

D. Przeworska-Rolewicz

FUNCTIONAL STABILITY OF LINEAR SYSTEMS

In the author's paper PR [3] there was introduced and studied a notion of stability of solutions to linear systems with right invertible operators in the homogeneous case. The non-homogeneous case has been examined in PR [4].

The purpose of the present paper is a generalization of the mentioned results for stability induced by functional shifts introduced by Z. Binderman (cf. B[1]–B[4]).

1. Preliminaries

We shall recall some definitions and theorems (without proofs) which will be used in our subsequent considerations.

Let X be a linear space over a field \mathcal{F} of scalars. $L(X)$ will stand for the set of all linear operators with domains and ranges in X and $L_0(X) = \{A \in L(X) : \text{dom } A = X\}$. By $\mathcal{F}[t]$ is denoted the set of all polynomials in the variable t with coefficients belonging to \mathcal{F} . Write

$$v_{\mathcal{F}A} = \{0 \neq \lambda \in \mathcal{F} : I - \lambda A \text{ is invertible}\} \quad \text{for } A \in L(X).$$

If $\lambda \in v_{\mathcal{F}A}$ then $1/\lambda$ is a regular value of A .

Denote by $R(X)$ the set of all right invertible operators belonging to $L(X)$, by \mathcal{R}_D - the set of all right inverses of a $D \in R(X)$ and by \mathcal{F}_D - the set of all *initial* operators for D , i.e.

$$\begin{aligned} \mathcal{R}_D &= \{R \in L_0(X) : DR = I\}, \\ \mathcal{F}_D &= \{F \in L_0(X) : F^2 = F, FX = \ker D \text{ and } \exists_{R \in \mathcal{R}_D} FR = 0\}. \end{aligned}$$

In the sequel we shall assume that $\ker D \neq \{0\}$, i.e. D is right invertible but not invertible. The theory of right invertible operators and its applications can be found in PR [1].

We admit that $0^0 = 1$. We also write: $N_0 = \{0\} \cup N$. For a given operator $D \in R(X)$ write

$$(1.1) \quad S = \bigcup_{i=1}^{\infty} \ker D^i.$$

The set S is equal to the linear span $P(R)$ of all D -monomials:

$$S = P(R) = \text{lin}\{R^k z : z \in \ker D, k \in N_0\}$$

independently of the choice of a right inverse R of D (cf. PR [1]).

For a given $D \in R(X)$ we shall consider the space of *smooth* elements

$$D_{\infty} = \bigcap_{k \in N} \text{dom } D^k.$$

Clearly, $S \subset D_{\infty} \subset \text{dom } D$ (cf. PR [2]).

Let $\mathcal{F} = \mathbf{C}$. In the sequel, K will stand either for a disk $K_{\rho} = \{h \in \mathbf{C} : |h| < \rho, 0 < \rho < \infty\}$ or for the complex plane \mathbf{C} . Denote by $H(K)$ the space of all functions analytic on the set K . Suppose that a function $f \in H(K)$ has the following expansion

$$(1.2) \quad f(h) = \sum_{k=0}^{\infty} a_k h^k \quad \text{for all } h \in K.$$

DEFINITION 1.1. (cf. B [1]) Suppose that $D \in R(X)$ and $\ker D \neq \{0\}$. A family $T_K = \{T_h\}_{h \in K} \subset L_0(X)$ is said to be a family of *functional shifts* for the operator D induced by a function $f \in H(K)$ (i.e. of the form (1.2)) if

$$(1.3) \quad T_h x = [f(hD)]x = \sum_{k=0}^{\infty} a_k h^k D^k x \quad \text{for all } h \in K, x \in S,$$

where S is defined by Formula (1.1).

We should point out that, by definition of S , the last sum has only a finite number of members different than zero.

PROPOSITION 1.1 (cf. B [2]). *Suppose that $D \in R(X)$, $\ker D \neq \{0\}$, F is an initial operator for D corresponding to an $R \in \mathcal{R}_D$ and $T_K = \{T_h\}_{h \in K} \subset L_0(X)$. Let $f \in H(K)$. Then the following conditions are equivalent:*

(i) *T_K is a family of functional shifts for the operator D induced by the function f ;*

$$(ii) \quad T_h R^k F = \sum_{j=0}^k a_j h^j R^{k-j} F \quad \text{for all } h \in K, k \in N_0.$$

PROPOSITION 1.2 (cf. B [2]). *Suppose that $D \in R(X)$, $\ker D \neq \{0\}$ and $T_{f,K} = \{T_{f,h}\}_{h \in K}$ is a family of functional shifts for the operator D induced by a function $f \in H(K)$. Let F be an initial operator for D corresponding to an $R \in \mathcal{R}_D$. Then*

(i) *For all $h \in K$, $z \in \ker D$, $k \in \mathbb{N}_0$*

$$(1.4) \quad T_{f,h} R^k z = \sum_{j=0}^k a_j h^j R^{k-j} z;$$

(ii) *The operators $T_{f,h}$ ($h \in K$) are uniquely determined on the set S ;*

(iii) *If X is a complete linear metric space, $\overline{S} = X$ and $T_{f,h}$ are continuous for $h \in K$ then $T_{f,h}$ are uniquely determined on the whole space;*

(iv) *For all $h \in K$ the operators $T_{f,h}$ commute on the set S with the operator D .*

The listed properties and other informations about functional shifts for right invertible operators can be found in B[1]–B[4] (cf. PR [1], PR [3], PR [4] for shifts induced by the function $f(h) = e^h$).

