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D. Przeworska-Rolewicz

FUNCTIONAL STABILITY OF LINEAR SYSTEMS

In the author’s paper PR [3] there was introduced and studied a notion
of stability of solutions to linear systems with right invertible operators in
the homogeneous case. The non-homogeneous case has been examined in
PR [4].

The purpose of the present paper is a generalization of the mentioned
results for stability induced by functional shifts introduced by Z. Binderman
(cf. B{1]-B[4]).

1. Preliminaries

We shall recall some definitions and theorems (without proofs) which
will be used in our subsequent considerations.

Let X be a linear space over a field F of scalars. L{X ) will stand for the
set of all linear operators with domains and ranges in X and Lo(X) = {4 €
L(X):dom A = X}. By F[t] is denoted the set of all polynomials in the
variable ¢ with coefficients belonging to F. Write

vrA={0#AX€ F:I—- AAisinvertible} for A € L(X).

If A € vr4 then 1/) is a regular value of A.

Denote by R(X) the set of all right invertible operators belonging to
L(X), by Rp - the set of all right inverses of a D € R(X) and by Fp - the
set of all initial operators for D, i.e.

Rp={R€ Ly(X): DR =1},
Fp={F€Ly(X):F*=F, FX =kerD and Jrer, FR = 0}.
In the sequel we shall assume that ker D # {0} , i.e. D is right invertible

but not invertible. The theory of right invertible operators and its applica-
tions can be found in PR [1].
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We admit that 0° = 1. We also write: Ng = {0}UN. For a given operator
D € R(X) write

(1.1) S = UkerDi.

i=1
The set S is equal to the linear span P(R) of all D-monomials:
§ = P(R) =lin{R*z: 2z € ker D,k € Ny}

independently of the choice of a right inverse R of D (cf. PR [1]).
For a given D € R(X ) we shall consider the space of smooth elements

D, = ﬂ dom D*.
kEN
Clearly, S C Do C dom D (cf. PR [2]).
Let F = C. In the sequel, K will stand either for a disk K, = {h € C:
[h] < p,0 < p < o0} or for the complex plane C. Denote by H(K') the space
of all functions analytic on the set K. Suppose that a function f € H(K)
has the following expansion

(1.2) f(hy="arh* forallhe K.

k=0

DEFINITION 1 .1. (cf. B {1]) Suppose that D € R(X) and ker D # {0}.

A family Tx = {Th}rex C Lo(X) is said to be a family of functional shifts
for the operator D induced by a function f € H(K) (i.e. of the form (1.2))
if
(1.3) Thz = [f(hD)]z = Zakthkz forallhe K, z € S,

k=0
where S is defined by Formula (1.1).

We should point out that, by definition of S, the last sum has only a
finite number of members different than zero.

ProrosITION 1.1 (cf. B [2]). Suppose that D € R(X), ker D # {0}, F is
an initial operator for D corresponding to an R € Rp and T = {Th}rex C
Lo(X). Let f € H(K). Then the following conditions are equivalent:
(i) Tk is a family of functional shifts for the operator D induced by the
function f;
k
(ii) TWR*F = a;h'R*JF forallh € K, k € No.

i=0
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PrOPOSITION 1.2 (cf. B [2]). Suppose that D € R(X), ker D # {0} and
Ttk = {Tsn}nek is a family of functional shifts for the operator D induced
by a function f € H(K). Let F be an initial operator for D corresponding
toan Re€ Rp. Then

(i) Forallhe K, z € ker D, k € Ny
k
(1.4) TaR¥z =) ajh! Rz
j=0

(ii) The operators Ty, (h € K') are uniquely determined on the set S;

(iii) If X is a complete linear metric space, S = X and Ty}, are contin-
uous for h € K then Ty j are uniquely determined on the whole space;

(iv) For all h € K the operators Ty ) commute on the set S with the
operator D.

