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ON THE RELATION BETWEEN 
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WITH INTEGRANDS OF DELAYED ARGUMENT 

1. Introduction 
The relations between different types of stochastic integrals have been 

examined for years ([1], [5], [7]). 
As it is shown in [1] and [7], an additional term occurring when the Ito 

integral is changed to the Stratonovich integral is the same as the correc-
tion term in the corresponding approximation theorem of Wong-Zakai type. 
Then, the stochastic differential equation is the limit of a sequence of ordi-
nary differential equations perturbed by the coloured noises converging to 
the white noise. 

We consider stochastic delay differential equations with delay on a finite 
time interval. Our correction term is the same as the term occuring in the 
approximation theorem of Wong-Zakai type in [8] and [9]. The present pa-
per contains a slight modification of the model in the above papers, where 
delayed argument is considered on the interval (—oo,0] because of some 
technical reasons. 

The authors are grateful to the referee for helpful remarks and sugges-
tions which enabled us to enhance the paper. 

2. Definitions and notations 
Let {Q,T,Tt, P) be a complete probability space with (^r

£)fej0,x] a n 

increasing family of sub-(7-algebras of the c-algebra T . Let I = [—r, 0]. 
We define the following Banach spaces = C( / ; Rd), Cj = C([ - r ,T] ;R c i ) 
and C\ = C ( [ - r , T ] ; R m ) = Q of continuous functions. We assume that all 
functions of vanish in zero. The above spaces are endowed with the usual 
norms || ||c_, || Hcj, || ||c° of uniform convergence. 
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Below we denote by X one of the above spaces. Let B(X) denote the 
topological cr-algebra of the space X. 

The smallest Borel algebra that contains B\,62, - •• is denoted by B\ U 
B2 U . . . ; BUtV(X) denotes the smallest Borel cr-algebra for which a given 
stochastic process X(t) is measurable for every t 6 [u, v] and BUiV(dB) 
denotes the smallest Borel algebra for which B(s) — B{t) is measurable for 
every (t, s) with u < t < s < v. 

We introduce the Wiener space (C°, ^(C®)> Pw), where Pw is the Wiener 
measure. The coordinate process B(t,w) = w(t), w G C®, is the m-dimen-
sional Wiener process. 

We assume that 

(Al) for every t £ [—r,T] the algebra B-Ttt(X)uB-r^(dB) is independent 
of Bt<T{dB) 

to give a meaning to the stochastic integrals below. 
For further considerations we need the notion of a segment of a trajectory. 

Let / be a function of t € [ - r , T]. For fixed t £ [0,T] we define a function 
ft on [—r, 0] by the formula 

M0) = f(t + e). 

Similarly, for the stochastic process X(t, u) we define 

Xt{8,u) = X(t + 0,u), 9 ei. 

We take a continuous stochastic process X : [—r,T] x Q —• that is, 
X : i2 —> X = C\, and a fixed initial stochastic process Xo(0,u>). 

Let us denote by fi = /x j t S ,x , the unique measure satisfying the condition 
d 0 

(1) Dxf(s,Xs)(<f>) = ^2 J Mv)fij(dv), 
j=1 —r 

where Dx denotes the Frechet derivative with respect to x (i.e. the linear 
operator from C_ to Z(C_,R)) of the function / : [ 0 , T ] x C - > Rd , while by 
Ji the measure defined by 

Ji(A) = n(A n [ - r , 0)) for A e B([-r, 0]). 

It is clear that for the Dirac measure ¿0 we have 

( 2 ) n = ji + ti({0})60. 

Denote the j - th coordinate of /z taken at {0} by 

(*) = 0}). 
We shall also use the property of the Dirac measure that for a smooth 
function h(-) we have J_ p h(v) 60(dv) = h(0). 
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R e m a r k 1. The measure is understood as in [6], Chapter 6, i.e. it need 
not be positive. 

Now we introduce the operators b : [0,T] x C_ R d , a : [0,T] x C . 
L{Rm,Rd) (the uniform operator norm in L(R m , Rd) is denoted by | | L ) . 

Let us assume that 

(A2) 6 and a are continuous operators. 