Proposition 1.2 of B [3] implies

PROPOSITION 1.3. *Suppose that all assumptions of Proposition 1.2 are satisfied and $f(0) = a_0 \neq 0$. Let*

$$(1.5) \quad F_h = [f(0)]^{-1} F T_{f,h} \quad \text{for } h \in K.$$

Then F_h is an initial operator for D corresponding to the right inverse

$$(1.6) \quad R_h = R - F_h R \quad (h \in K).$$

It is well-known that $H(K)$ is a commutative ring with the following algebraic operations

$$(f+g)(h) = f(h) + g(h), \quad (\alpha g)(h) = \alpha g(h), \quad (fg)(h) = f(h)g(h),$$

where $f, g \in H(K)$, $\alpha \in \mathbb{C}$, $h \in K$.

Let $T(K)$ be the set of all families of functional shifts for an operator $D \in R(X)$ induced by the members of $H(K)$, i.e.

$$(1.7) \quad T(K) = \{T_{f,K} : f \in H(K)\}.$$

Define the following operations

$$(1.8) \quad T_{f,K} + T_{g,K} = T_{f+g,K}, \quad \alpha T_{g,K} = T_{\alpha g,K}, \quad T_{f,K} T_{g,K} = T_{fg,K},$$

where $f, g \in H(K)$, $\alpha \in \mathbb{C}$.

THEOREM 1.1 (cf. B [2]). *Suppose that $D \in R(X)$, $\ker D \neq \{0\}$ and $T(K)$ is defined by Formula (1.7). Then*

(i) *The set $T(K)|_S = \{T_{f,K}|_S : f \in H(K)\}$ is a commutative ring with the operations defined by Formulae (1.8);*

(ii) *The rings $H(K)$ and $T(K)|_S$ are isomorphic. The mapping*

$$T : f \mapsto T_{f,K}|_S$$

is a ring isomorphism of $H(K)$ onto $T(K)|_S$.

THEOREM 1.2 (cf. B&PR [1]). *Suppose that $D \in R(X)$, $\ker D \neq \{0\}$ and $T_{f,K} = \{T_{f,h}\}_{h \in K} \in T(K)$. Let F be an initial operator for D corresponding to an $R \in \mathcal{R}_D$. Suppose, moreover, that $1/f \in H(K)$, i.e. $T_{1/f,K} = \{T_{1/f,h}\}_{h \in K} \in T(K)$. Then*

$$(1.9) \quad R_h^n z = f(0) T_{1/f,h} R^n z \quad \text{for all } n \in \mathbb{N}, h \in K, z \in \ker D,$$

where the operators R_h ($h \in K$) are defined by Formula (1.6).

Assume that X is a complete linear metric space over \mathbf{C} and the function $f \in H(K)$ has the expansion (1.2). Write for an operator $D \in R(X)$ (cf. B [4])

$$(1.10) \quad S_f(D) = \left\{ x \in X : \sum_{k=0}^{\infty} a_k h^k D^k x \text{ is convergent for all } h \in K \right\}.$$

PROPOSITION 1.4 (cf. B [4]). *Suppose that X is a complete linear metric space over \mathbf{C} , $D \in R(X)$, $\ker D \neq \{0\}$ and $f \in H(K)$. Then $S \subset S_f(D) \subset \text{dom } D$ for all $n \in \mathbb{N}_0$.*

Similarly, as Definition 1.1, we have

DEFINITION 1.2 (cf. B [2]). *Suppose that X is a complete linear metric space over \mathbf{C} , $D \in R(X)$ and $\ker D \neq \{0\}$. A family $T_{f,K} = \{T_{f,h}\}_{h \in K} \subset L_0(X)$ is said to be a family of *functional shifts* for D induced by a function $f \in H(K)$ if*

$$(1.11) \quad T_{f,h} x = f(hD)x \quad \text{for all } h \in K, x \in S_f(D),$$

where the operator $f(hD)$ is defined by Formula (1.3) and the set $S_f(D)$ is defined by Formula (1.10).

NOTE 1.1. Let X be a complete linear metric space $X(\mathcal{F} = \mathbf{C} \text{ or } \mathcal{F} = \mathbf{R})$. Let be given $D \in R(X)$ and an initial operator F for D corresponding to an $R \in \mathcal{R}_D$. Consider the space of D -analytic elements

$$A_R(D) = \left\{ x \in D_\infty : x = \sum_{n=0}^{\infty} R^n F D^n x \right\} = \{x \in D_\infty : \lim_{n \rightarrow \infty} R^n D^n x = 0\},$$

Clearly, $S \subset A_R(D) \subset D_\infty \subset \text{dom } D$ (cf. PR [1], PR [2]). If $x \in A_R(D)$, then for an arbitrary family $T_{f,K}$ of continuous functional shifts induced by a function $f \in H(K)$ we have $T_{f,h} x = f(hD)x$ for all $h \in K$ (cf. B [4]).

DEFINITION 1.3 (cf. PR [3]). *Let X be a complete linear metric space over \mathcal{F} ($\mathcal{F} = \mathbf{C}$ or $\mathcal{F} = \mathbf{R}$). Let E be a subspace of X . A continuous operator*

$A \in L(X)$ is said to be *almost quasinilpotent on E* if

$$\lim_{n \rightarrow \infty} \lambda^n A^n x = 0 \quad \text{for every } x \in E, \lambda \in v_{\mathcal{F}} A.$$

The set of all operators almost quasinilpotent on E will be denoted by $AQN(E)$.