The listed properties and other informations about functional shifts for
right invertible operators can be found in B[l] B[4] (cf. PR (1], PR [3], PR [4]

for shifts induced by the function f(h) = e*) .
Proposition 1.2 of B [3] implies

PropPosITION 1.3. Suppose that all assumptions of Proposition 1.2 are
satisfied and f(0) = ap # 0. Let

(1.5) Fn=[f(0)]'FT;n forheK.
Then F), is an initial operator for D corresponding to the right inverse
(1.6) R,=R-FyR (h€eK)

It is well-known that H(K') is a commutative ring with the following
algebraic operations

(f+9)(h) = f(h) + g(h), (ag)(h)=ag(h), (fg)(h)= J(h)g(h),
where f,g € H(K),a € C,h € K.

Let T(K) be the set of all families of functional shifts for an operator
D € R(X) induced by the members of H(K'), i.e.

(1.7) T(K)={Tyx : f € H(K)}.

Define the following operations
(1.8)  Trk+Tor =Tregx, oTgk =Tagk, TrkTek =Tygxk,
where f,g € H(K),a € C.

TueEoREM 1.1 (cf. B [2]). Suppose that D € R(X), ker D # {0} and
T(K) is defined by Formula (1.7). Then

(i) The set T(K)|s = {Tyk|s: f € H(K)} is a commutative ring with
the operations defined by Formulae (1.8);
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(ii) The rings H(K) and T(K)|s are isomorphic. The mapping
T:f=Trkls
is a ring isomorphism of H(K) onto T(K)|s.

THEOREM 1.2 (cf. B&PR [1]). Suppose that D € R(X), ker D # {0}
and Ty = {Tintnex € T(K). Let F be an initial operator for D cor-
responding to an R € Rp. Suppose, moreover, that 1/f € H(K), ie.
Tl/f,K = {Tl/f,h}hGK € T(A’). Then
(1.9) Riz = f(0)Ty/snR"2 foralln € N, h€ K, z € ker D,
where the operators Ry, (h € I') are defined by Formula (1.6).

Assume that X is a complete linear metric space over C and the function

f € H(K) has the expansion (1.2). Write for an operator D € R(X) (cf.
B [4])

(1.10)  Sy4(D) = {a: €X: }: arh®* D¥z is convergent for all A € K}.
k=0
ProposiTION 1.4 (cf. B [4]). Suppose that X is a complete linear metric
space over C, D € R(X), ker D # {0} and f € H(K). Then S C S§4(D) C
dom D for all n € Ny.

Similarly, as Definition 1.1, we have

DEFINITION 1.2 (cf. B [2]). Suppose that X is a complete linear metric
space over C, D € R(X) and ker D # {0}. A family Ty x = {Tsr}rex C
Lo(X) is said to be a family of functional shifts for D induced by a function
fe HK)if
(1.11) Tsnz = f(RD)x forall h € K, z € 5¢(D),
where the operator f(hD) is defined by Formula (1.3) and the set Sy(D) is
defined by Formula (1.10).

NoTE 1.1. Let X be a complete linear metric space X(F = Cor F = R).
Let be given D € R(X) and an initial operator F' for D corresponding to
an B € Rp. Consider the space of D-analytic elements

Ar(D) = {:1: € Doz = i R”FD"z} = {z € Doy : lim R"D"z = 0},
n=0

Clearly, S C Ar(D) C Dy C dom D (cf. PR (1], PR [2]). If = € Agr(D),
then for an arbitrary family T k of continuous functional shifts induced by
a function f € H(K) we have Ty pz = f(hD)z for all h € K (cf. B [4]).
DEFINITION 1.3 (cf. PR [3]). Let X be a complete linear metric space
over F (F = Cor F = R). Let E be a subspace of X. A continuous operator
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A € L(X) is said to be almost quasinilpotent on E if
lim A\"A"z =0 foreveryz € E, A € veA.

The set of all operators almost quasinilpotent on E will be denoted by
AQN(FE).

