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ON THE RELATION BETWEEN
THE STRATONOVICH AND ITO INTEGRALS
WITH INTEGRANDS OF DELAYED ARGUMENT

1. Introduction

The relations between different types of stochastic integrals have been
examined for years ([1], [5], {7]).

As it is shown in [1] and [7], an additional term occurring when the It6
integral is changed to the Stratonovich integral is the same as the correc-
tion term in the corresponding approximation theorem of Wong-Zakai type.
Then, the stochastic differential equation is the limit of a sequence of ordi-
nary differential equations perturbed by the coloured noises converging to
the white noise.

We consider stochastic delay differential equations with delay on a finite
time interval. Our correction term is the same as the term occuring in the
approximation theorem of Wong-Zakai type in (8] and [9]. The present pa-
per contains a slight modification of the model in the above papers, where
delayed argument is considered on the interval (—oc,0] because of some
technical reasons.

The authors are grateful to the referee for helpful remarks and sugges-
tions which enabled us to enhance the paper.

2. Definitions and notations

Let (£2,F,F, P) be a complete probability space with (F;)co,7) an
increasing family of sub-o-algebras of the o-algebra F. Let I = [-r,0].
We define the following Banach spaces C. = C(I;R%), C; = C([-r,T);R%)
and C§ = C([-r,T);R™) = 2 of continuous functions. We assume that all
functions of C§ vanish in zero. The above spaces are endowed with the usual
norms || llc_, || llc,, {| llcg of uniform convergence.
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Below we denote by A" one of the above spaces. Let B(.1') denote the
topological o-algebra of the space X

The smallest Borel algebra that contains By, Bs, ... is denoted by B; U
B2 U...; By y(X) denotes the smallest Borel o-algebra for which a given
stochastic process X(t) is measurable for every t € [u,v] and B, .(dB)
denotes the smallest Borel algebra for which B(s) — B(t) is measurable for
every (t,s) withu <t <s<w.

We introduce the Wiener space (C3, B(C?), PW ), where PV is the Wiener
measure. The coordinate process B(t,w) = w(t), w € C?, is the m-dimen-
sional Wiener process.

We assume that

(A1) foreveryt € [—r,T)the algebra B_, (X )UB_, :(dB) is independent
of By r(dB)
to give a meaning to the stochastic integrals below.
For further considerations we need the notion of a segment of a trajectory.
Let f be a function of ¢t € [~r,T]. For fixed t € [0,T] we define a function
ft on [—7,0] by the formula

f:(0) = f(t+0).
Similarly, for the stochastic process X (¢,w) we define
X(,w)y=X(t+6,w), 0de€l.

We take a continuous stochastic process X : [-r,T] x 2 - R4, that is,

X : 2 > X = C;, and a fixed initial stochastic process Xo(6,w).
Let us denote by p = py , x, the unique measure satisfying the condition

d 0
(1) Dof(s, X.)8) =Y [ 63(v) 1(dv),

ij=1 —r

where D, denotes the Fréchet derivative with respect to z (i.e. the linear
operator from C_ to L(C_,R)) of the function f:[0,7]x C — R?, while by
11 the measure defined by

i(A) = p(AN[-r,0)) for A€ B([~r,0)).

It is clear that for the Dirac measure §; we have

(2) = i+ p({0})do.
Denote the j-th coordinate of p taken at {0} by
(*) (Djf(s,Xs)) = uj, x,({0}).

We shall also use the property of the Dirac measure that for a smooth
function h(-) we have ffr h(v) 6p(dv) = h(0).
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Remark 1. The measure is understood as in [6], Chapter 6, i.e. it need
not be positive.

Now we introduce the operators b: [0,T] x C- — R¢, ¢ : [0,T] x C- —
L(R™,R%) (the uniform operator norm in L(R™,R¢) is denoted by | [1).

Let us assume that
(A2) b and o are continuous operators.

