Stefania Ginalska

ON SOME PROPERTIES OF SOLUTIONS OF THE EQUATION $x^{(n)} + ax = 0$

1. Introduction

The differential equation $x^{(2)} + ax = 0$ for |a| = 1 with initial conditions $(x_0, x_1, x'_0, x'_1) = (1, 0, 0, 1)$ has the fundamental sequence of solutions $(\cos t, \sin t)$ for a = 1 and $(\cosh t, \sinh t)$ for a = -1. These solutions satisfy, in particular, the equalities $x_0^2 + x_1^2 \operatorname{sgn} a = 1$, $x_1(t + u) = x_1(t)x_0(u) + x_0(t)x_1(u)$.

In this paper we generalize some of results of J. Mikusiński [1], [2]; we present some properties of solutions $x_0, x_1, \ldots, x_{n-1}$ of the equation

(1)
$$x^{(n)} + ax = 0 \ a \neq 0, \ n \geq 2,$$

satisfying the conditions

(2)
$$x_s^{(p)}(0) = r^p \delta_s^p, \ p, s = 0, 1, \dots, n-1,$$

where $r = \sqrt[n]{|a|}$ and δ_s^p is Kronecker's delta.

2. General solution, sequence of particular solutions, trigonometric identities

The equation (1) has n linearly independent solutions $x_k^* = e^{a_k t}$, $k = -1, \ldots, n-1$, $a_k = r(\cos b_k + i \sin b_k)$, $nb_k = 2k\pi + \arg(-a)$. Thus the general solution of (1) is an n-parameter class of functions $x^*(t) = \sum_{k=0}^{n-1} C_k x_k^*$, where $C_0, C_1, \ldots, C_{n-1}$ are arbitrary constants.

Define for (1) the sequence $x_0, x_1, \ldots, x_{n-1}$ of solutions satisfying the conditions (2). Such a sequence is unique and infinitely differentiable.

From this definitions it follows that

(3)
$$x_0 = \frac{1}{n} \sum_{k=0}^{n-1} e^{a_k t}, \quad x_s = \frac{-r^s}{a} x_0^{(n-s)}, \quad s = 0, 1, \dots, n-1,$$

since

$$\sum_{k=0}^{n-1} a_k^m = a_0^m \sum_{k=0}^{n-1} \left(\cos \frac{2m\pi}{n} + i \sin \frac{2m\pi}{n} \right)^k = -an\delta_m^n, \quad m = 1, 2, \dots, n.$$

So the sequence of real solutions of (1), satisfying (2), is

$$x_{s} = \frac{-r^{s}}{an} re \sum_{k=0}^{n-1} a_{k}^{n-s} e^{a_{k}t}$$

which, by (3), becomes

(4)
$$x_s = \frac{1}{n} \sum_{k=0}^{n-1} e^{rt \cos b_k} \cos(rt \sin b_k - sb_k)$$

and, besides, the following relations hold

(5)
$$\sum_{k=0}^{n-1} e^{rt\cos b_k} \sin(rt\sin b_k - sb_k) = 0, \quad s = 0, 1, \dots, n-1.$$

If n=2 and a=-4 the relations (4) and (5), for s=0,1, are of the form $x_s=(1-s)\cosh t + s \sinh t$ and

$$\sum_{k=0}^{1} e^{2t \cos b_k} \sin(2t \sin b_k - sb_k) = 0,$$

respectively.

The pth derivative, p = 0, 1, ..., n - 1, of the solution (4) is

$$x_s^{(p)} = \frac{r^p}{n} \sum_{k=0}^{n-1} e^{rt\cos b_k} \cos(rt\sin b_k + (p-s)b_k).$$

Hence, by (2), we get $\sum_{k=0}^{n-1} \cos((p-s)b_k) = n\delta_s^p$.

3. Evenness and oddness of the solutions (4)

For $\frac{n+1}{2} \in N$ the solutions (4) can neither be even nor odd, because each of them satisfies the equation (1). On the other hand, for $\frac{n}{2} \in N$,

$$x_0 = \frac{2}{n} \sum_{k=0}^{\frac{n}{2}-1} (\cosh(rt\cos b_k)\cos(rt\sin b_k)).$$

Hence, by (3), $x_0, x_2, \ldots, x_{n-2}$ are even and $x_1, x_3, \ldots, x_{n-1}$ are odd. The evenness and oddness of x_s for $\frac{n}{2} \in N$ also result from (4), which can be written in the form

$$x_{s} = \frac{1}{n} \sum_{k=0}^{\frac{n}{2}-1} (e^{rt\cos b_{k}} \cos(rt\sin b_{k} - sb_{k}) + (-1)^{s} e^{rt\cos b_{k}} \cos(rt\sin b_{k} + sb_{k})), \quad s = 0, 1, \dots, n-1.$$

- 4. Properties of the solutions (4) in the neighbourhood of t=0 By (2), we can observe that
- 1. if $\frac{n}{2} \in N$, then at t = 0; x_0 has extremum equal to 1 (minimum for a < 0 and maximum for a > 0), $x_2, x_4, \ldots, x_{n-2}$ have minimum equal to 0 and $x_1, x_3, \ldots, x_{n-1}$ have an inflexion point,
- 2. if $\frac{n-1}{2} \in N$, then at t = 0 x_0 has an inflexion point, x_1 has neither extremum nor an inflexion point, $x_2, x_4, \ldots, x_{n-1}$ have minimum equal to 0 and $x_3, x_5, \ldots, x_{n-2}$ have an inflexion point.