THEOREM 1.3 (cf. PR [3]). *Let E be a subspace of a complete linear metric space (over \mathcal{F}). If $A \in L(X)$, $E \subset \text{dom } A$ and $\lambda \in v_{\mathcal{F}} A$ then the following conditions are equivalent:*

- (i) *A is almost quasinilpotent on E ;*
- (ii) *for every $x \in X$ the series $\sum_{n=0}^{\infty} \lambda^n A^n x$ is convergent and $(I - \lambda A)^{-1} x = \sum_{n=0}^{\infty} \lambda^n A^n x$;*
- (iii) *for every $x \in X$ the series $\sum_{n=0}^{\infty} \binom{n+m-1}{m-1} \lambda^n A^n x$ is convergent and $(I - \lambda A)^{-m} x = \sum_{n=0}^{\infty} \binom{n+m-1}{m-1} \lambda^n A^n x$.*

THEOREM 1.4 (cf. B&PR [1]). *Suppose that X is a complete linear metric space over \mathbf{C} , $D \in R(X)$, $\ker D \neq \{0\}$, $\lambda \in \mathbf{C}$, $\ker(D - \lambda I) \neq \{0\}$, $\lambda K \subset K$, $R \in \mathcal{R}_D \cap AQN[\ker(D - \lambda I)]$ and $T_{f,K} = \{T_{f,h}\}_{h \in K}$, $T_{1/f,K} = \{T_{1/f,h}\}_{h \in K}$ are families of functional shifts for D induced by the functions $f, 1/f \in H(K)$, respectively. If the operator $T_{f,h}$ is continuous for some $h \in K$ then*

$$R_h \in \mathcal{R}_D \cap AQN[\ker(D - \lambda I)],$$

where the operators $R_h (h \in K)$ are defined by Formula (1.6).

2. Homogeneous case

Let now $K = \mathbf{C}$. Consider the space $H(\mathbf{C})$ of entire functions. We begin with

DEFINITION 2.1. Suppose that X is a complete linear metric space over \mathbf{C} , $D \in R(X)$, $\ker D \neq 0$, F is an initial operator for D corresponding to an $R \in \mathcal{R}_D$ and $T_{f,C} = \{T_{f,h}\}_{h \in \mathbf{C}} \in T(\mathbf{C})$. Write

$$(2.1) \quad x^{\wedge}(h) = F_h x = FT_{f,h} x \quad \text{for } x \in S_f(D), h \in \mathbf{C}.$$

$$\text{If } \lim_{h \in \mathbf{R}_+, h \rightarrow +\infty} T_{f,h} x = 0 \quad \text{for an } x \in S_f(D)$$

then x is said to be *f-stable*, or *functionally stable*. If

$$\lim_{h \in \mathbf{R}_+, h \rightarrow +\infty} FT_{f,h} x = 0, \text{ i.e. } \lim_{h \in \mathbf{R}_+, h \rightarrow +\infty} x^{\wedge}(h) = 0 \quad \text{for an } x \in S_f(D),$$

then x is said to be *(F, f)-stable*, or *functionally F -stable*.

The stability introduced in PR [3] is a functional stability induced by the function $f(h) = e^h$. It should be pointed out that the functional F -stability is, in a sense, a *local* functional stability, as a stability introduced by an initial

operator. Clearly, if x is f -stable and F is continuous, then x is (F, f) -stable. The zero element is f -stable for every $f \in H(\mathbf{C})$.

Let $R \in \mathcal{R}_D$ be a VOLTERRA right inverse, i.e. $v_{\mathcal{F}}R = \mathcal{F} \setminus \{0\}$. Consider the space of *exponentials*:

$$E(R) = \bigcup_{\lambda \in \mathcal{F}} \ker(D - \lambda I) = \text{lin}\{(I - \lambda R)^{-1}z : z \in \ker D, \lambda \in \mathcal{F}\} \subset D_{\infty}.$$

Note that $E(R)$ is independent of the choice of R (cf. PR [1], PR [2]).

Write for $A \in L_0(X)$:

$$(2.2) \quad \begin{aligned} \mathcal{F}_A[t] &= \\ &= \{P(t) = t^M Q(t) : Q(t) \in \mathcal{F}[t] \text{ and } Q(\lambda) = 0 \text{ implies } \lambda \in v_{\mathcal{F}}A; M \in \mathbf{N}_0\}. \end{aligned}$$

THEOREM 2.1 (cf. PR [3]). *Suppose that X is a complete linear metric locally convex space (over \mathbf{R}), $D \in R(X)$ is closed, $\ker D \neq \{0\}$, F is a continuous initial operator corresponding to an $R \in \mathcal{R}_D \cap AQN(\ker D)$, $f(h) = e^h$, $A(\mathbf{R})$ is either \mathbf{R}_+ or \mathbf{R} , $\{T_{f,h}\}_{h \in A(\mathbf{R})}$ is a strongly continuous semigroup (group) of functional shifts induced by the function f and either $\overline{S} = X$ or R is a VOLTERRA right inverse and $\overline{E(R)} = X$. Then*

(i) *D is an infinitesimal generator for $\{T_{f,h}\}_{h \in A(\mathbf{R})}$, hence $\overline{\text{dom } D} = X$ and $T_{f,h}D = DT_{f,h}$ on $\text{dom } D$. Moreover, for the canonical mapping κ defined as*

$$\kappa x = \{x^{\wedge}(t)\}_{t \in A(\mathbf{R})}, \quad \text{where} \quad x^{\wedge}(t) = FT_{f,t}x \quad (x \in X)$$

we have

$$\kappa D = \frac{d}{dt} \kappa, \quad \kappa R = \int_0^t, \quad \kappa Fx = \kappa x|_{t=0},$$

and $(\kappa T_{f,h})(t) = (\kappa x)(t+h)$ for $x \in X, t, h \in A(\mathbf{R})$;

- (ii) *x is stable if and only if x is F -stable;*
- (iii) *$x \in \ker P(D)$ is stable if and only if all roots of the polynomials $P(t) \in \mathcal{F}_R[t]$ have negative real parts.*

Points (i) and (ii) of Theorem 2.1 are proved by Corollaries 2.1 and 3.1 of PR [3]. In order to prove Point (iii) of Theorem 2.1 we had to use Theorem 3.1 of PR [3] with the following

LEMMA 2.1. *Write*

$$p^o(t) = e^{-t} \sum_{j=0}^{\infty} p(j) \frac{t^j}{j!} \quad \text{for } p(t) \in \mathcal{F}[t].$$

Then $p^o(t) \in \mathcal{F}[t]$.

