Jorma Arhippainen

ON SOME PROPERTIES OF ALGEBRAS OF LMC-ALGEBRA VALUED FUNCTIONS

Definitions and notations

Let A be a commutative locally m-convex algebra (lmc-algebra) over the field C of complex numbers. In this paper we shall assume that A has not a unit element. Let $\mathcal{P}(\Lambda) = \{p_{\lambda} \mid \lambda \in \Lambda\}$ be a family of seminorms defining the topology in A denoted by $T(\mathcal{P})$. We shall assume that $T(\mathcal{P})$ is a Hausdorff topology, in other words, if we have for an element x in A $p_{\lambda}(x) = 0$ for all $\lambda \in \Lambda$, then x = 0. Furthermore, we assume that the family \mathcal{P} is directed i.e. it is closed under taking a maxima of two of its members.

We shall denote by $\Delta(A)$ the set of all non-trivial continuous C-homomorphisms on A. The set $\Delta(A)$ will be equipped with the relative $\sigma(A',A)$ -topology. With this topology $\Delta(A)$ will be called the carrier space of $(A,T(\mathcal{P}))$. For a given element $x\in A$ we shall define a function \widehat{x} on the carrier space $\Delta(A)$ by an equation $\widehat{x}(\tau)=\tau(x),\,\tau\in\Delta(A)$. Furthermore we shall denote $\widehat{A}=\{\widehat{x}\mid x\in A\}$. Obviously $\widehat{A}\subset C(\Delta(A))$ (= the set of all continuous C-valued functions defined on $\Delta(A)$). If I is an ideal of A, then a hull of I denoted by h(I) is defined as $h(I)=\{\tau\in\Delta(A)\mid \widehat{x}(\tau)=0,\,x\in I\}$. Correspondingly a kernel k(E) of a subset E of $\Delta(A)$ is defined by $k(E)=\{x\in A\mid \widehat{x}(\tau)=0,\,\tau\in E\}$ and for an empty set \emptyset we shall define $k(\emptyset)=A$.

For a completely regular space X denote by C(X,A) the set of all continuous A-valued functions defined on X. If A = C (= the field of complex numbers), then we shall denote C(X,C) = C(X). Algebraic operations in C(X,A) will be defined by a pointwise manner. If $x \in A$, then we shall denote by f_x the constant function $f_x(t) = x$, $t \in X$. Thus f_0 is a zero element of C(X,A).

Let K be a compact cover of X which is closed under a finite union. For given $K \in K$ and $\lambda \in \Lambda$ we shall define a seminorm $p_{(K,\lambda)}$ on C(X,A) by

an equation

$$p_{(K,\lambda)}(f) = \sup_{t \in K} p_{\lambda}(f(t)), \quad f \in C(X,A).$$

Denote by $\mathcal{P}(\mathcal{K}, \Lambda) = \{p_{(K,\lambda)} \mid K \in \mathcal{K}, \lambda \in \Lambda\}$. The family $\mathcal{P}(\mathcal{K}, \lambda)$ defines a locally m-convex topology on C(X,A) denoted by $T(\mathcal{K},\mathcal{P})$. Let $K \in \mathcal{K}$, $\lambda \in \Lambda$ and $\epsilon > 0$. We shall denote by $V_{(K,\lambda)}(\epsilon)$ the set $V_{(K,\lambda)}(\epsilon) = \{f \in C(X,A) \mid p_{(K,\lambda)}(f) < \epsilon\}$. Obviously the sets $V_{(K,\lambda)}$, $K \in \mathcal{K}$, $\lambda \in \Lambda$ and $\epsilon > 0$ form a subbase of neighbourhoods at f_0 . Let t be a point of X and X are X and X and X and X and X are X and X and X and X are X are X and X are X are X and X are X and X are X and X are X and X are X are X and X are X are X are X and X are X are X and X are X are X and X are X and X are X are X and X are X are X are X are X and X are X are X are X and X are X are X are X and X are X are X are X are X are X are X and X are X and X are X are X are X are X and X are X and X are X are X and X are X are X and X are X

In this paper we shall study the ideal structure of the lmc-algebra $(C(X,A),T(\mathcal{K},\mathcal{P}))$. Especially we shall extend some results of [2].