THEOREM 1.3 (cf. PR [3]). Let E be a subspace of a complete linear
metric space (over F). If A € L(X), E C dom A and A € vrA then the
following conditions are equivalent:

(i) A is almost quasinilpotent on E;
(ii) for every z € X the series 3 ..o A"A™z is convergent and (I —
A) 1z = Y07 AmA;
(iii) for every z € X the series Y ooy (
(I-2AA)""z =32 ("t han4grg,

n=0 m—1

n+m—1

o1 )/\"A"z is convergent and

THEOREM 1.4 (cf. B&PR [1]). Suppose that X is a complete linear metric
space over C, D € R(X), ker D # {0}, A € C, ker(D - AI) # {0}, AK C K,
Re RpNAQNker(D —AI)] and Ty ¢ = {Tyn}nek, Trys,x = {T1/fnthek
are families of functional shifts for D induced by the functions f,1/f €
H(K), respectively. If the operator Ty, is continuous for some h € K then

Ry € Rp N AQN{ker(D — A1),
where the operators Ry(h € K') are defined by Formula (1.6).

2. Homogeneous case

Let now K = C. Consider the space H(C) of entire functions. We begin
with

DEFINITION 2.1. Suppose that X is a complete linear metric space over

C,D € R(X),ker D # 0, F is an initial operator for D corresponding to an
ReRpand Tyc = {Tj,h}heC € T(C). Write

(2.1) z™(h) = Fnz = FTypz  for z € §4(D), h € C.

If heR}l,r;?—.+oon’hz =0 foranze€ Sy(D)

then z is said to be f-stable, or functionally stable. If

FTypz =0, ie. lim z™h)=0 foranze€ Sy(D),

lim
h€R 4, h—+ 00 h€R4, h—+c0

then z is said to be (F, f)-stable, or functionally F-stable.

The stability introduced in PR 3] is a functional stability induced by the
function f(h) = e*. It should be pointed out that the functional F-stability
is, in a sense, a local functional stability, as a stability introduced by an initial
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operator. Clearly, if z is f-stable and F is continuous, then z is (F, f)-stable.
The zero element is f-stable for every f € H(C).

Let R € Rp be a VOLTERRA right inverse, i.e. vz R = F \ {0}. Consider
the space of ezponentials:

ER)= | ker(D - M) =lin{(/ = AR)'2: z € ker D, A € F} C Do,.
AeF
Note that E(R) is independent of the choice of R (cf. PR [1], PR [2]).
Write for A € Lo(X):

(2.2) fA[t] =
= {P(t) = tMQ(t) : Q(t) € F[t] and Q()) = 0 implies A € vrA; M € No}.

THEOREM 2.1 (cf. PR [3]). Suppose that X is a complete linear metric
locally convez space (over R), D € R(X) is closed, ker D # {0}, F is a
continuous initial operator corresponding to an R € Rp N AQN(ker D),
f(h) = €*, A(R) is either Ry or R, {Tn}rca(r) is a strongly continuous
semigroup (group) of functional shifts induced by the function f and either
S =X or R is a VOLTERRA right inverse and E(R) = X. Then

(i) D is an infinitesimal generator for {Tsr}rea(r), hence dom D = X
and Ty D = DTy ) on dom D. Moreover, for the canonical mapping &
defined as

ke = {e™N(t)}iear), where z"(t) = FT;.x (z € X)

we have
t

d
kD = TR KR = (‘,f , KFz =kKz|i=0,
and (KTt ,)(t) = (kz)(t+ h) forz € X, t,h € A(R);
(ii) = is stable is and only if is F-stable;
(iii) = € ker P(D) is stable if and only if all roots of the polynomials
P(t) € Fgt] have negative real parts.