5. Wronskian for equation (1)

If W(t) denotes the Wronskian of the solutions (4), then W'(t) = 0 and $W(0) = r^{\binom{n}{2}}$. Hence we have, for every $t \in R$, the identity

$$\begin{vmatrix} x_0 & x_1 & \dots & x_{n-1} \\ x'_0 & x'_1 & \dots & x'_{n-1} \\ \dots & \dots & \dots & \dots \\ x_0^{(n-1)} & x_1^{(n-1)} & \dots & x_{n-1}^{(n-1)} \end{vmatrix} = r^{\binom{n}{2}}$$

which for n=2 and |a|=1 takes the form $x_0^2+x_1^2 \operatorname{sgn} a=1$.

6. Functions depending on the sum of arguments

A function f(t) satisfying the equation (1) and the conditions $f^{(s)}(0) = c_s$, $s = 0, 1, \ldots, n-1$, is of the form $f(t) = \sum_{k=0}^{n-1} c_k r^{-k} x_k(t)$. For given u and for $s = 0, 1, \ldots, n-1$ the function $g(t) = x_0(t+u)$ satisfies $g^{(s)}(0) = x_0^{(s)}(u)$. From this it follows that

$$x_0(t+u) = \sum_{k=0}^{n-1} r^{-k} x_0^{(k)}(u) x_k(t).$$

For s = 0, 1, ..., n-1 we differentiate this equation n-s times with respect to t and u and obtain the relations

(6)
$$x_s(t+u) = \frac{-r^s}{a} \sum_{k=0}^{n-1} r^{-k} x_0^{(k)}(u) x_k^{(n-s)}(t),$$

and

(7)
$$x_s(t+u) = \frac{-r^s}{a} \sum_{k=0}^{n-1} r^{-k} x_0^{(n-s+k)}(u) x_k(t)$$

implying

$$x_s(2t) = \frac{-r^s}{a} \sum_{k=0}^{n-1} r^{-k} x_0^{(k)}(t) x_k^{(n-s)}(t)$$

and

$$x_s(2t) = \frac{-r^s}{a} \sum_{k=0}^{n-1} r^{-k} x_0^{(n-s+k)}(t) x_k(t),$$

respectively. In particular, both these equalities for n=2, a=-2, s=0 and $t\sqrt{2}=q$ take the form $\cosh 2q=\cosh^2 q+\sinh^2 q$.

7. Functions depending on the difference of arguments

If $\frac{n}{2} \in N$, then (6) and (7) imply

(8)
$$x_s(t-u) = \frac{-r^s}{a} \sum_{k=0}^{n-1} (-1)^k r^{-k} x_0^{(k)}(u) x_k^{(n-s)}(t)$$

and

$$(9) x_s(t-u) = \frac{-r^s}{a} \sum_{k=0}^{n-1} (-1)^{k+s} r^{-k} x_0^{(n-s+k)}(u) x_k(t),$$

respectively. If we put u = t and s = 0 in (8), (9), then, by (2), we get the equality

$$\sum_{k=0}^{n-1} (-1)^k r^{-k} x_0^{(k)}(t) x_k(t) = 1$$

which, for n = 2 and a = 1, has the form $\cos^2 t + \sin^2 t = 1$.

8. Power series for the solution (4)

The functions (4) satisfy the problem (1), (2), hence their power series expansion is of the form

$$x_s(t) = r^s \sum_{k=0}^{\infty} \frac{(-a)^k}{(kn+s)!} t^{kn+s}, \quad s = 0, 1, \dots, n-1.$$

These series are convergent for every $t \in R$.

References

- [1] J. Mikusiński, Trigonometry of the differential equation $x^{(3)} + x = 0$, Wiadomości Mat. 2 (1959), 207-227. (in Polish).
- [2] J. Mikusiński, Trigonometry of the differential equation $x^{(4)} + x = 0$, Wiadomości Mat. 4 (1960), 73-84. (in Polish).

INSTITUTE OF MATHEMATICS
TECHNICAL UNIVERSITY IN CZĘSTOCHOWA
42-200 CZĘSTOCHOWA, POLAND