We consider the following stochastic integral equation with delayed ar-
gument: 

( 3 ) X \ t , w ) = 

t m t 

= X i ( w ) + f A' ,(- ,«;))& + £ J <Tip(s,Xs(-,w))dwp(s) 

0 p=1 0 

for i = 1 , . . . , d . The second integral in (3) is the Ito integral. Apart from 
(3) we consider the equation 

t 
(4) X % w) = x j ( w ) + J b \ S , x s ( ; w)) ds+ 

0 
m t 

+ E / <r i p (s ,Xs( ;w))dw*(s)+ 
P=1 o 

, TO d t 

+ I { D 3 a i p { s , X a { ; w ) ) ) a ^ { s , X s { ; w ) ) d s 

P = l j = l 0 

f o r i = 1 , . . . , d. 

We also assume that 

(A3) Xo is an Tq- adapted process on [—r, 0], /?_r)o(A'o) is independent 
o i B 0 t T { d B ) , 

(A4) for every <p,ip £ C - we have 

\b(t, <p) - b(t, V)|2 + k ( i , y>) - a { t , i p ) \ \ < 

o 

< J \<p(0) - m \ 2 K ( d O ) + L\<f(0) - m \ 2 , 

— T 

where K is a certain finite measure on I, and L is a constant, 
(A5) for every <p we have 

o 
|6(i,«^)|2 + \o(t,<p)\l < / (1 + <p(6)2)K(dO) + 1(1 + <^(0)2), 
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(A6) there exists a constant M > 0 such that for every s,t £ I and 
<p € C- we have 

\a(s,v)-a(t,<f)\L<M\s-t\, 

(A7) the process Xq satisfies E\Xq(0)\* < oo for every 6 G [—r, 0], where 

DEFINITION 1. We say that a ¿-dimensional continuous stochastic process 
X : [—r, T] X C® —> is a strong solution to equation (3) for a given process 
w(t) if conditions (Al) , (A2) are satisfied, P( JQ

T |6(,s, A's)| ds < oo) = 1, 
P(j0 | c r ( 5 , X s ) \ \ d s < oo) = 1 and equation (3) is valid with probability 1 
for all t e [ o , r j . 

The uniqueness of strong solutions is understood in the sense of trajec-
tories. 

We have the existence and uniqueness of solutions to (3) and (4) under 
conditions (A2)-(A5) (see [8], [9]). 

From [4] it follows that there exists a constant A > 0 such that £|A'(i) |2-f 
£ |A(*) | 4 < A. 

3. Definit ion of the Stratonovich integral 
We have 

DEFINITION 2. Given a function / : [0,T] x C- R, we consider the 
following limit 

n 

(5) lim SN = lim J > ( t ? ) - W{tUmWi + i) , + 
n—•oo n—• oo ' * 1 1 

¿=1 
where w(t) is the one-dimensional Wiener process. The limit is taken in the 
mean square sense and 0 = t}j; < t™ <...< = T is a, partition of the 
interval [a, 6]. We assume that the sequence of partitions is normal, that is, 
max(if_1 — i") —• 0. If this limit exists and does not depend 011 the choice 

n—•oo 
of the partition, it is called the Stratonovich integral and is denoted by 
(S )£f(t,Xt)dw(t). 

We recall the definition of the Ito integral: 
T 

(6) (I) f f(t,Xt)dw(t) = lim In = 
n—•00 0 

= lim ¿ K l ? ) - ! » ; ( « ? _ ! ) ] / ( « ? _ ! , J f l - . , ) , 
n-too z—' 1 1 

t = l 

with the same assumptions as in Definition 2. 
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4. Relation between the Stratonovich and Ito integrals 
We shall prove the following 

THEOREM 1. Let f : [0,2"] x C_ —• R be continuous in the first variable 
and dijferentiable in both variables with bounded derivative and have 
continuous Frechet derivative with respect to the second variable. Moreover, 

T T 2 

ds < oo, (7) J E\f(s,X.)\2ds< oo, E f 
0 0 

where X is the strong solution to stochastic differential equation (3) and w(t) 

is the m-dimensional Wiener process. Moreover, we assume that conditions 

( A 1 ) - ( A 7 ) are satisfied. Then there exists the Stratonovich integral (5) and 

the following relation is valid: 

(8) (S) £ J f(t,Xt)dw>(t) = 
p=i o 

m T 1 m d. T 

= (I)£ f f(t, Xt)dw»(t) + - E J(Djf(s,X.))^"(s,X.)ds. 
p = l 0 P=1 j = i o 

R e m a r k 2. The condition (7) is satisfied when / is the bounded func-
tion together with its first derivatives. 

We shall use the following 

LEMMA 1. Let a : [0,T] X C- -»• R satisfy assumptions (A4) - (A6) . Then 
there exist some positive constants C\, C<i such that 

E[<r(s,X,) - <t(u,Xu)]2 < C i ( a - u), 
E[O(s,XS) - a{u, A u ) ] 4 < C2(s - u)2. 