We consider the following stochastic integral equation with delayed ar-
gument:

(3) X'(t,w)=
= Xo(w) + fbi(sw\'s(',w))ds+z faip(s,Xs(-,w))dwp(s)
0 p=1 0

for ¢ = 1,...,d. The second integral in (3) is the It6 integral. Apart from
(3) we consider the equation

(4) X'(t,w)= X{(w)+ [ b'(s, X,(-,w))ds+
0
+30 [ 07(s, Xy, w)) dwP(s)+
0

m d t
+ % Z Z f (Dja'ip(‘s’ Xs(+y w)))a.jp(s, Xo(yw)) ds
j 0

fori=1,...,d.
We also assume that
(A3) Xois an Fy- adapted process on [—r,0], B_,o(Xo) is independent
of By, r(dB),
(A4) for every ¢,9 € C_ we have

lo(t, @) = b(t, B)I* + |o(t, ) — o (t,¥)I <

0
< [ 1o(8) = (8)PK(d6) + Llp(0) - $(0)I%,

where K is a certain finite measure on I, and L is a constant,
(A5) for every ¢ € C_ we have

lb(t, @) + lo(t, @)L < [ (14 @(8)*)K(d6) + L(1 + ¢(0)%),

-r
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(A6) there exists a constant M > 0 such that for every s,t € I and
¢ € C_ we have

|0’(3,<p) - U(tv 99)|L < Allls - tla
(A7) the process Xy satisfies E|Xo(6)|* < oo for every 6 € [—r,0], where
d -
| Xo(8, w)| = 211 1 Xo(6, w)l.

DEFINITION 1. We say that a d-dimensional continuous stochastic process
X :[-r,T]xC§ — R% s a strong solution to equation (3) for a given process
w(t) if conditions (A1), (A2) are satisfied, P(f |b(s, X,)|ds < o0) = 1,
P(fOT |o(s,X)|3 ds < 00) = 1 and equation (3) is valid with probability 1
for all t € [0,T].

The uniqueness of strong solutions is understood in the sense of trajec-
tories.

We have the existence and uniqueness of solutions to (3) and (4) under
conditions (A2)-(A5) (see [8], [9]).

From [4] it follows that there exists a constant A > 0 such that E|X (¢)|*+
E|X(t)]* < A.

3. Definition of the Stratonovich integral
We have

DEFINITION 2. Given a function f : [0,T] x C_ — R, we consider the
following limit

(5) lim S, = lim 3 [w(t) — wlti I +10), H(Xg + Xep,)),
i=1

where w(t) is the one-dimensional Wiener process. The limit is taken in the
mean square sense and 0 = ¢ < i} < ... < 1 = T is a partition of the
interval [a,b]. We assume that the sequence of partitions is normal, that is,
max(t}_, —t?) e 0. If this limit exists and does not depend on the choice

of the partition, it is called the Stratonovich integral and is denoted by

(S)fy f(t, Xe)du(2).
We recall the definition of the 1t6 integral:

T
© (O [ ftX)dw(t)= lim I, =
0

= lim > lw(t}) - w(tt (g Xer ),

i=1

with the same assumptions as in Definition 2.
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4. Relation between the Stratonovich and It6 integrals
We shall prove the following

THEOREM 1. Let f : [0,T] x C_ — R be continuous in the first variable
and differentiable in both variables with bounded derivative %tﬁ and have
continuous Fréchet derivative with respect to the second variable. Moreover,

2

d
;i—;f(s,X,) ds < o0,

T T
(7) J Elf(s,X;)ds <0, E [
0 0

where X is the strong solution to stochastic differential equation (3) and w(t)
is the m-dimensional Wiener process. Moreover, we assume that conditions
(A1)-(AT) are satisfied. Then there ezists the Stratonovich integral (5) and
the following relation is valid:

m T
®) (S) >, [ f(t, Xe)duwP(t) =

p=1 0
m T m d T
=Y [ 16Xy dwr @)+ 533 [ (Dif(s,X)o(s, X,) ds.
p=1 0 p=1j=1 0

Remark 2. The condition (7) is satisfied when f is the bounded func-
tion together with its first derivatives.

We shall use the following

LEMMA 1. Let 0 : [0,T] x C- — R satisfy assumptions (A4)~(A6). Then
there ezxist some positive constants Cy,Cs such that

Elo(s,X,) — 0(u, X,)]*> < C1(s — u),
E[o(s,X;s) = 0(u, X,)]* < Co(s — u)?.

