Jan Ambrosiewicz

ON THE SETS $C_V C_V$ IN THE GROUP SL(n, K)

In [3] has been proved that

(1) if $A \in SL(n, K)$ is not a scalar and K has at least four elements, then A is a commutator of SL(n, K).

In a present paper we shall prove that

(2) if $A \in SL(n, K)$ is not a scalar and n < |K| - 1 or char K = 0, then there exists class C_V such that $A \in C_V C_{V-1}$, where C_V denotes the conjugacy class of $V \in SL(n, K)$.

Observe that the condition $A \in C_V C_{V^{-1}}$ implies that A is a commutator. Hence if n < |K| - 1 or char K = 0, then the second theorem is stronger than the first one.

We will give a condition for which there exists $V \in SL(n, K)$ such that $SL(n, K) = C_V C_V$. That is an answer to the question: whether there exists C_V such that $C_V C_V = SL(n, K)$, (see [2]. p. 66). Simultaneously we give a new proof of the equality $PSL(n, K) = C_V C_V$, different from that in [2].

The notation is standard. In addition we shall denote by $SL_1(n, K)$ the subgroup of matrices of determinant equal to \pm 1. We shall use the following theorem.

THEOREM 1 (see [1]). If $V, W \in GL(n, K)$, $V = \operatorname{diag}(v_1, \ldots, v_n)$, $W = \operatorname{diag}(w_1, \ldots, w_n)$, $v_i \neq v_j$, $w_i \neq w_j$ for $i \neq j$, $\det A = \det VW$ and $A \notin Z(GL(n, K))$, then the matrix equation $X^{-1}VXY^{-1}WY = A$ has a solution $X, Y \in GL(n, K)$ such that $\det X$, $\det Y$ are arbitrary elements of K^* .

COROLLARY 1. If $V = \text{diag}(v_1, \ldots, v_n)$, $W = \text{diag}(w_1, \ldots, w_n)$, $v_i \neq v_j$, $w_i \neq w_j$ for $i \neq j$, then

- (3) $SL(n,K) = C_V C_W \cup Z(SL(n,K))$ for $V,W \in SL(n,K)$,
- (4) $PSL(n, K) = C_V C_W \cup \{E\}$ for $V, W \in PSL(n, K)$.

LEMMA 1. If $V = \text{diag}(1, b, \dots, b^{n-1})$, where $b \in K^*$ is a primitive n-th root of unity, then for arbitrary element k of K^* the equation

$$b^{j-1}E = VXVX^{-1}, \quad j = 1, \dots, n$$

for arbitrary element k of K^* has a solution X such that $\det X = k$.

The proof follows by an easy observation that the equation $V^{-1}b^{j-1}X=$ XV has the solution

$$X = \begin{bmatrix} X_j & 0 \\ 0 & X_{n-k} \end{bmatrix}, \quad \text{where } X_j$$

$$= \begin{bmatrix} 0 & x_{1j} \\ \vdots & \vdots & \\ x_{j1} & 0 \end{bmatrix}, \quad X_{n-j} = \begin{bmatrix} 0 & x_{j+1n} \\ \vdots & \vdots & \\ x_{nj+1} & 0 \end{bmatrix}.$$

LEMMA 2.

- (i) If $V = \text{diag}(v_1, v_1^{-1}, \dots, v_i, v_i^{-1}), v_s \in K^*$ or (ii) if $V = \text{diag}(1, v_1, v_1^{-1}, \dots, v_i, v_i^{-1}), v_s \in K^*$,

then for arbitrary element k of K^* the equation $VXVX^{-1} = E$ has a solution X such that $\det X = k$.

The equation $V^{-1}X = XV$ has the solution $X = \text{diag}(F_1, \dots, F_i)$ for the case (i) and $X = diag(1, F_1, ..., F_i)$ for the case (ii), where

$$F_s = \begin{bmatrix} 0 & x_{2s-12s} \\ x_{2s2s-1} & 0 \end{bmatrix}$$
 for $s = 1, \dots, i$.

Now the statement of Lemma 2 is evident.