P r o o f o f L e m m a 1. Let a = 1 ,2 and C3,..., C7 be some positive 
constants. We estimate 

E[A(s,XA)-O{u,XU)]2A = E[<j(s, XA) — a(u, + cr(u, XS) — o(u, À'u)]2a < 
< C3(a)[E[<r(s,Xa) - <r(u,Xs)]2a + E[a{u, Xs) - a{u, Xu

0 
<C4(a)[M(s-u)2a + E[ f lXs(0)-Xu(0)l2K(d0)]+LElX(s)-X(u)l

—r 

< C4(a)[(s - u)2a+ 
0 

a 
< 
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o 4+e s+e 
< C 4 ( a ) [ ( 5 - u ) 2 a + £ [ j I f b(v,Xv)dv + j a(v,Xv)dw{v)\ A ' ( d 0 ) ] ° + 

- r u+e u+e 
i s 

+LEÌ J(v,Xv)dv + J a(v,Xv)dw(v 

So it is sufficient to show that 

2a 
£ [ j ò(u,À\,)dt;)] 0 < C 5 ( a ) ( s - u ) a 

u 

and 

f cr(v,Xv)dw(v))] 2 a <C6(a)(s-u) a. 

First we shall prove the former inequality 

2a a^ 
< £[ f b(v,Xv)dv  Q<f;[|(5-u) j b(v,Xv) 2dv 

u u 

<{s- u) aE\ j b{v,Xv) 2 dv< 
u 

0 s s 
< ( s - u ) a £ J J (l + Xv(6) 2)dvK(dO) + L f (1 + Xv(9) 2)dv = H. 

For a = 1 we have 

o s 
H = { / i ' ( [ - r , 0 ] ) ( s - u ) + j f E(X(v + 9) 2)dvK(d9) + L{s - u)+ 

—r u 
s 

+L F E(X(v) 2)dv](s-u) < C 5 ( l ) ( s - « ) . 

For a = 2 we have 

0 s s 2 

H = ( s - u ) 2 e [ f f (l + Xv(9) 2)dvK(d9) + Lf (1 + Xv(0) 2)dv 
—r u u 

<2(s-u) 2E[f f (1 + Xv(9) 2)dvK(d9)^ + 
—r u 

+ 2 ( s - u ) 2 L 2 e [ j (1 + X{v) 2)dv 

< 

2 
< 
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0 s 

471 

< 2 ( s - u)2Ii([—r,0])(a - u)E[ f f ( 1 + Xv(0)2)2 dvK(d6)\ + 
— T U 

3 

+2{S-U)2L2{S-U)E[ J {1 + X{v)2)2dv\ <C5(2)(s-u)2 

u 

since EX(y)2 and EX(v)4 are bounded. 
Now we shall prove the second inequality mentioned above. For a = 1 

we have 
3 12 3 

£?[ f <r(v,Xv)dw(v) = f E[a(v,Xv)2]dv < 

u u 
0 s s 

< e [ J J (l + X(v + 6)2)dvK{d0) + L f (1 + X(v)2)dv 
—r it u 

which is already estimated. 
For a = 2 we have from Ito's formula 

[ J a(v,Xv)dw(v)j = 
u 

S V 

= 2 / [ / *(T,XT)dw(T)]<T(v,Xv)dw(v)+- J <r(v,Xv)2dv. 
u u u 

So it is sufficient to estimate (using some facts from [4]) 

f [ S a ( T ) X r ) d w ( T ) a(v,Xv) dw(v) = 
u u 

s v 2 
= J e [ [ J a { T i X T ) d w ( r ) j a ( v , d v = 

U U 

s r v 2 2 
= J e[{ J CT(r,XT)dw(r)j a(v,Xv)\ dv < 

u u 
& v 4 1/2 

< f £[[ f a(r,XT)dw(r)] Ea(v, X„)4] dv < 
u u 

3 r " ,i/2 
<C7 f l ( v - u ) J Ea(T,XT)4dTE<r(v,Xv)4 dv. 