Theorem 2.1 shows that the following (non-trivial) elements are not stable (hence not F -stable):

D-polynomials, i.e. elements of the set S ;

exponentials, i.e. elements of $\ker(D - \lambda I)$, provided that $\operatorname{Re} \lambda \geq 0$ ($\lambda \in v_{\mathcal{F}} R$);

$T_{f,\omega}$ -periodic elements, i.e. such elements x that $T_{f,\omega}x = x$ for an $\omega \in \mathbf{R}$ (cf. PR [3]).

Write

$$(2.3) \quad St(f) = \left\{ \lambda \in \mathbf{C} : \bigwedge_{p(t) \in \mathcal{F}[t]} \lim_{h \in \mathbf{R}_+, h \rightarrow +\infty} p(\lambda h) f(\lambda h) = 0 \right\} \quad \text{for } f \in H(\mathbf{C});$$

$$(2.4) \quad H_0 = \left\{ f \in H(\mathbf{C}) : \bigwedge_{h \in \mathbf{C}} f(h) \neq 0 \right\}.$$

Clearly, if $f \in H_0$ then $1/f \in H_0$ and

$$(2.5) \quad f = e^g, \quad \text{where } g \in H(\mathbf{C}),$$

since \mathbf{C} is simply connected.

PROPOSITION 2.1. *Suppose that all assumptions of Definition 2.1 are satisfied. If $x \in S \setminus \{0\}$ then x is not f -stable for every $f \in H(\mathbf{C})$.*

Proof. Take any element of the set S defined by Formula (1.1) of the form: $R^n z$, where $z \in \ker D \setminus \{0\}$. Then, by Proposition 1.4, for all $h \in \mathbf{C}$, $n \in \mathbf{N}_0$ we have

$$T_{f,h} R^n z = f(hD) R^n z = \sum_{k=0}^n a_k h^k R^{n-k} z \in S.$$

Hence $T_{f,h} R^n z \neq 0$ as $h \rightarrow +\infty$ ($h \in \mathbf{R}_+$). ■

NOTE 2.1. Let R_h be defined by Formula (1.6). Suppose that $f, 1/f \in H(\mathbf{C})$. This means that $f(0) \neq 0$. Let $z \in \ker D \setminus \{0\}$, $n \in \mathbf{N}_0$ be arbitrarily fixed. Proposition 2.1 and Theorem 1.2 together imply that $T_{f,h} R_h^n z = f(0) R^n z \neq 0$ as $h \rightarrow +\infty$ ($h \in \mathbf{R}_+$).

PROPOSITION 2.2. *Suppose that all assumptions of Definition 2.1 are satisfied. An element $x \in \ker(D - \lambda I)$ is f -stable if and only if $\lim_{h \in \mathbf{R}_+, h \rightarrow +\infty} f(\lambda h) = 0$.*

Proof. By our assumption, $T_{f,h} x = f(hD)x = f(\lambda h)x \rightarrow 0$ as $h \rightarrow +\infty$ ($h \in \mathbf{R}_+$) if and only if $\lim_{h \in \mathbf{R}_+, h \rightarrow +\infty} f(\lambda h) = 0$ (cf. B [4]). ■

LEMMA 2.2. Let $f \in H_0$ (i.e. f is of the form (2.5)). Write

$$(2.6) \quad p^f(t) = e^{-g(t)} \sum_{j=0}^{\infty} p(j) \frac{g^j(t)}{j!} \quad \text{for } p(t) \in \mathcal{F}[t].$$

Then $p^f(t) \in \mathcal{F}[t]$ if and only if $g \in \mathcal{F}[t]$.

Proof. Write

$$(2.7) \quad \alpha_n(t) = t^n \quad \text{for } n \in \mathbb{N}_0.$$

Then

$$(2.8) \quad \alpha_{n+1}^f(t) = g(t) \sum_{j=0}^n \binom{n}{j} \alpha_j^f(t) \quad \text{for } n \in \mathbb{N}_0 \text{ (we admit: } \alpha_0^f = 1).$$

Indeed,

$$\begin{aligned} \alpha_{n+1}^f(t) &= e^{-g(t)} \sum_{j=0}^{\infty} j^{n+1} \frac{g^j(t)}{j!} = e^{-g(t)} \sum_{j=1}^{\infty} j^n \frac{g^j(t)}{(j-1)!} \\ &= e^{-g(t)} \sum_{k=0}^{\infty} (k+1)^n \frac{g^{k+1}(t)}{k!} = e^{-g(t)} g(t) \sum_{k=0}^{\infty} (k+1)^n \frac{g^k(t)}{k!} \\ &= g(t) e^{-g(t)} \sum_{k=0}^{\infty} \sum_{j=0}^n \binom{n}{j} k^j \frac{g^k(t)}{k!} \\ &= g(t) \sum_{j=0}^n \binom{n}{j} e^{-g(t)} \sum_{k=0}^{\infty} k^j \frac{g^k(t)}{k!} = g(t) \sum_{j=0}^n \binom{n}{j} \alpha_j^f(t). \end{aligned}$$