Proof of Lemma 1. Let @ = 1,2 and Cj3,...,C7 be some positive
constants. We estimate

Elo(s,X,)—0(u, X,))** = Ela(s, X,)—0o(u, X,)+0(u, X,)—o(u, X,))** <
< C3(a)[E[o(s, X,) — o(u, X,)]** + E[o(u, X,) — o(u, X,)]**] <

<Cu(@) [ M(s—uf ™+ E[ [ 1X,(0)- Xu(O) K (d6)] + LE|X(5)- X(u)|2]“5

< Cal@)[(s - ™+
0
+E| [1X(s+8) - X(u+0)K(d8)]” + LEIX(s) - X(uPe] <

-T
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0 s+6 s+6
< C4(a)[(s u)2°+E[f| f b(v, X,)dv+ f o(v, X ,,)dw(v)l Ix(dO)]

—-r u4#8 u+6

+

+LE| f (v, X,) dv + f a(v,X,,)dw(v)'za].
So it is sufficient to show that
p 2a
E[ [ b(o,X)dv)]" < Cs(a)(s - u)*

and
S

E[ [ a(v,X,,)dw(v))]h < Csla)(s — u)°®.

u

First we shall prove the former inequality

E[ jb(v,X,,)dv]m < E[ (s —u) j b(v, X,)* dv'a] <

< (s—u)°E fb(v,xv)2 du|° <

u

0
< (s - u)°E [ff(1+,x,,(e) ) dv K (df) +Lf(1+X(o) )dv] - .

-rT u

For o = 1 we have

0 s
H={K(-r0)s-u)+ [ [ EX(v+6))dvK(d6)+ L(s - u)+

-T u

+L [ E(X(v)z)dv}(s —u) < Cs(1)(s — u).
For a = 2 we have

0 s s
= (s — u)’E [f J 1+ X0 dok(@d0) + L [ (14 X,(0)dv] <

8

< s~ u)2E[ f [+ Xv(0)2)dv1x’(d0)]2+

-7 k73

+2(s - u) L*E| f (1+x\(v)2)dv] <
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0 s

< 2s —wPK(-r,0)(s -~ wE[ [ [ (1+X.(6)") dok(d0)]+

-7 u

+2(s —u)?L%(s - u)E[ j (14 X (v)*)? dv] < Cs(2)(s — u)?

since EX(v)? and EX(v)* are bounded.
Now we shall prove the second inequality mentioned above. For a = 1
we have

E[fsa(v,Xu)dw(v)]2 = jE[a(v,Xu)2]de

[f fs(1+X(v+0) )dvk(do) + L f(1+X(v) ) dv

-r u

which is already estimated.
For a = 2 we have from It6’s formula

[j‘o(v,X,,)dw(v)]2 =

S v s

=2 f [ fa(r,XT)dw(‘r)]a(v,Xv)dw(v)+% fa(vv,X,,)2 dv.

u u u

So it is sufficient to estimate (using some facts from [4])

E[i [ fa(T,X.,)dw(r)]a(v,X,,)dw(v)r =

@

= fE[[fua(‘r,X.,)dw(T)]o(v,Xv)]zdv=

EH fv a(T,XT)dw(T)ra(v,Xv)]2dv_<_

< jE’[[ fa(T,XT)dw(r)rEa(v,Xu)"]1/2 dv <

R e

j [(v—u) f Eo(t,X,;)*drEo(v, X, )4]

u

From the assumptions and boundedness of the moments of X the lemma
follows.
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Proof of Theorem 1. Consider the difference, for p = 1,...,

m,

Sn —In=Z[wP(t") wP (DI G+ 00), H(Xer + Xon_))-
- Z[w"(t") — WP (g, Xep ) =

=) [wP(t}) — wP DI GEP +17,), 2 X + Xop_ ) = F(874, Xep )]
i=1

Hence

1 s .
5n —In—Z[w” 1) — wh(e} J]ZDx:f(tz 0 X ) 5 (X = Xi )+

i=1 Jj=1

+5 Z[wp(t") w ()N ~11)5; f(t"X‘ I+

1/2

+ 3 (wP(e) = wPEr)] [ D (60, Xep, + (X — Xy )~
i=1 0

=Dy f(8i 1)Xt:‘_1)](th;- - th;-_l)d/\ =h+J2+ ;5.