Points (i) and (ii) of Theorem 2.1 are proved by Corollaries 2.1 and 3.1
of PR [3]. In order to prove Point (iii) of Theorem 2.1 we had to use Theo-
rem 3.1 of PR [3] with the following

LEMMA 2.1. Write
PN -
p(t)=e ‘ZP(J)ﬁ for p(t) € Flt].
=0

Then p°(t) € F[t].
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Theorem 2.1 shows that the following (non-trivial) elements are not sta-
ble (hence not F-stable):

D-polynomials, i.e elements of the set \5;

exponentials, i.e. elements of ker(D — AI), provided that ReA > 0 (X €
vrR); '

T .-periodic elements, i.e. such elements z that Ty ,z = z foranw € R

(cf. PR [3)).
Write
(2.3)  Si(f) =
- {,\ ec: A s m | p(MR)f(MR) = o} for f € H(C);
p(EFY
(2.4) Ho={feH(©): \ f(n)#0}.
heC
Clearly, if f € Ho then 1/f € Hy and
(2.5) f=¢€° where g€ H(C),

since C is simply connected.

PROPOSITION 2.1. Suppose that all assumptions of Definition 2.1 are
satisfied. If z € S\ {0} then z is not f-stable for every f € H(C).

Proof. Take any element of the set S defined by Formula (1.1) of the
form: R™z, where z € ker D \ {0}. Then, by Proposition 1.4, for all h € C,
n € Np we have

TywR"z = f(hD)R"z =) axh*R**z € S.
k=0

Hence Ty ,R"z /> 0)as h — +oo(h € Ry). =

NoTE 2.1. Let Ry be defined by Formula (1.6). Suppose that f,1/f €
H(C). This means that f(0) # 0. Let z € ker D \ {0}, n € N be arbitrar-
ily fixed. Proposition 2.1 and Theorem 1.2 together imply that Ty , R}z =
f(0)R™2 /5 0as h — +oo (h € Ry).

ProPOSITION 2.2. Suppose that all assumptions of Definition 2.1 are sat-
isfied. An element z € ker(D — Al) is f-stable if and only iflimper, htoo
f(AR) =0.

Proof. By our assumption, T,z = f(hD)z = f(Ah)z — 0 as h —
+oo(h € Ry ) if and only if imper, h—4o0 f(AR) =0 (cf. B [4]). m
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LEMMA 2.2. Let f € Hy (i.e. f is of the form (2.5)). Write
(2.6) p(t)=e0) Zp(j)# Jor p(t) € Flt).
i=0 :

Then p/(t) € F[t) if and only if g € Flt].

Proof. Write
(2.7) ay(t)=1t" for n € No.
Then

(2.8) aiﬂ(t) = g(t) Z (;l) a_‘jf(t) for n € Ny (we admit: af = 1).

Indeed,
J t)
al () =9 nt19°(8) ) in_9
+1() Z] ;! Z G-1)

j=0

= ¢~ 9(t) i(k+ yrd ) k!( ) _ e‘g(”g(t)z(k+ 1)ng (t)

= g(t)e=9) Z E ( ) kjy"(t)

k=0 j=0
- g(t)g (3)eo L woed - g(t)g:o (3)efo.

We therefore conclude that all @/ are polynomials if and only if g is a
polynomial. Suppose then that g(t) € F[t]. Let p(t) € F[t]. By (2.7), p(t) is

of the form
N N
p(t) = antn = Epnan(t)-
n=0 =0

This, and Formula (2 8) together imply that
N+1

Pt)= El’na (8) =po+ Z Pk+101k+1(t)

n=0

N+1
= meo(t) +90) 3 pen z (5)edy € 710

Write
(2.9) Hy = {e?:¢(t) € F[t]} Cc Ho C H(C).
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Then Lemma 2.2 can be formulated in the following manner:

COROLLARY 2.1. Suppose that f € Hy. Then p/(t) € F[t} if and only if
f € Hy, where H; is defined by Formula (2.9).

THEOREM 2.2. Suppose that X is a complete linear metric space over
C, D € R(X), ker D # {0}, F is a continuous initial operator for D cor-
responding to an R € Rp N AQN(ker D), Ty x = {Ttr}rer is a family
of continuous functional shifts for D induced by a function f € Il and
P(t) € Fg[t]. Then z € ker P(D)\ {0} is f-stable if and only if all roots of
P(t) belong to the set St(f) defined by Formula (2.3).