We therefore conclude that all α_n^f are polynomials if and only if g is a polynomial. Suppose then that $g(t) \in \mathcal{F}[t]$. Let $p(t) \in \mathcal{F}[t]$. By (2.7), $p(t)$ is of the form

$$p(t) = \sum_{n=0}^N p_n t^n = \sum_{n=0}^N p_n \alpha_n(t).$$

This, and Formula (2.8) together imply that

$$\begin{aligned} p^f(t) &= \sum_{n=0}^N p_n \alpha_n^f(t) = p_0 + \sum_{k=0}^{N+1} p_{k+1} \alpha_{k+1}^f(t) \\ &= p_0 \alpha_0(t) + g(t) \sum_{k=0}^{N+1} p_{k+1} \sum_{j=0}^k \binom{k}{j} \alpha_j^f(t) \in \mathcal{F}[t]. \blacksquare \end{aligned}$$

Write

$$(2.9) \quad H_1 = \{e^g : g(t) \in \mathcal{F}[t]\} \subset H_0 \subset H(\mathbb{C}).$$

Then Lemma 2.2 can be formulated in the following manner:

COROLLARY 2.1. *Suppose that $f \in H_0$. Then $p^f(t) \in \mathcal{F}[t]$ if and only if $f \in H_1$, where H_1 is defined by Formula (2.9).*

THEOREM 2.2. *Suppose that X is a complete linear metric space over \mathbf{C} , $D \in R(X)$, $\ker D \neq \{0\}$, F is a continuous initial operator for D corresponding to an $R \in \mathcal{R}_D \cap AQN(\ker D)$, $T_{f,K} = \{T_{f,h}\}_{h \in K}$ is a family of continuous functional shifts for D induced by a function $f \in H_1$ and $P(t) \in \mathcal{F}_R[t]$. Then $x \in \ker P(D) \setminus \{0\}$ is f -stable if and only if all roots of $P(t)$ belong to the set $St(f)$ defined by Formula (2.3).*

P r o o f. Suppose that $P(t) \in \mathcal{F}_R[t]$ (cf. Formula (2.2)). Then $P(t)$ is of the form

$$(2.10) \quad P(t) = t^M Q(t), \quad \text{where} \quad Q(t) = \prod_{j=1}^n (t - \lambda_j)^{r_j},$$

$$r_1 + \dots + r_n = N, \quad \lambda_j \in v_{\mathcal{F}} R \quad (j = 1, \dots, n).$$

If $x \in \ker P(D)$ then

$$x = \sum_{j=1}^n \sum_{m=1}^{r_j} (I - \lambda_j R)^{-m} z_{jm} + P_{M-1},$$

where $z_{jm} \in \ker D$ and P_{M-1} is an arbitrary D -polynomial of degree at most $M-1$. We admit: $P_{M-1} = 0$ if $M = 0$, i.e. if $P(0) \neq 0$ (cf. PR [1], PR [2]). By Proposition 2.1, non-trivial D -polynomials are not f -stable. Thus 0 cannot be a root of the polynomial $P(t)$. Hence we put $P_{M-1} = 0$. We have to examine elements of the form: $(I - \lambda R)^{-(m+1)} z$, where $z \in \ker D$, $m = 0, 1, \dots, r_j$ ($j = 1, \dots, n$) and $\lambda \in \mathbf{C} \setminus \{0\}$ is not yet determined. For $k, m \in \mathbf{N}_0$ write

$$(2.11) \quad q_{mk}(t) = \prod_{j=1}^m (k + j + t) \in \mathcal{F}[t];$$

$$(2.12) \quad A_{mk}(t) = -\frac{1}{m!} e^{g(t)} q_{mk}^f(t).$$

We will show that

$$(2.13) \quad A_{mk}(t) = -\frac{1}{m!} \sum_{j=0}^{\infty} q_{mk}(j) a_j t^j \quad \text{for } k, m \in \mathbf{N}_0.$$

Indeed, by our assumptions, $f = e^g$ where $g \in \mathcal{F}[t]$. Thus g can be repre-

sented in the form

$$g(t) = \prod_{j=1}^m (t - t_j)^{\alpha_j}, \quad \text{where } t_i \neq t_j \text{ if } i \neq j, \alpha_1 + \dots + \alpha_m = M = \deg g,$$

and $t_j \in \mathbf{C}$, $\alpha_j \in \mathbf{N}$ ($j = 1, \dots, m$). Hence for every $n \in \mathbf{N}$ we have

$$g^n(t) = \left[\prod_{j=1}^m (t - t_j)^{\alpha_j} \right]^n = \prod_{j=1}^m (t - t_j)^{\alpha_j n} = \sum_{k=0}^{Mn} g_{kn} t^k,$$

where the coefficients g_{kn} are well-determined. Observe that, by definition, we also have

$$\sum_{n=0}^{\infty} a_n t^n = f(t) = e^{g(t)} = \sum_{n=0}^{\infty} \frac{g^n(t)}{n!} = \sum_{n=0}^{\infty} \frac{1}{n!} \sum_{k=0}^{Mn} g_{kn} t^k = \sum_{n=0}^{\infty} \frac{1}{n!} b_n t^n,$$

where the scalar coefficients b_j ($j \in \mathbf{N}_0$) are well-determined by coefficients g_{kn} (hence by g), but there is no neediness to determine relations between their numerical values. Clearly, $a_n = \frac{1}{n!} b_n$ ($n \in \mathbf{N}_0$). This implies that

$$p^f(t) = e^{-g(t)} \sum_{j=0}^{\infty} p(j) \frac{g^j(t)}{j!} = e^{-g(t)} \sum_{j=0}^{\infty} \frac{p(j)}{j!} b_j t^j.$$