To show that J3 — 0 with probability one, we shall first notice that for

a given trajectory X the function ¢t — X, is uniformly continuous and in
consequence
n 1/2

S| [ Dk 800, Xep, + NXEy = X)) = Do f(81, Xep, )} dA =
i=1 0

n (7 +t)

—Zl [ DS, X3 ) = Do f(#y, Xop )l ds| <

tI‘1

<Z lex:f(i, X% )= Dxi f(ty, Xz, )l ds — 0,

i=1 Pty

where X7 denotes the continuous function [0,7] — C_ linear on every seg-
ment [t ;, 7] and such that Xn = Xyn.
Therefore, we have

3] < Sup |[wP(2}) — wP(t 1)IE fIDx:f(t, X )—

=1,

—D‘X) f(t1 I’Xt?_l)l ds g 0,
which completes the proof of the convergence of J3.
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To estimate J; let us notice that by (7) we get
E|/f* <
n 2
p (7~ B LI - vl Xey)| =0

1=1, ey i=1

N:I'——A

To estimate J, we first have to notice that for s € I,

tr m tr

Xi(8) - Xt ) = [ 0, X)dut Y [ 0(u+ s, Xups) dw?(u).

i1 P=lef_,
Now we have from (1), (2) and (%) for p = pgsn  x,.
i—1? i—1

= Yl - vty 12 Do f(tF, Xep ) %(X,{_n e

n

Z[w” 1) — wP(P_ X7 + 8) = XI(tF + 8)] plds) =

j=1 — =1
d 0 n
= %E / Z[w”(t") — wP(t XL} + 8) — XI(t7, + s)] fi(ds)+
i=1 —r i=1
d n
+% DD (wP(eF) = wP (e NI (F) = X )N f(ty, X)) =
j=11i=1

=Jn + Ji2.

To prove the convergence of Ji; to zero we shall first estimate for given
s < 0 (such that —s > max(¢F —t"_;)) the L2-norm of the expression under

the integral

B3 twr ) @ I +9) - XaE + 9] =

= Z E[wP(t}) — wP(t2 )PIXI(F + 8) = XI(ty + )P+
+ 37 2E[wP(2) - wP(t)[wP(th) — wP(th_y)]x
1<t

x[X"(t" +8) = X, + s)P[XI(th +8) - X(th_y + 8)) =

—EE[w"(t")—w"(t OPE[XI(ER 4+ s) = XI(t2, +9))2 =
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n
=) (O — 7)) E[XI(F + 8) - XU, + ) <
i=1

<T sup E[X(t] +8) - XI(t7, + 9)] — 0,
i=1,...,n
where we have used the fact that w?(t}) — wP(t}_,) is independent of Fy»
and from it we conclude that the whole term containing this difference is
equal to zero. We also use the continuity of X in L?. From it follows that
the above expression is bounded and in the consequence Jy; — 0. Now

Jiz =3 Zz[w”(t") wP(_ X (F) = X9t y)IW’ ({0}) =

_1 1i=1
=§ZZ[wP(tn) wA(,)] f b (u, X.) dud ({0))+
d n 134
+;EZZ[w"(tn) wP(t2)] [ o7 X,) dwP(upe({0}) =
=K, + K,. -

We estimate, for a certain constant M > 0,

d n
1 Killze €0 D M} = tF0)[Ew(t}) = wP(tl )P’ ({012 <

j=1i=1
< sgp(t" -t I)E[E[w” (17) — wP(tp_y )P p? ({03)*)'2.
At last we have

== Z Z[w"(t"> wP (17 )PP (4, Xen_ )i ({0})+

j-—l i=1
d n
+3 30 lwrr) - wre)| F (0 ) = o9(22 1, X )
j=1i=1 t:‘ 1

X dw”(u)] 1 ({0}) = Ky + Koa.