Proof. Suppose that P(t) € Fg[t] (cf. Formula (2.2)). Then P(t) is of
the form

(2.10) P(t) = tMQ(t), where fI t— X)),

m+...+r=N,Aj€vrR (j=1,...,n).
If z € ker P(D) then

n Ty
T = Z Z(I— /\jR)—mzjm + Pp-a,

j=1m=1

where zj,, € ker D and Pps_; is an arbitrary D-polynomial of degree at
most M — 1. We admit: Py—y = 0if M = 0, i.e. if P(0) # 0 (cf. PR [1],
PR [2]). By Proposition 2.1, non-trivial D-polynomials are not f-stable.
Thus 0 cannot be a root of the polynomial P(¢). Hence we put Pyy_; = 0.
We have to examine elements of the form: (I — AR)™(™m+Uz where 2 €
kerD,m=0,1,...,7; (7 =1,...,n) and A € C\ {0} is not yet determined.
For k,m € Ny write

m

(2.11) ami(t) = [J(k + 5 +1) € Ft);

J=1

1

- g(t)
(2.12) Amk(t) = ——7e" Vg7, (1),
We will show that
(2.13) Apie(t) = —— quk j)ajt!  for k,m € Ny.

j=0

Indeed, by our assumptions, f = €9 where g € F[t]. Thus g can be repre-
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sented in the form
g(t) = H(t —t;)%, where t;#t;jifi#j,0a+...4a, =M =degy,

andt; € C,a; € N (5 =1,...,m). Hence for every n € N we have

Mn
g"(t) = [H t—1; )%] H(t—t )™ =Y gintk,
k=0

j=1

where the coefficients g, are well-determined. Observe that, by definition,
we also have

S aut” = f() = 99 = E ri 2 ngnt -3 L,

n=0 n=0 n= 0

where the scalar coefficients b; (j € Ny) are well-determined by coefficients
gkn(hence by g), but there is no neediness to determine relations between
their numerical values. Clearly, a, = l,bn (n € Np). This implies that

pl(t) = e9® ZP(J)g it ) e—9(0) Z l%bjt".
j=0

j=0
We therefore conclude that for all k,m € Ny

o0

m+k m+k+ N
‘Z( m+]) - 'Z( (k+])|]) a5t E 4mi(7)e;t

Jj=0 =0

1 _ 1
_ _;eg(t) 9(t) Z P]J)b ) = “Weg(t)%fnk(t) = Ank().
j=0 '

Formulae (2.12) and (2.13) together imply that for all h € C

(m+1) = _ n+m A" R™
Tfh(I /\R) z Tfhz( m ) R"z

n=0
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_ Z [Z (m+ k “) ]-hf',\f] A*RE;

= Amk(AR)ARFz = — eg()‘h) Zq (AR)AFRE 2.

By Lemma 2.2, all q,’;k(t) € Ft], because f = e and g € F([t]. Hence

i Ty n(I = AR)™(m+Y 2 =
hER.P,II?—»+oo 70 R) z=0,

if and only if A € St(f) = St(e?). m
COROLLARY 2.2. Suppose that all assumptions of Theorem 2.2 are satis-
fied and P(t) = (t — A)™(A € C, m € N are arbitrarily fized). If A € St(f)

then for an arbitrary z € ker D we have limper, hstoo Ty, n(I—AR)™2 =0,
i.e. the element (I — AR)™z is f-stable.

COROLLARY 2.3. Suppose that all assumplions of Theorem 2.2 are satis-
fied. Let g € F(t] and let M = degg. Then

St(f) = St(e?) = {X € C: Re[¢g'M(0)AM] < 0}.

Proof. Let g € F[t],i.e. g is of the form: g() = z%zo Iml™, 90y -y Gm
€ C. Clearly, g,, = %0—) form=0,1,..., M. Hence

M M
[ty = e =exp (Y gmt™) = [ explgmt™)
m=0

m=0

M (m)
= 9(0) J] exp (g—,,L$—())t’"),
m=0 :

i.e. limper,, hotoo S(AR) = 0 if and only if Re[g(MAM] < 0. u
In particular, we obtain the condition for the stability studied in PR [3]:

COROLLARY 2.4. Suppose that all assumptions of Theorem 2.2 are satis-
fied and g(t) = t. Then St(f) = St(e') = {A € C:Re X < 0}.