1. Auxiliary results

First we shall consider the structure of $(A, T(\mathcal{P}))$. Since we assume that A has not a unit element we can naturally adjoin the unit element to A by a usual way. (See for ex. [5]). Denote by A(e) the algebra with an adjoint unit. Elements of A(e) will be denoted by (x,α) , where $x \in A$ and $\alpha \in C$. Thus, (0,1) is the unit element of A(e) and we shall denote (0,1)=e. Let $\lambda \in \Lambda$. We shall define a seminorm q_{λ} on A(e) by $q_{\lambda}((x,\alpha)=p_{\lambda}(x)+|\alpha|,(x,\alpha)\in A(e)$. Denote by $Q(\Lambda)=\{q_{\lambda}\mid \lambda\in\Lambda\}$. The family $Q(\Lambda)$ defines a locally m-convex topology on A(e) and we shall denote this topology by T(Q).

The mapping $x\mapsto (x,0)$ from $(A,T(\mathcal{P}))$ into $(A(e),T(\mathcal{Q}))$ is a semi-isometric homomorphism in the sense of [1]. Namely we have $p_{\lambda}(x)=q_{\lambda}((x,0)), x\in A$ and $\lambda\in\Lambda$. Obviously $A_0=\{(x,0)\mid x\in A\}$ is a closed maximal ideal of $(A(e),T(\mathcal{Q}))$. Since $(A,T(\mathcal{P}))$ and $(A_0,T(\mathcal{Q}))$ are semi-isometrically isomorphic (see [1]) they can be identified as Imcalgebras. Therefore $(A,T(\mathcal{P}))$ can be considered as a closed maximal ideal of $(A(e),T(\mathcal{Q}))$. It now follows from this that $(C(X,A),T(\mathcal{K},\mathcal{P}))$ can be considered as a closed ideal of $(C(X,A(e)),T(\mathcal{K},\mathcal{Q}))$.

If I is an ideal of A we shall say that I is regular, if there is an element $u \in A$ such that $ux - x \in I$ for all $x \in I$. The element u will be called an identidy in A modulo I.

LEMMA 1.1. Let I be a closed ideal of a lmc-algebra $(A, T(\mathcal{P}))$ (A with or without unit). Let I_0 be a closed regular proper ideal of $(I, T(\mathcal{P}))$. Then I_0 is also a regular ideal of A and furthermore there is a closed proper regular ideal I_1 of $(A, T(\mathcal{P}))$ such that $I_0 = I_1 \cap I$.

Proof. To prove that I_0 is also an ideal of A it suffices to show that $xy \in I_0$ for all $x \in I_0$ and $y \in A$. Let u be an identity in I modulo I_0 . Now for any $x \in I_0$ and $y \in A$ we have uy and $xy \in I$. Thus $xy = x(uy) - (u(xy) - xy) \in I_0$

for all $x \in I_0$ and $y \in A$. Obviously u is also an identity in A modulo I_0 and thus I_0 is a regular ideal of A.

Let $I_1 = \{x \in A \mid ux \in I_0\}$. We shall show that I_1 is a closed ideal of $(A, T(\mathcal{P}))$ and $I_0 = I_1 \cap I$. Let $\{x_\alpha \mid \alpha \in \Gamma\}$ be a net in I_1 for which $x_\alpha \to x$ for some $x \in A$. Then we have $ux_\alpha \to ux$ and $ux_\alpha \in I_0$. Thus $ux_0 \in I_0$ and so $x \in I_1$. It is easy to see that I_1 is a regular ideal of A. Clearly $I_0 \subset I_1 \cap I$. If $x \in I_1 \cap I$, then $ux \in I_0$ and $ux - x \in I_0$ and thus $x = ux - (ux - x) \in I_0$ and we can see that $I_1 \cap I \subset I_0$ and therefore $I_0 = I_1 \cap I$.

COROLLARY 1.1 Each closed proper regular ideal J of $(C(X,A),T(\mathcal{K},\mathcal{P}))$ is a C(X)-module. In other words we have $gf \in J$ for all $g \in C(X)$ and $f \in J$.

Proof. Since $(C(X,A),T(\mathcal{K},\mathcal{P}))$ can be considered as a closed ideal of $(C(X,A(e)),T(\mathcal{K},\mathcal{Q}))$ by Lemma 1.1 there is a closed ideal J_1 of $(C(X,A(e)),T(\mathcal{K},\mathcal{Q}))$ such that $J=J_1\cap C(X,A)$. Now for any $f\in J\subset J_1$ and $g\in C(X)\subset C(X,A(e))$ we have $gf\in J_1$. Since fg belongs to C(X,A), we have $gf\in J$.

Denote by L(C(X), A) the linear hull of the sets C(X) and A. Thus $L(C(X), A) = \{\sum_{i=1}^{n} g_i f_{x_i} \mid g_i \in C(X), x_i \in A, n \in N\}.$

LEMMA 1.2. L(C(X), A) is a dense subset of (C(X, A), T(K, P)).

