfc, which is a solution of the problem (F l ) with F = 0. 
Put U(t,x) = u(t,x) — v(t,x) and observe that problem (P) becomes 

d d 
dtU+dtV = kAU + AAv + + for i2, 

U(0,x) + v(0,x) = g(x), for x € Q, 

U(t, x) + v(t, x) = 0, for (f, x) € [0, T] x df2, 

U(i, x) + v(t,x) = h{t), for t G [0,T]. 

Hence we obtain the following problem (P0) with unknown functions U 
and / 

a 
(3.1) — UCt, x) = AAUCt, x) + H(i, x)f(t) + w(t, x), 

at 
for (t,x) G]0 ,T[xS2, 

(3.2) U(0,x) = 0, for x £ f2, 

(3.3) U(t, x) = 0, for (t, x) € [0, T] x di2, 

(3.4) U(t, x) = h(t) - v(t, x), for t € [0,T], x £ INT Q. 

It follows from [1], Theorem 5.2, that for a given / the problem (3.1-3) has 
a solution. 

THEOREM 3.1 If the functions H , w , h , satisfy assumptions (2.1-3) then 
there exist continuous functions 

U : [0,T] x 7? —• Rfc, 

/ : [0,T] —> Rfc, 

such that the derivatives ^U, -¡¡¿rU, U, where i € {1,2} are defined and 
continuous on ]0,T[xi2, and the pair (U,f) satisfies (3.1-4). 
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P r o o f . From Theorem 5.2 in [1] it follows that the problem (3.1-3) has 
the solution given by the formula (for F = H / + w) 

( 3 . 5 ) v2(t,r,P) 

2 t 2tt a 

where ^ ( i , r,/3) := ^ ( i , rcos/3,T-sin/3), F(i, r,/3) := ¥(t, r cos/3, r sin /?) and 
the matrix-function G is given in [1] by the formula (3.3). Then applying 
condition (3.4), we obtain the following system of equations for the func-
tion / . 

2 t 27r a 
(3-6) J [J [J pG(t-V,ro,p,0o-1i)¥iri,p,'r)dp]dT\drt 

0 0 0 

= h(t) -vi(t,r0,/30), 

where Vi(t,r,/3) := vi(£, r cos/3, rsin/?), vi is the mentioned above solution 
of the problem F1 with F = 0 (see [1] theorem 5.1) and has the form 

2 2tt a 
n(i,r,/?) = — J [ J pG(t,r,p,0 - i)g(p,i)dp]di, 

o o 

(r0 cos^O) ro sin fio) = ¿ 6 INT ft, 

Hn, P, 7) = H(»7, p, 7)/(/?) + w(i7, p, 7), 

H(t/,/),7) ^i7?»PC0S7,psin7), 

'•= w(r),pcosj,psmj). 

The equation (3.6) is a system of Volterra integral equations of the first kind 
for the function / of the form 

t 
(3.7) / N M J / f a M = * ( * ) , t € [0,T], 

0 

where the matrix-valued function N(£, 77) and the Revalued function 9 are 
defined as follows: 

2 2 , r r ° ~ i 
i l / pG(t - T},ro,p,/3o ~ l)Hv,P,7)dp\dj, f o r tj < t, 
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!P(i) := h(t) — vi(t, ro,0o) 
2 t 2it a 

+ a?x / [ / [ / PG(t-1hr0iPifi0 - iWv, p , l ) d p ] d l ] d r l , 
0 0 0 

for t € [0,T]. 

By definition of the matrix-function G (see [1]), we obtain another form of 
the kernel of the equation (3.7) 

oo oo , , j \ 2 x 

N(M) = EEeXP - Mn.m" ( t - f ] ) A )H„im(l/), 
n=0 m=l \ \ a/ J 

where 

H 

i 

( r0\ 1 2 
n,m(f?) := </n /¿n,m—)[cosn/?o H (77) + sin n/?0 H (t/)], \ a J n,m n,m 

£na<2*[Jn+l{Hn,m)? 
2tt O / 

X f [ f pCOSTljJn( 
0 0 

( i i , m ) € ( N U { 0 } ) x N , 

2 2 
H n , m ( j ? ) : = 

ena2w[Jn+i(nnim)]2 

2ir a r a / \ 

X f [ f p sin n y j n ( f i n , m - J 
0 0 \ a / 

X i ( r / , p , 7 ) d p ] d j , ( n , m ) e ( N U { 0 ] ) x N . 

For fixed rj £ [0, T] and rj < t we analogously observe as in the proof of 
Theorem 5.1 in [1] that 

00 00 

H ( r ) ,x ) = ^ ^¡T Hn,m(f?), where x= (r0 cos/?0, r0 sin/?0). 
71=0 m = l 

Hence for every t 6 [0, T] we have 

00 00 

(3.8) N(f, 0 = E E ( 0 = H C ' **)' 
71=0 771=1 

where I is the unit matrix. 
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Since the matr ix H(£, x) is invertible for every t £ [0,T], the matr ix 
N( / , i ) is also invertible for every t £ [0,7"]. From [1] see Theorem 4.1) it 
follows tha t the kernel N(/, 77) is continuous function on a closed triangle 
0 < V < t < T . 

Also from the same theorem it follows that the function N((£, rj) given 
by the formula 

1 0 0 0 0 { ( 1 \ 2 \ 
N t ( i , = " I E E A m e X P ( " ( »n ,m " ( t - f j ) A J H ^ f t ) , 

n=0 m = l \ \ / / 

is continuous on the closed triangle 0 < TJ < t < T. 
Differentiating both sides of (3.7) we obtain a system of Volterra integral 

equations of the second kind for the function / 

t 
(3 .9 ) N ( f , t ) f ( t ) + f Nt(t, r,)f(r,)dr, = 9'(t). 

0 

From (3.8) and (3.9) we obtain 

(3.10) / ( / ) + / K ( i , 7 ? ) / ( i ? ) d 7 ? = H ( i , i ) - 1 9 \ t ) , 
0 

where the kernel K(t, rj) = H(i , ¿ ) _ 1 N t ( i , t;) is continuous on the closed 
triangle 0 < 77 < t < T. Hence the equation (3.10) has a unique continuous 
solution / : [0,T] Rk. Taking F = Bf + w, the Rfc-valued function U = v2 

given by the formula (3.5) is the solution of the problem (F l ) . Hence we 
obtain the function U which together with / has all properties listed in 
Theorem 3.1. 
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