3. Non-homogeneous case

Let D € R(X) and R € Rp. Let FRglt] be defined by Formula (2.2). If
P(t) € FRglt] is of the form (2.10). Write
(3.1) Q(t,9) = [J(t - Ao

i=1
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Decompose the rational function 1/Q(1,s) onto vulgar fractions

(3.2) 1/Q(1,8) =) ) djm(1= Ajs)™™,
j=lm=1
where d;,, are well-determined scalar coeflicients.
Recall that the general solution of the equation

(3.3) P(D)e =y where ye X, P(t) € Fglt]

is of the form

(3.4) z=[QU,R))RM*Ny 4 2°,  where 2° € ker P(D).
(cf. PR [1], also PR [2]).

The f-stability of the element z° € ker P(D) is established by Theo-
rem 2.2. Thus it is sufficient to study the f-stability of the element

(35) ¥ =[QUR)TRMNy=")" Z djm(I = A;R)™y.

j=l1m=1
(cf. Formulae (2.10), (3.1)-(3.4)).

DEFINITION 3.1. Suppose that all conditions of Definition 2.1 are sat-
isfied. An element ¢ € X is said to be completely f-stable with respect to
an R € Rp if the elements R*z are f-stable for every n € Ngy. The set of
all elements in X which are completely f-stable with respect to R will be
denoted by S{(X;R),i.e.

SI(X;R)={zeX: heR}iI’P_&oon,hR":c =0 forall n € Ng}.

Ifz ¢ §(X;R)forany R € Rp then z is said to be not completely f-stable.

ProprosITION 3.1. Suppose that all conditions of Definition 1.2 are sat-
isfied. Then D-polynomials are not completely f-stable independently of the
choice of an f € H(C). In particular, constants different than zero (i.e.
elements of ker D \ {0}) are not completely f-stable.

Proof. By Proposition 2.1, D-polynomials are not f-stable. If z €
ker D C § then Ty 4z = z for all h € (C), hence constants are not f-stable.
Ifu€e S then RPu€e Sforalln € N. n

PROPOSITION 3.2. Suppose that all conditions of Definition 2.1 are sat-
isfied, R € Rp is arbitrarily fized and f(h) = e". Even if ReX < 0 for
A € veR, ezponentials (I — AR)™'z (z € ker D) are not completely f-stable
with respect to R, provided that z € ker D is not equal to zero.

Proof. If A = 0 then the corresponding exponential is a constant. Hence,
by Proposition 3.1, is not completely f-stable independently of R. Suppose
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that A # 0. Then the element R(I — AR)™ 1z = 1[(I — AR)™'z — 2] is
not f-stable, even if ReA < 0, since constants different than zero are not
f-stable. By an easy induction, we prove that elements R"(I — AR)™!z are
not f-stable for all z € ker D\ {0}, n € N =

A consequence of Proposition 3.2 and Theorem 1.3(iii) is the following

ProrosITION 3.3. Suppose that all conditions of Definition 2.1 are sat-
isfied, f(h) = e* and R € AQN (ker D). Then elements (I — AR)™™z are
not completely f-stable with respect to R for all z € ker D \ {0}, A € v£R,
m € N.

The proof is going on similar lines as that of Theorem 3.1 in PR [3], by
an application of Lemma 2.1.

THEOREM 3.1. Suppose that all conditions of Definition 2.1 are satisfied,
R e Rp and f € Hy. Then the following conditions are equivalent:

(i) the element y° defined by Formula (3.5) is f-stable;
(ii) RM*Ny € SL(X; R);
(iii) the characteristic roots Ay, ..., A, of the polynomial Q(t) belong to
su().