Proof. This result can be shown similarly as the corresponding result for the compact open topology. See [3] Theorem 2.3.1.

2. On the ideal structure of $(C(X,A),T(\mathcal{K},\mathcal{P}))$

In this chapter we shall extend some results of [2] in such a sense that A has not a unit element. Let t be a point of X and J an ideal of C(X,A). We shall denote by $I(t) = cl(\{f(t) \mid f \in J\})$ where cl means the closure operation in A with respect to the topology $T(\mathcal{P})$.

THEOREM 2.1. Let J be a proper closed regular ideal of $(C(X,A),T(\mathcal{K},\mathcal{Q}))$. Then there is at least one point $t \in X$ such that I(t) is a proper closed regular ideal of $(A,T(\mathcal{P}))$.

Proof. It is easy to see that I(t) is either a proper closed regular ideal of $(A, T(\mathcal{P}))$ or otherwise I(t) = A. Suppose that I(t) = A for all $t \in X$. Thus for $x \in A$, $K \in \mathcal{K}$, $\lambda \in \Lambda$ and $\epsilon > 0$ and any $t \in K$ there is a function $f^{(t)} \in J$ such that

$$p_{\lambda}(f^{(t)}(t) - x) = p_{\lambda}(f^{(t)}(t) - f_x(t)) < \epsilon.$$

So by the continuity of $f^{(t)}$ and f_x there is a neighbourhood U(t) of t for which

$$(2.1) p_{\lambda}(f^{(t)}(s) - f_{x}(s)) < \epsilon \text{ for all } s \in U(t).$$

By the compactness of K, there are t_1, t_2, \ldots, t_n in K such that (2.1) holds true for $t = t_1, t_2, \ldots, t_n$ and by Lemma 2.1.1 of [3] there are functions $\alpha_i \in C(X)$, $i = 1, 2, \ldots, n$ such that $0 \le \alpha_i(t) \le 1$ for all $t \in X$ and $i = 1, 2, \ldots, n$, $supp \alpha_i \subset U_i$ for all $i = 1, 2, \ldots, n$ and $\sum_{i=1}^n \alpha_i(t) = 1$ for all $t \in K$. Put $F_{(K,\lambda)} = \sum_{i=1}^n \alpha_i f_i$ by Corollary 1.1 $F_{(K,\lambda)} \in J$. Obviously

$$p_{\lambda}(F_{(K,\lambda)}-f_x)<\epsilon.$$

Since $K \in \mathcal{K}$, $\lambda \in \Lambda$ and $\epsilon > 0$ were choosen arbitrarily we infer that all constant functions f_x are in J. The Corollary 1.1 implies now $L(C(X), A) \subset J$. By Lemma 1.2 we obtain C(X, A) = J - a contradiction proving our assertion.

Next we shall characterisize maximal regular ideals and a carrier space of the algebra $(C(X,A),T(\mathcal{K},\mathcal{P}))$. Let $t\in X$ and $\tau\in\Delta(A)$. Denote by $\phi_{(t,\tau)}$ the mapping from C(X,A) into C defined by

$$\phi_{(t,\tau)}(f) = \tau(f(t)), \ f \in C(X,A).$$

It is easy to see that $\phi \in \Delta(C(X,A))$.

LEMMA 2.1. If N is a closed regular maximal ideal of (C(X, A), T(K, P)), then there are unique points $t \in X$ and $\tau \in \Delta(A)$ such that

$$N = ker\phi_{(t,\tau)} = \{ f \in C(X,A) \mid \phi_{(t,\tau)}(f) = 0 \}.$$

Proof. By Theorem 2.1 there is a point t in X such that $I(t) = cl(\{f(t) \mid f \in N\})$ is a proper closed regular ideal of $(A, T(\mathcal{P}))$. This implies that there is $\tau \in \Delta(A)$ with $I(t) \subset ker\tau$. Now, if $f \in N$, then $f(t) \in I(t) \subset ker\tau$ so that $N \subset ker\phi_{(t,\tau)}$. By the maximality of N we have $N = ker\phi_{(t,\tau)}$.