We therefore conclude that for all $k, m \in \mathbf{N}_0$

$$\begin{aligned} - \sum_{j=0}^{\infty} \binom{m+k+j}{m} a_j t^j &= - \frac{1}{m!} \sum_{j=0}^{\infty} \frac{(m+k+j)!}{(k+j)!} a_j t^j = - \frac{1}{m!} \sum_{j=0}^{\infty} q_{mk}(j) a_j t^j \\ &= - \frac{1}{m!} e^{g(t)} e^{-g(t)} \sum_{j=0}^{\infty} \frac{p(j)}{j!} b_j t^j = - \frac{1}{m!} e^{g(t)} q_{mk}^f(t) = A_{mk}(t). \end{aligned}$$

Formulae (2.12) and (2.13) together imply that for all $h \in \mathbf{C}$

$$\begin{aligned} T_{f,h}(I - \lambda R)^{-(m+1)} z &= -T_{f,h} \sum_{n=0}^{\infty} \binom{n+m}{m} \lambda^n R^n z \\ &= - \sum_{n=0}^{\infty} \binom{n+m}{m} \lambda^n T_{f,h} R^n z \\ &= - \sum_{n=0}^{\infty} \binom{n+m}{m} \lambda^n \sum_{k=0}^n a_{n-k} h^{n-k} R^k z \\ &= - \sum_{k=0}^{\infty} \sum_{n=k}^{\infty} \binom{n+m}{m} \lambda^n a_{n-k} h^{n-k} R^k z \end{aligned}$$

$$\begin{aligned}
&= - \sum_{k=0}^{\infty} \left[\sum_{j=0}^{\infty} \binom{m+k+j}{m} a_j h^j \lambda^j \right] \lambda^k R^k z \\
&= \sum_{k=0}^{\infty} A_{mk}(\lambda h) \lambda^k R^k z = -\frac{1}{m!} e^{g(\lambda h)} \sum_{k=0}^{\infty} q_{mk}^f(\lambda h) \lambda^k R^k z.
\end{aligned}$$

By Lemma 2.2, all $q_{mk}^f(t) \in \mathcal{F}[t]$, because $f = e^g$ and $g \in \mathcal{F}[t]$. Hence

$$\lim_{h \in \mathbf{R}_+, h \rightarrow +\infty} T_{f,h}(I - \lambda R)^{-(m+1)} z = 0,$$

if and only if $\lambda \in St(f) = St(e^g)$. ■

COROLLARY 2.2. *Suppose that all assumptions of Theorem 2.2 are satisfied and $P(t) = (t - \lambda)^m$ ($\lambda \in \mathbf{C}$, $m \in \mathbf{N}$ are arbitrarily fixed). If $\lambda \in St(f)$ then for an arbitrary $z \in \ker D$ we have $\lim_{h \in \mathbf{R}_+, h \rightarrow +\infty} T_{f,h}(I - \lambda R)^m z = 0$, i.e. the element $(I - \lambda R)^m z$ is f -stable.*

COROLLARY 2.3. *Suppose that all assumptions of Theorem 2.2 are satisfied. Let $g \in \mathcal{F}[t]$ and let $M = \deg g$. Then*

$$St(f) = St(e^g) = \{\lambda \in \mathbf{C} : \operatorname{Re}[g^{(M)}(0)\lambda^M] < 0\}.$$

P r o o f. Let $g \in \mathcal{F}[t]$, i.e. g is of the form: $g(t) = \sum_{m=0}^M g_m t^m$, $g_0, \dots, g_m \in \mathbf{C}$. Clearly, $g_m = \frac{g^{(m)}(0)}{m!}$ for $m = 0, 1, \dots, M$. Hence

$$\begin{aligned}
f(t) = e^{g(t)} &= \exp \left(\sum_{m=0}^M g_m t^m \right) = \prod_{m=0}^M \exp(g_m t^m) \\
&= g(0) \prod_{m=0}^M \exp \left(\frac{g^{(m)}(0)}{m!} t^m \right),
\end{aligned}$$

i.e. $\lim_{h \in \mathbf{R}_+, h \rightarrow +\infty} f(\lambda h) = 0$ if and only if $\operatorname{Re}[g^{(M)}\lambda^M] < 0$. ■

In particular, we obtain the condition for the stability studied in PR [3]:

COROLLARY 2.4. *Suppose that all assumptions of Theorem 2.2 are satisfied and $g(t) \equiv t$. Then $St(f) = St(e^t) = \{\lambda \in \mathbf{C} : \operatorname{Re} \lambda < 0\}$.*

3. Non-homogeneous case

Let $D \in R(X)$ and $R \in \mathcal{R}_D$. Let $\mathcal{F}_R[t]$ be defined by Formula (2.2). If $P(t) \in \mathcal{F}_R[t]$ is of the form (2.10). Write

$$(3.1) \quad Q(t, s) = \prod_{j=1}^n (t - \lambda_j s)^{r_j}.$$

Decompose the rational function $1/Q(1, s)$ onto vulgar fractions

$$(3.2) \quad 1/Q(1, s) = \sum_{j=1}^n \sum_{m=1}^{r_j} d_{jm} (1 - \lambda_j s)^{-m},$$

where d_{jm} are well-determined scalar coefficients.

Recall that the general solution of the equation

$$(3.3) \quad P(D)x = y \quad \text{where } y \in X, P(t) \in \mathcal{F}_R[t]$$

is of the form

$$(3.4) \quad x = [Q(I, R)]^{-1} R^{M+N} y + x^o, \quad \text{where } x^o \in \ker P(D).$$

(cf. PR [1], also PR [2]).

The f -stability of the element $x^o \in \ker P(D)$ is established by Theorem 2.2. Thus it is sufficient to study the f -stability of the element

$$(3.5) \quad y^o = [Q(I, R)]^{-1} R^{M+N} y = \sum_{j=1}^n \sum_{m=1}^{r_j} d_{jm} (I - \lambda_j R)^{-1} y.$$

(cf. Formulae (2.10), (3.1)–(3.4)).