Proof. By definition, we have

=[QU, R RM*Ny = Z djm(I = A;R) ™™ RMH Ny
=1

= Z z dim z ( ; )/\.I;RM+N+ky.

j=1m=1

Hence for h € C
n Ty o)
Ty =3 2 € D ahnsMNRM Ny,
j=1m=1 k=0

where, by Lemma 2.2, q_{m «(t) are polynomials. We therefore conclude that

RM+Ny ¢ § (X;R) if and only if Ay,..., A, € St(f). On the other hand,
y° is f-stable if and only if RM+VNy e S (X;R). m

Theorems 2.2 and 3.1 together imply

COROLLARY 3.1. Suppose that all conditions of Definition 2.1 are satis-
fied, R € Rp and f € Hy. Then the following conditions are equivalent:

(i) all solutions of Equation (3.3) are f-stable;
(i) RM*Ny € SL(X; R);
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(iii) the characteristic roots Ay,..., A, of the polynomial Q(t) belong to
St(f).

Let F be an initial operator for D corresponding to an R € Rp. Consider
Equation (3.3) together with the initial conditions:
(36) FD*z =gz, where z€kerD (k=0,1,...,.M+ N —1).

It is well-known that by the substitution
M+N-1 M+N-1

(3.7) U=z~ E R*FDFz = 2 — Z R¥z)
k=0 k=0

we reduce the problem (3.3)-(3.6) to the initial value problem with homo-
geneous initial conditions
(3.8) FD*v=0 (k=0,1,...,.M+ N —1).

(cf. PR [1)]).

Observe that solutions z of the problem (3.3)—(3.6) and u of the problem
(3.3)-(3.8) differs each from another by a D-polynomial. This means that
f’stability of solutions to one of that problems does not necessarily imply
the f-stability of solutions to another problem.

In a similar manner we can consider systems of linear equations with
scalar coeflicients

K
(3.9) Dzj- Y apzr=y; (j=1,...,K), DeR(X),
k=1

where y; € X, ar; € F (j,k=1,...,K). Write
o K - [
= = XX = ce TK = s YK ,
X X X X X s T (zla 3931\)7 Y (yh y YI )GX
K times
where 21,...,Zk, y1,...,Yx € X,
(3.10) A° = (ajk)jk=1,..5; 1°=(6al)jr=1,..K,
(3.11) D° = (6;xD)jx=1,..x5 R°=(6;xR)jx=1,.K)

R € Rp and 6, denotes the KRONECKER symbol, i.e. 6;, = 1if j = k and
0 otherwise. Then the system (3.9) can be written as follows

(3.12) P(D°)z = A%y,

where
M+N k=1

(3.13) Ap= ) pe ) (A)FT(DO)™,
k=1 m=0
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P(t) = EQ’I:T)N prt¥ = tMQ(1) is the characteristic (minimal) polynomial
of the matrix A°, D° € R(X°), R° € Rp. (cf. PR [1], Section 3.5). As a
matter of fact, Equation (3.12) is of the same form, as (3.3). We therefore

conclude that every solution of (3.12) is of the form
z =[QU° R YR YM*TN ASy + 2°, where z° € ker P(D°),

n T M
z° = Z Z’(lo - /\Ro)_lem + Z(Ro)m_IZOm
j=1m=1 m=1

with the additional condition that

(3.14) (A=A I°)"zjm = 0,2jm € ker D°
(m=1,...,r;;5=0,1,...,n;70 = M).

(cf. PR [1], Theorem 3.5.1). This, and Theorem 3.1 together imply

COROLLARY 3.2. Suppose that all conditions of Definition 2.1 are sat-
isfied by the operators D and R, hence also by the operators D° and R°
defined by Formulae (3.11). Let {Ts}rec be a family of functional shifts
for D induced by a function f € H,. Let Condition (3.14) be satisfied. Let A
be defined by Formula (3.13). Then the following conditions are equivalent:

(i) all solutions of the sysitem (3.8) are f-stable;
(i) (RO)M+N Agy € SL(XF; R);
(iii) all roots of the characteristic polynomial of the matriz (aji)jk=1,...K
belong to the set St(f).

Acknowledgment: The author is very grateful to Professor Jan Ro-
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