Next we shall show that the points t and τ are unique. Suppose that $N=\ker\phi_{(t_0,\tau_0)}=\ker\phi_{(t_1,\tau_1)}$. This implies that $\phi_{(t_0,\tau_0)}=\phi_{(t_1,\tau_1)}$. Now we have $\tau_0(x)=\tau_0(f_x(t_0))=\phi_{(t_0,\tau_0)}(f_x)=\phi_{(t_1,\tau_1)}(f_x)=\tau_1(f_x(t_1))=\tau_1(x)$ for all $x\in A$. Thus we can see that $\tau_0=\tau_1$. If $t_0\neq t_1$, then by completely regularity of X there is a function $g\in C(X)$ for which $g(t_0)=1$ and $g(t_1)=0$. Since $\tau_0=\tau_1$ there is an element y in A such that $\tau_0(y)=\tau_1(y)=1$. If we now choose $f=gf_y$, then $f\in C(X,A)$ and $\phi_{(t_0,\tau_0)}(f)=1$ and $\phi_{(t_1,\tau_1)}(f)=0$ which contradicts with an assumption that $\phi_{(t_0,\tau_0)}=\phi_{(t_1,\tau_1)}$.

COROLLARY 2.1. Each closed regular maximal ideal N of $(C(X,A), T(\mathcal{K}, \mathcal{P}))$ is of the form $N = J_{(t,ker\tau)}$ for some $t \in X$ and $\tau \in \Delta(A)$.

Denote by φ the mapping from $X \times \Delta(A)$ into $\Delta(C(X,A))$ defined by (2.2) $\varphi(t,\tau) = \phi_{(t,\tau)}, \quad (t,\tau) \in X \times \Delta(A).$

Theorem 2.2. The mapping φ defined in (2.2) is a bijection from $X \times \Delta(A)$ onto $\Delta(C(X,A))$ for which the inverse function φ^{-1} is automatically continuous. Furthermore, φ is continuous, if $\Delta(A)$ is locally equicontinuous.

Proof. By the proof of Lemma 2.1 φ is an injection from $X \times \Delta(A)$ into $\Delta(C(X,A))$. To prove the surjectivity let $\phi \in \Delta(C(X,A))$ be arbitrary. Now $\ker \phi$ is a closed regular maximal ideal of $(C(X,A),T(\mathcal{K},\mathcal{P}))$. So by Lemma 2.1 there are unique points $t \in X$ and $\tau \in \Delta(A)$ such that $\ker \phi = \ker \phi_{(t,\tau)}$. But this implies that $\phi = \phi_{(t,\tau)} = \varphi(t,\tau)$.

To prove the continuity of the inverse mapping φ^{-1} we can use a similar method that Prolla has used in [6] for non-Archimedean function algebras. So let $\{\phi_{\alpha} \mid \alpha \in \Gamma\}$ be a net in $\Delta(C(X,A))$ such that $\phi_{\alpha} \to \phi$ for some $\phi \in \Delta(C(X,A))$. Since φ is a surjection there are elements $t_{\alpha} \in X$, $\alpha \in \Gamma$, $t \in X$, $\tau_{\alpha} \in \Delta(A)$, $\alpha \in \Gamma$ and $\tau \in \Delta(A)$ such that $\phi_{\alpha} = \phi_{(t_{\alpha},\tau_{\alpha})}$ and $\phi = \phi_{(t,\tau)}$. Let f be an element of C(X,A) for which $\phi(f) = 1$. Since $\phi_{\alpha} \to \phi$ there is $\alpha_{0} \in \Gamma$ such that $\phi_{\alpha}(f) > 0$ for all $\alpha > \alpha_{0}$. Let $g \in C(X)$ be arbitrary. Now, if $\alpha > \alpha_{0}$, then

$$g(t_{\alpha}) = \frac{g(t_{\alpha})\tau_{\alpha}(f(t_{\alpha}))}{\tau_{\alpha}(f(t_{\alpha}))} = \frac{\phi_{\alpha}(gf)}{\phi_{\alpha}(f)}.$$

Since $\phi_{\alpha}(f) \to 1$ we therefore have

$$g(t_{\alpha}) \to \phi(gf) = \tau(g(t)f(t)) = g(t)\tau(f(t)) = g(t)\phi(f) = g(t)$$
 for all $g \in C(X)$.

Now the topology of X coincide with the weak topology in X generated by C(X). So we can see that $t_{\alpha} \to t$.

By similar methods it can be shown that $\widehat{x}(\tau_{\alpha}) \to \widehat{x}(\tau)$ for all $x \in A$. Since the topology of $\Delta(A)$ coincide with the weak topology in $\Delta(A)$ generated by \widehat{A} we can see that $\tau_{\alpha} \to \tau$. Thus from the condition $\phi_{\alpha} \to \phi$ it follows that $(t_{\alpha}, \tau_{\alpha}) \to (t, \tau)$ which implies that $\varphi^{-1}(\phi_{\alpha}) \to \varphi^{-1}(\phi)$ and we have shown that φ^{-1} is continuous.