u u 
From the assumptions and boundedness of the moments of X the lemma 
follows. 
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P r o o f o f T h e o r e m 1. Consider the difference, for p = 1, . . . , m, 
n 

sn~in = 5 > ' ( i D - w p ( t u ) ] f m + J . +av.,))-
!=1 

n 

- E K C ? ) - « ' W - i M i f - ^ . f J = 
¿=1 

n 

= E w ) - ^ { t u m m + i? - i ) , + -
i=1 

Hence 

«=1 j = l 

+\Ekc?) - ™ p c r - i ) ] ( c - < r - i ) f / ( * ? , A V 
i=l 

n 1/2 

¿=1 0 

-DxtW-i,Xt?_J](X{? ~ X^JdX = J! + J2 + J3. 
To show that J3 —• 0 with probability one, we shall first notice that for 

a given trajectory X the function t —> Xt is uniformly continuous and in 
consequence 

n 1/2 
£ f [Dxif(tU,Xt?_i + X(Xj? - X ^ J ) - Dxim_1,Xt?_i)]dX = 
i=i 0 

= E | / [ ^ / ( C - i ^ J - D v f W ^ X ^ d a l < 
i = 1 C-i 

71 t* 
< E / l ^ / i C - i . ^ J - / ( C - i , 

C-i 
where X " denotes the continuous function [0,T] —• linear on every seg-
ment f " ] and such that Xft, = X f . 

Therefore, we have 
tn 

|J3|< sup / I D x i f i t u , * * ^ ) -
i=1 n i=11?_1 

-DxiM-uXt^ds-^O, 
which completes the proof of the convergence of J3. 
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To estimate J2 let us notice that by (7) we get 

E\J2I2 < 
2 

0. 

To estimate J\ we first have to notice that for s G / , 

C rn i," 
X j ( t ? ) - = f bj(u,Xu)du + Y^ f v j p ( u + s,Xu+s)dwp(u). 

C - i P=1 C - i 

Now we have from (1), (2) and (*) for /z = Hf,tn_ ,xtn 1 1 i — 1 
n d -

¿=x j=i 

= ^ E I - «'p(<?-i)3[AT-i(<? + - +«) ] Mrf-) = 
J=1 —r 1=1 

= ^ E / ¿ [ ® " ( < D - « " ( « r - i W i A ^ i i ? + - x ^ t ? . ! + 
j=1 —r t=l 

1 d n 
+ o E E k c d - « ' ( t f - O P ' ^ r ) - a - ^ J ) = 2 4 . 

j-i ¿=1 
= J\\ + Jl2-

To prove the convergence of J \ i to zero we shall first estimate for given 
5 < 0 (such that —s > max(i" - <"_!)) the L2-norm of the expression under 
the integral 

¿ [ E k c d - wPw~ 1 )][*'(«? + s ) - 1 +*)] ] 2 = 
¿=1 

= E w n - ^ p ( C - i ) ] 2 [ A ' j ( i r + - ) - x \ t u + 5)]2+ 

•<t' 
x [ X ' ( t : + » ) - + + 3 ) - x ' w ^ + *)]2 = 

= E £ K ( C ) - + , ) - X ' ( t u + *)]2 = 
•=i 
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= ¿(«? " <?-i W W + s)~ Xi{tU + ,)]2 < 
1=1 

< T sup E[Xi(t? + a)-Xi(t?_1 + s)]20, 
t=l,...,n 

where we have used the fact that wp(tf,) — wp(t^,_1) is independent of 
and from it we conclude that the whole term containing this difference is 
equal to zero. We also use the continuity of X in L2. From it follows that 
the above expression is bounded and in the consequence J\\ —• 0. Now 

= \ E ¿ K ( i " ) - - i W ( { 0 } ) = 
j=i i=i 

d n t* 
= / bi(u,xu)dufijm)+ 

j=i >=i t«_j 
* d n m tj1 

+ J ¿»(u,Xu)dW»(uW({0}) = 
j= l i=i p= l t»_j 

= Kx + A'2. 

We estimate, for a certain constant M > 0, 

i m l » < E ¿ > ( * ? - <?-i) - wp(*?-i)]V({o})2]1 / a < 
i=l 1 = 1 

< sup(i? - t U ) ¿ > K ( * ? ) - « f («?-i)]V({o})a]1 / 2-
' ¿=1 

At last we have 

d n 

+ \ EEK(i") - ^P(ir-i)][ / (**{«,Xu) - 1,X<r_i))x 
i=l1=1 i^J 

x dti>*(u)]/i'({0}) = K21 + A'22. 