DEFINITION 3.1. Suppose that all conditions of Definition 2.1 are satisfied. An element $x \in X$ is said to be *completely f -stable with respect to an $R \in \mathcal{R}_D$* if the elements $R^n x$ are f -stable for every $n \in \mathbb{N}_0$. The set of all elements in X which are completely f -stable with respect to R will be denoted by $S_\infty^f(X; R)$, i.e.

$$S_\infty^f(X; R) = \{x \in X : \lim_{h \in \mathbb{R}_+, h \rightarrow +\infty} T_{f,h} R^n x = 0 \quad \text{for all } n \in \mathbb{N}_0\}.$$

If $x \notin S_\infty^f(X; R)$ for any $R \in \mathcal{R}_D$ then x is said to be *not completely f -stable*.

PROPOSITION 3.1. Suppose that all conditions of Definition 1.2 are satisfied. Then D -polynomials are not completely f -stable independently of the choice of an $f \in H(\mathbb{C})$. In particular, constants different than zero (i.e. elements of $\ker D \setminus \{0\}$) are not completely f -stable.

Proof. By Proposition 2.1, D -polynomials are not f -stable. If $z \in \ker D \subset S$ then $T_{f,h} z = z$ for all $h \in (\mathbb{C})$, hence constants are not f -stable. If $u \in S$ then $R^n u \in S$ for all $n \in \mathbb{N}$. ■

PROPOSITION 3.2. Suppose that all conditions of Definition 2.1 are satisfied, $R \in \mathcal{R}_D$ is arbitrarily fixed and $f(h) = e^h$. Even if $\operatorname{Re} \lambda < 0$ for $\lambda \in v_{\mathcal{F}} R$, exponentials $(I - \lambda R)^{-1} z$ ($z \in \ker D$) are not completely f -stable with respect to R , provided that $z \in \ker D$ is not equal to zero.

Proof. If $\lambda = 0$ then the corresponding exponential is a constant. Hence, by Proposition 3.1, is not completely f -stable independently of R . Suppose

that $\lambda \neq 0$. Then the element $R(I - \lambda R)^{-1}z = \frac{1}{\lambda}[(I - \lambda R)^{-1}z - z]$ is not f -stable, even if $\operatorname{Re}\lambda < 0$, since constants different than zero are not f -stable. By an easy induction, we prove that elements $R^n(I - \lambda R)^{-1}z$ are not f -stable for all $z \in \ker D \setminus \{0\}$, $n \in \mathbf{N}$. ■

A consequence of Proposition 3.2 and Theorem 1.3(iii) is the following

PROPOSITION 3.3. *Suppose that all conditions of Definition 2.1 are satisfied, $f(h) = e^h$ and $R \in AQN(\ker D)$. Then elements $(I - \lambda R)^{-m}z$ are not completely f -stable with respect to R for all $z \in \ker D \setminus \{0\}$, $\lambda \in v_F R$, $m \in \mathbf{N}$.*

The proof is going on similar lines as that of Theorem 3.1 in PR [3], by an application of Lemma 2.1.

THEOREM 3.1. *Suppose that all conditions of Definition 2.1 are satisfied, $R \in \mathcal{R}_D$ and $f \in H_1$. Then the following conditions are equivalent:*

- (i) *the element y^o defined by Formula (3.5) is f -stable;*
- (ii) *$R^{M+N}y \in S_\infty^f(X; R)$;*
- (iii) *the characteristic roots $\lambda_1, \dots, \lambda_n$ of the polynomial $Q(t)$ belong to $St(f)$.*

P r o o f. By definition, we have

$$\begin{aligned} y^o &= [Q(I, R)]^{-1}R^{M+N}y = \sum_{j=1}^n \sum_{m=1}^{r_j} d_{jm}(I - \lambda_j R)^{-m}R^{M+N}y \\ &= \sum_{j=1}^n \sum_{m=1}^{r_j} d_{jm} \sum_{k=0}^{\infty} \binom{k+m-1}{m-1} \lambda_j^k R^{M+N+k}y. \end{aligned}$$

Hence for $h \in \mathbf{C}$

$$T_{f,h}y^o = \sum_{j=1}^n \sum_{m=1}^{r_j} e^{\lambda_j h} \sum_{k=0}^{\infty} q_{jm}^f(\lambda_h) \lambda_j^k R^{M+N+k}y,$$

where, by Lemma 2.2, $q_{jm}^f(t)$ are polynomials. We therefore conclude that $R^{M+N}y \in S_\infty^f(X; R)$ if and only if $\lambda_1, \dots, \lambda_n \in St(f)$. On the other hand, y^o is f -stable if and only if $R^{M+N}y \in S_\infty^f(X; R)$. ■

Theorems 2.2 and 3.1 together imply

COROLLARY 3.1. *Suppose that all conditions of Definition 2.1 are satisfied, $R \in \mathcal{R}_D$ and $f \in H_1$. Then the following conditions are equivalent:*

- (i) *all solutions of Equation (3.3) are f -stable;*
- (ii) *$R^{M+N}y \in S_\infty^f(X; R)$;*

(iii) the characteristic roots $\lambda_1, \dots, \lambda_n$ of the polynomial $Q(t)$ belong to $St(f)$.

Let F be an initial operator for D corresponding to an $R \in \mathcal{R}_D$. Consider Equation (3.3) together with the *initial conditions*:

$$(3.6) \quad FD^k x = x_k, \quad \text{where } x_k \in \ker D \quad (k = 0, 1, \dots, M + N - 1).$$

It is well-known that by the substitution

$$(3.7) \quad u = x - \sum_{k=0}^{M+N-1} R^k FD^k x = x - \sum_{k=0}^{M+N-1} R^k x_k$$

we reduce the problem (3.3)-(3.6) to the initial value problem with *homogeneous* initial conditions

$$(3.8) \quad FD^k u = 0 \quad (k = 0, 1, \dots, M + N - 1).$$

(cf. PR [1]).