The continuity of φ depends on the continuity of the mapping $\widehat{f}: X \times \Delta(A) \mapsto C$ defined by $\widehat{f}(t,\tau) = \widehat{f}(\phi_{(t,\tau)}) = \tau(f(t)), (t,\tau) \in X \times \Delta(A)$. But this map is continuous, if $\Delta(A)$ is locally equicontinuous. (See for ex. [4]). Thus φ is continuous, if $\Delta(A)$ is locally equicontinuous.

COROLLARY 2.2. The carrier space $\Delta(C(X,A))$ of $(C(X,A),T(\mathcal{K},\mathcal{P}))$ is homeomorphic to $X \times \Delta(A)$, if $\Delta(A)$ is locally equicontinuous.

Next we shall give a description of all proper closed regular ideals of $(C(X,A),T(\mathcal{K},\mathcal{P}))$.

Theorem 2.3. If J is a proper closed regular ideal of $(C(X,A),T(\mathcal{K},\mathcal{P}))$, then there is a subset E of X and a family $\{I(t) \mid t \in E\}$ of proper closed regular ideals of $(A,T(\mathcal{P}))$ such that $J = \bigcap_{t \in E} J_{(t,I(t))}$.

Proof. For a given point $t \in X$ we put $I(t) = cl(\{f(t) \mid f \in J\})$. Now it is easy to see that I(t) is either a proper closed regular ideal of

 $(A,T(\mathcal{P}))$ or otherwise I(t)=A. Denote by $E=\{t\in X\mid I(t)\neq A\}$. By Theorem 2.1 E is non empty. Obviously $J\subset \cap_{t\in E}J_{(t,I(t))}$. If $t\in X\sim E=$ the complement of E in X, then $J_{(t,I(t))}=C(X,A)$ from which it follows that $\cap_{t\in X}J_{(t,I(t))}=\cap_{t\in E}J_{(t,I(t))}$. Now let $f\in \cap_{t\in X}J_{(t,I(t))}$ be arbitrary. Furthermore let $K\in \mathcal{K},\ \lambda\in\Lambda$ and $\epsilon>0$ be arbitrary. It follows from the definition of I(t) that for each $t_0\in K$ there is a function $f_{t_0}\in J$ such that $p_\lambda(f_{t_0}(t_0)-f(t_0))<\frac{\epsilon}{2}$. Since the functions f_{t_0} and f are continuous at f_0 there is a neighbourhood f_0 0 of f_0 1 such that

(2.3)
$$p_{\lambda}(f_{t_0}(t) - f(t)) < \epsilon \text{ for all } t \in U(t_0).$$

Thus for each $t\in K$ there is a function $f_t\in J$ and an open neighbourhood $U(t_0)$ of t such that (2.3) holds. Now the family $\{U(t)\mid t\in K\}$ forms an open cover of the compact set K and thus there is a finite subcover U_1 , U_2,\ldots,U_n of it. By using a similar method that was used in the proof of Theorem 2.1 we can show that there is a function $F_{(K,\lambda)}\in J$ such that $p_{(K,\lambda)}(F_{(K,\lambda)}-f)<\epsilon$. Since $K\in \mathcal{K}$, $\lambda\in\Lambda$ and $\epsilon>0$ were chosen arbitrarily we can see as in the proof of Theorem 2.1 that $f\in cl(J)=J$ which completes the proof.

We shall say that $(A, T(\mathcal{P}))$ has a property of spectral synthesis, if k(h(I)) = I for all closed ideal I of $(A, T(\mathcal{P}))$.

COROLLARY 2.2. $(C(X,A),T(\mathcal{K},\mathcal{P}))$ has a property of spectral synthesis if and only if $(A,T(\mathcal{P}))$ has this property.

Proof. See [2] Corollary 2.4.

References

- [1] J. Arhippainen, On commutative locally m-convex algebras, Acta Et Commentat. Univ. Tartuensis 928 (1991), 15-28.
- [2] J. Arhippainen, On the ideal structure of lmc-algebra valued functions, Studia Math. 101 (3) (1992), 311-318.
- [3] W. Dietrich, Function algebras on completely regular spaces, Diss. Northwestern Univ. Evanston Ill. (1971).
- [4] W. Hery, Maximal ideals in algebras of topological algebra valued functions, Pacific J. Math. 65 (1976), 365-373.
- [5] R. Larsen, Banach Algebras an Introduction, Marcel Dekker Inc. New York, 1973.
- [6] J. Prolla, On the spectra of non-Archimedean function algebras, Lecture Notes in Math. 843, Springer Verlag, New York (1980), 547-560.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF OULU SF 90570 OULU, FINLAND E-mail: mathdept at finou.oulu.fi

Received November 10, 1993.