We observe that K21 gives the correction term. That is, 

^ j=1 i=l 
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\ ¿ ¿ * " w - i > , M W M K c r ) - f p (<?- i ) ] a - («? - t?-i)}2 

j=1 i=1 

= J E E ^ H ' M ^ ^ . y i i o D i x 
j= i¿= i 

X W ) - ™p(C-i)]2 - (i? - C- i ) ] 2 - 0 

because we have from some properties of the normal distribution, 

£ [ K ( C ) - ™p(t?-i)i2 - (t? - <"_i)]2 = 

= - )]•4+(t?-<?_1 n - 2jb[K^(<?)-- ^ r - i ) ] 2 ( < " - < r - i ) = 
= W - i? - i ) 2 + («? - i f - i ) 2 - 2(i? - tU? = 2(i? - t u f -

Further, we have 

1 d n 

j=l t=l 

x [ J (oi»(u,Xu) - o » { t U , X t U l ) ) dwp(u)]^({0}). 

We shall estimate using the Ito formula, and the Ito integral properties 

- u>'(i?_a)] J (<rjp(u,Xu) - <T"(t?_1,Xt?_1))dw>>(u) = 

C-i 

= f 1 -dwp{u) J (<rjp(u,Xu) - ajp{t?_1,Xt»_1))dwp{u) = 

C-1 C-1 
*n 

= / 1 • ( / ( ^ A ' . ) - ^ ^ , ^ ) ) ^ ) ) ^ ' ' ^ 

C 

C-l 
C 

+ J (<r»(u,Xu)-a»(t?_ltXtn J J d i . 
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and 
d n t™ u 

2A" = E E J ( / (^(s,Xs) - ^(t^Xt^dw^s)) dw^(u)+ 
i=1 ¿=1 t»_j t»_j 

d n t" 

+ E E I c ^ c « , - * - « ) - ^ ' " ( i r - x . - y f r - j x ^ c « ) -
i=i¿=i t ^ j 

d n t? 

+ E E / = A-221 + A-222 + A'223. 
j = i ¿ = i i ^ j 

Let Cg, Cg, Cio be some constants. Using Lemma 1 we obtain 

II Ami Hz,' < 

j=l i=i 

d n 

L2 

= E E . 
i=i¿=i ^ 

/ £ ? [ / (cJP(.s, A's) - aiP(tn, Xtn_J dwP(s) 
C-i T-i 

du = 

d n 

= E E . 
j=l¿=1 ^ 

/ / ( E f a ^ s , A's) — ^ ( i ™ , A ' ^ ) ] ) 2 ctadu < 
s - i ' i-i 

\ 

I w 
f f C1(u~t?_1)dsdu = '£^/Ci 

i" t" l i- l ' i- l i - l ^ 
fku-t?-1)2 d« = 

t=i 

We next estimate 

d n i** 

= E y f c y / j z W = c * f > ? - ff-i)* -
t=l ¿=1 

||A'222||i2 < 

i=i«=i t»^ L2~ 
< 

d n 

s E E . 
j=i¿=i ^ 

J E[<ji*(u,X) - aiPit^X^Ww^u) - w^t^f du < 
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d n 

S E E . 
j=ii=iA T-i 

, = M 

i" 
/ c2(u - i?_1)JE[ii;P(tt) - wp(<f_!)]4 du = 

i " 

= 5 > 
1=1 ^ 

3 J i " - t u r < i ' ' = T , c » v ì { t < - t ì - ' } 4 ' 
t" 'i-i i=1 

1=1 

Finally, we get 
d n t" 

\\K223\\ l* < E E H I (°jP(v>X») - ^ W - u X t ^ d u 
j=1 ,=1 t»_1 

d n tr 

< 

j=l 1=1 
^ E E [ w - '"-i) I ("Sp(">Xu) - ^'"(«"-i. ,))2 

•¿-I 
d n t" 

< E E N ? - ' ? - ! ) J ( u - t U ) d u ] i = 

< 

j=1 1=1 

d n 

= c io E E V K 7 ^ ! ? - o. 
j=i i=i 

Therefore, there exists l im^oo 5„ and moreover, it is independent of the 
choice of the partition of the interval. Hence, we have also shown (8). The 
proof of the theorem is complete. 

R e m a r k 3. In particular, if f ( t , X t ) — cr{X't) then the correction term 
in (8) has the form 

1 m d t 

2 E E / ( D j o O ^ X . V a t ' i s t X J d s . 
p=lj=l o 

It is the same correction term as in the approximation theorem of the Wong-
Zakai type in [8] for a one-dimensional Wiener process. The formula is still 
valid in the multi-dimensional case because the integral is a linear transfor-
mation. 
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