THEOREM 2. If K is a field with char K = 0 or $K = F_q$ and $n < |F_q| - 1$, then there are classes C_V such that

- (5) $SL(n,K) Z(SL(n,K)) \subseteq C_V C_V$ and
- (6) $SL(n,K) Z(SL(n,K)) \cup \{E\} \subseteq C_V C_{V^{-1}}$.

Proof. It follows from the assumptions that there are matrices V = $\operatorname{diag}(v_1,\ldots,v_n)$ such that $v_i\neq v_j$ for $i\neq j$. Hence for W=V we receive (5) and for $W = V^{-1}$ we obtain (6), by Corollary 1.

THEOREM 3.

- (i) If n|q-1, n=2s+1 or n|q-1, q is even, then there exists $C_V \subset$ SL(n,q) such that $SL(n,q) = C_V C_V$.
- (ii) If n|q-1, q is odd and n=2s, then there exists $C_V \subset SL_1(n,q)$ such that $SL(n,q) = C_V C_V$.

Proof. (i) The matrix $V = \operatorname{diag}(1, a^1, \dots, (a^i)^{n-1})$, where $ni = q-1, a^i$ is a primitive n-th root of unity, fulfills the assumptions of Corollary 1. Hence for W = V it follows $SL(n,q) \subseteq C_V C_V \cup Z(SL(n,q))$, by Corollary 1. It is easy to see that det V = 1. Therefore $Z(SL(n,q)) \subset C_V C_V$, by Lemma 1.

(ii) Observe that det V = -1. The rest of the proof is same as in (i).

THEOREM 4. Let K be an algebraically closed field.

- (i) If n = 2s+1, then there exists $C_V \subset SL(n, K)$ such that $SL(n, K) = C_V C_V$.
- (ii) If n = 2s, then there exists $C_V \subset SL_1(n, K)$ such that $SL(n, K) = C_V C_V$.

Proof. (i) For $W = V = \text{diag}(1, e, \dots, e^{n-1})$, e-primitive root of unity,

(7)
$$SL(n,K) \subseteq C_V C_V \cup Z(SL(n,K)),$$

by Corollary 1. Since n=2s+1, det V=1. Hence $Z(SL(n,K))\subseteq C_VC_V$, by Lemma 1. Therefore $SL(n,K)=C_VC_V$, by (7).

(ii) Since n = 2s, $\det V = -1$. Hence $C_V \subset SL_1(n, K)$. Complete the proof as in (i).

THEOREM 5.

- (i) If K is a field with char K = 0 or
- (ii) If $K = F_q$, q-odd and n < q 1 or
- (iii) if n, q are even and n < q, then there exists classes C_V such that $C_V C_V = PSL(n, K)$. (cf [2]).

Proof. By the assumption of cases (i)-(iii) there are $v_1, \ldots, v_i \in K$ such that 2i = n elements $v_1, \ldots, v_i, v_1^{-1}, \ldots, v_i^{-1}$ are different and $v_s \neq 1$ for $s = 1, \ldots i$. If we take

$$V = \text{diag}(v_1, v_1^{-1}, \dots, v_i, v_i^{-1})$$
 in the even case,
 $V = \text{diag}(1, v_1, v_1^{-1}, \dots, v_i, v_i^{-1})$ in odd case

and $W=V^{-1}$ accordingly, then we receive $PSL(n,K)\subseteq C_VC_{V^{-1}}\cup\{E\}$, by (4). Now by Lemma 2 it follows that $C_V=C_{V^{-1}}$ and $E\in C_VC_V$. Therefore $PSL(n,K)=C_VC_V$.

References

[1] J. Ambrosiewicz, Products of sets in linear groups, Demonstratio Math. 22 (1989), 677-693.

- [2] J. L. Brenner, Covering theorems for Finasigs X, Ars Combinatoria, Vol 16 (1983), 57-67.
- [3] R. C. Thompson, Commutators in the special and general linear groups, Trans. Amer. Math. Soc. 101 (1961), 16-33.

INSTITUTE OF MATHEMATICS
TECHNICAL UNIVERSITY OF BIAŁYSTOK
Wiejska 45 a
15-351 BIALYSTOK, POLAND

Received November 25, 1993.