We observe that Ko gives the correction term. That is,

E[I\zl -3 Z ZU"’(" 1aXt?-1)l‘j({0})(t? - t?—l)]2 =

J“l i=1
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d n
- E[%Z o7y, X W ({OD[wP (1) — wP(- )P = (1 -ty
j=1i=1
d n
= IS Bl X (0D
j=1i=1

X E[[wP(t}) = wP(tE_ ) = (¢ ~ 1)) = 0
because we have from some properties of the normal distribution,

EffwP(t}) = wP(t )] = (7 ~ 1)) =
= Ef[w”(t]) - wP () + (¢ — )] - 2E[w"(t") wP ()P (7~ ) =
=3t — 1) + (1 — 472y)7 — 207 — 1) = 2047 — 4,)*.

Further, we have

Ky == Z Z[w”(t") — wP(t?,)]x

_71:1

x| f (077(u, Xu) = 0P(87-, Xop_ ) dw(w)] 7 ({0}).
L
We shall estimate using the It6 formula, and the It6 integral properties

[wP(£F) = wP(try)] f (07P(u, Xu) — 07P(t2y, Xon_ ) dwP(u) =

‘."1

f 1+ dwP(u) f (077(u, Xu) = 07P(t24, Xun_ ) dwP(u) =

- f ( f (077(s, X ) — o9P(t] _I,X,;-_l))dw”(s)) dwP(u)+
+ f(a“’(uX) oIP(t7_y, Xen ) (wP(u) — wP(t],)) dwP(u)+
+ f (07P(u, Xu) — 07P(t2y, Xep_)) du

i~1
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and

n t? u

d
260 =33 [ ([ (@ X0) - 0ty X)) du'(s)) duP(w)+

i=lef, o,

d n t;
+3° N f (072 (u, Xu) — 07P(t7_ 1, Xen ) (wP(u) — wP(t7))) dwP(u)+
j=ti=le,
d n
+Y ) f (07 (u, Xo) — 0P (104, Xon ) du = Kogy + Kooz + Koza.
ij=11i=1 12

Let Cs, Cy, C10 be some constants. Using Lemma 1 we obtain

| K21]| L2 <

si | S ( J (075, X,) = 7P (12, Xep ) duP(s) du? ()

Jj=li=1 ¢,

L2

y fE[ f (ajp(s,Xs)—aJ'P(tn,Xt?_l)de(s)]?duz

j=1:i=1 tr

n

[ [ (Blosw(s, X,) = o3n(tn, Xen_ )])? ds du <

J=l4=1 N7, ¢,

n tt n t"
< f fCl(u—t?_l)dsduzz\/E; f —(u—t! ) du=
=1 Nty 1, i=1 ti_1

- 1 3
=3 Va Tt = 4)* = Cs z(t" —t" )2 —0.
i=1

We next estimate

[[Kaz2llL2 <
3| f 0050~ 1 X D070 - ) ],
j=1i=1 ¢? |
d n tr
< Z f E[oiP(u,X) - oiP(t2_ I,Xt:._l)]z(wp(u)_wp(t ) du <
j=1i=1 t_,
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d n t;
<SS | S Bl X =0ty Xep D E[wr(u)-wP(t)]* du<

J=1i=1 \|t7_,

[ Calu~ 7)) Elwr(u) - wr(tz_ )} du =

L\,

f (u—t7 )P du= ch,/—(tn-tn )=

i=1 tt_,

n t?

3

—ng(t -t )2 0.

Finally, we get
d n t?

Mol < 33 [E] [ (07700, X0) - 0770171, Xy )] | <

ji=11i=1 13

[V

3

Szd: [E(t? - f(ajp (v, Xu) = o7P(ty, Xz ) du]i

i=11i=1 th,

d
<33 [ener - 1) f(u—t, D) dult =

j=1i=1 tr

=Cro E Z (t" -t — 0.

Therefore, there exists lim,,_,, 5, and moreover, it is independent of the
choice of the partition of the interval. Hence, we have also shown (8). The
proof of the theorem is complete.

Remark 3. In particular, if f(¢, X;) = o(X:) then the correction term
in (8) has the form

m d t

%ZZ [ (Dj%(s, X,))o7"(s, X,) ds.
p=1j=1 0

It is the same correction term as in the approximation theorem of the Wong-

Zakai type in [8] for a one-dimensional Wiener process. The formula is still

valid in the multi-dimensional case because the integral is a linear transfor-

mation.
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