Observe that solutions x of the problem (3.3)–(3.6) and u of the problem (3.3)–(3.8) differs each from another by a D -polynomial. This means that f 'stability of solutions to one of that problems does not necessarily imply the f -stability of solutions to another problem.

In a similar manner we can consider systems of linear equations with scalar coefficients

$$(3.9) \quad Dx_j - \sum_{k=1}^K a_{jk} x_k = y_j \quad (j = 1, \dots, K), \quad D \in R(X),$$

where $y_j \in X$, $a_{kj} \in \mathcal{F}$ ($j, k = 1, \dots, K$). Write

$$X^o = X^K = \underbrace{X \times \dots \times X}_{K \text{ times}}, \quad x = (x_1, \dots, x_K), \quad y = (y_1, \dots, y_K) \in X^o,$$

where $x_1, \dots, x_K, y_1, \dots, y_K \in X$,

$$(3.10) \quad A^o = (a_{jk})_{j,k=1,\dots,K}; \quad I^o = (\delta_{jk} I)_{j,k=1,\dots,K},$$

$$(3.11) \quad D^o = (\delta_{jk} D)_{j,k=1,\dots,K}; \quad R^o = (\delta_{jk} R)_{j,k=1,\dots,K},$$

$R \in \mathcal{R}_D$ and δ_{jk} denotes the KRONECKER symbol, i.e. $\delta_{jk} = 1$ if $j = k$ and 0 otherwise. Then the system (3.9) can be written as follows

$$(3.12) \quad P(D^o)x = A_1^o y,$$

where

$$(3.13) \quad A_1^o = \sum_{k=1}^{M+N} p_k \sum_{m=0}^{k-1} (A^o)^{k-1-m} (D^o)^m,$$

$P(t) = \sum_{k=0}^{M+N} p_k t^k = t^M Q(t)$ is the characteristic (minimal) polynomial of the matrix A^o , $D^o \in R(X^o)$, $R^o \in \mathcal{R}_{D^o}$ (cf. PR [1], Section 3.5). As a matter of fact, Equation (3.12) is of the same form, as (3.3). We therefore conclude that every solution of (3.12) is of the form

$$x = [Q(I^o, R^o)]^{-1}(R^o)^{M+N}A_1^o y + x^o, \quad \text{where } x^o \in \ker P(D^o),$$

$$x^o = \sum_{j=1}^n \sum_{m=1}^{r_j} (I^o - \lambda_j R^o)^{-1} z_{jm} + \sum_{m=1}^M (R^o)^{m-1} z_{0m}$$

with the additional condition that

$$(3.14) \quad (A^o - \lambda_j I^o)^m z_{jm} = 0, z_{jm} \in \ker D^o$$

$$(m = 1, \dots, r_j; j = 0, 1, \dots, n; r_0 = M).$$

(cf. PR [1], Theorem 3.5.1). This, and Theorem 3.1 together imply

COROLLARY 3.2. *Suppose that all conditions of Definition 2.1 are satisfied by the operators D and R , hence also by the operators D^o and R^o defined by Formulae (3.11). Let $\{T_{f,h}\}_{h \in \mathbb{C}}$ be a family of functional shifts for D induced by a function $f \in H_1$. Let Condition (3.14) be satisfied. Let A_1^o be defined by Formula (3.13). Then the following conditions are equivalent:*

- (i) *all solutions of the system (3.8) are f -stable;*
- (ii) $(R^o)^{M+N} A_1^o y \in S_\infty^f(X^K; R)$;
- (iii) *all roots of the characteristic polynomial of the matrix $(a_{jk})_{j,k=1,\dots,K}$ belong to the set $St(f)$.*

Acknowledgment: The author is very grateful to Professor Jan RUGŁSKI for his valuable and helpful comments and suggestions concerning the presented results.

References

- B[1] Z. Binderman, *Cauchy integral formula induced by right invertible operators*, Demonstratio Math., 25 (1992), 671–690.
- B[2] Z. Binderman, *Functional shifts induced by right invertible operators*, Math. Nachrichten, 157 (1992), 211–214.
- B[3] Z. Binderman, *Applications of sequential shifts to an interpolation problem*, Collect. Math., 44 (1993), 49–59.
- B[4] Z. Binderman, *A unified approach to shifts induced by right invertible operators*, Math. Nachrichten, 161 (1993), 239–252.
- B&PR[1] Z. Binderman and D. Przeworska-Rolewicz, *Almost quasinilpotent operators and functional shifts*, Math. Nachrichten (submitted to print).
- B&PR[2] Z. Binderman and D. Przeworska-Rolewicz, *Limit property and perturbations of functional shifts*, (submitted to print).

- PR[1] D. Przeworska-Rolewicz, *Algebraic Analysis*, PWN-Polish Scientific Publishers and D. Reidel, Warszawa-Dordrecht, 1988.
- PR[2] D. Przeworska-Rolewicz, *Spaces of D -paraanalytic elements*, Dissertations Math. 302, Warszawa, 1990.
- PR[3] D. Przeworska-Rolewicz, *True shifts*, J. Math. Anal. Appl. 170 (1992), 27-48.
- PR[4] D. Przeworska-Rolewicz, *Stability of non-homogeneous linear systems*, In: *Parametric Optimization and Related Topics III*, Lang, Frankfurt/Main, 1993, 437-445.

INSTITUTE OF MATHEMATICS
POLISH ACADEMY OF SCIENCES
Śniadeckich 8,
00-950 WARSZAWA, POLAND
E-mail: ROLEWICZ@IMPAN.IMPAN.GOV.PL

Received April 18, 1994.