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1. Introduction 
This work was intended as an attempt to find analogues of the results 

obtained by Bunch, Demmel and Van Loan (see [6]). Instead of normwise 
approach we use a componentwise way of measuring the size of the pertur-
bations in data. 

An algorithm for solving linear equations Ax = b is said to be nu-
merically stable if it gives a computed solution x satisfying a relation 
(A + E)x = 6 with ||.E|| of order f | |£| | , where c is the relative computer 
precision. If all |e , j | are of order e|a.,j|, then an algorithm is numerically 
stable in a componentwise sense. 

Note that the componentwise stability property may be achieved by the 
use of iterative refinement techniques performed only in single precision. For 
more details we refer the reader to [1], [3], [4], [12] and [14]. 

We will say that an algorithm for solving linear equations is strongly 
stable for a class of matrices A if for each A the computed solution x 
to Ax = b satisfies Ax = b, where A £ A and A is close to A (see [5]). 

Bunch, Demmel and Van Loan (see [6]) show that if A is symmetric and 
(A+E)x = b, x ^ 0, then there exists F = FT such that (A-\-F)x = 6, where 
||F||2 < | |£||2 and | | £ | | F < \/2\\E\\F. In other words, any stable algorithm 
on the class of nonsingular symmetric matrices is also strongly stable on the 
same matrix class. D. J. Higham and N. J. Higham (see [11]) prove that no 
such result holds when the perturbations E are measured indyvidually, i.e. 
\E\ < c|i4|. See [11] where a detailed discussion of these concepts may be 
found. Note that a matrix is the matrix whose elements are |a{,j| and 
we write |A| < |5 | to mean that |a t )j | < 16^1 for all i, j. 
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In some numerical applications ([1], [6] and [11]) it is important that the 
perturbed matrix A+E has the same structure as A. When the perturbations 
E are measured indy vidually, then zeros in A force zeros in the corresponding 
entries of the perturbed matrix A + E. Symmetric positive definite systems 
or diagonally dominant matrices are the most frequently occuring classes 
of structured linear systems. Bunch, Demmel and Van Loan (see [6]) prove 
that any stable algorithm on the class of symmetric positive definite matrices 
or on the class of symmetric diagonally dominant matrices is also strongly 
stable on the same matrix class under suitable assumptions. The goal of this 
paper is to obtain similar results using the componentwise approach. 

Section 2 deals with the case of diagonally dominant matrices. In sec-
tion 3 we prove that stability in a componentwise sense implies the strong 
componentwise stability on the class symmetric positive definite matrices. 

2. Diagonally dominant matrices 
A matrix A € R n x n is diagonally dominant if 

(1) |a«,i| > J ^ K i l for J = l , . . . , n . 

T H E O R E M 2 . 1 . Assume that A £ R " x n is symmetric and diagonally domi-

nant. I f ( A + E ) x = b, where |£| < t\A\ andx ^ 0 , then there exists a matrix 

F = FT e Rnxn such that ( A + F ) x = b and |F| < 3e\A\. 

P r o o f . It is sufficient to show that there exists a symmetric matrix F 
such that Ex = Fx and |F | < 3t|/l | . Consider two cases. 

Case (i): Assume that 

(2) |*!| < |®2| < . . . < |®n|. 

Let f \ , \ =
 e i , i and f i , j = € i j for i = 1 , . . . , n and j = i + 1 , . . . , n. We need 

to determine /¿^ for i = 2 , . . . , n so that 
i—l 

(3) fi,iXt — ^ 
3 = 1 

If £,• = 0, let f i t i = 0 (from (2) we have xi = x2 = . •. = = 0). Suppose 
Xi 0. Let 

x 
( 4 ) k i = ei,i + - e 3 , i ) ^ -

3 = 1 X i 

All that remains is to show that j/j^l < 3€|aj)t|. Since | < «laijl for all 
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i, j and \xj\ < |ij| for j = 1,2, . . . , i — 1, hence 
i - i 

(5) |/i,i| < «|a<,i| + 2c^|a i i j |. 
j=l 

By (1) we finally get \fiti\ < 3c|aiit-|. 

Case (ii): Assume that 

(6) |? P l|<|? P 2|<. . .<|x p „| 

for some permutation {pi,p2, • • • ,Pn} of {1 ,2, . . . , n}. 
Let P be the permutation matrix such that PT = [e P l , . . . , ep J . 
Then P[xu x2,..., xn]T = [xpl, x P 2 , . . . , xPn]T. Let 

x = [ X P 1 , X P 2 , . . . , X P J T , A = PAPT, E = PEPT and b = Pb. 

Clearly the matrix A is symmetric and diagonally dominant and for all i, j 

(7) aitj = aPiiPj. 

We see that x satisfies a relation {A + E)x = 6, where \E\ < f|/l| and 

(8) |xj| < |x2| < . . . < |in|. 

Consequently, we see that there exists a matrix F = FT G Rnxn such that 
(A + F)x = b, where \F\ < 3e\A\. 

Let F = PTFP. Then F is symmetric and {A + F)x = b. It is readily 
seen that \F\ < 3c|.F*!^|11= 3«|yl|. This completes the proof. • 

We can use the similar arguments to prove the following theorem. 

THEOREM 2.2. Assume that A € R N X N is symmetric and satisfies 

(9) |oi,il < 7K.-I» i,j = l,...,n. 

If (A + E)x = 6, where \E\ < (|A| and x / 0, then there exists a matrix 

F = FT £ R n x n such that (A + F)x = b and \F\ < (2(n - 1 ) 7 + l)e\A\. 

P r o o f . All that remains is to show that /,-)t defined by (4) satisfy the 
inequalities 

(10) |/ i , i |< (2 (n - l ) 7 + l)e|ai,i|. 

This is because |/,)t| < c|<zjjt-1 + 2e^(i — l^a^ l for all i = 2 , . . . , n, which 
obviously proves (10). • 

COROLLARY. In Theorem 2.1 suppose that 

(11) |a,-, ,|( l-3e)>( l + 3£ )2|a i , i | for i = 1, . . . , n. 

Then the perturbed matrix A + F is symmetric and diagonally dominant, m 
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We see that stability in a componentwise sense implies the strong com-
ponentwise stability on the class symmetric diagonally dominant matrices. 

3. Symmetric positive definite matrices 
Suppose now that A — AT € R n x n is positive definite, i.e. xTAx > 0 for 

all nonzero x € R n x n . The following theorem is an immediate consequence 
of Theorem 2.2. 

THEOREM 3.1. Assume that A £ Rnxn is symmetric positive definite and 
{A + E)x = b, where \E\ < e|A| and x ^ 0, then there exists a matrix 
F= FT <= R n x n such that (A + F)x = b and |F | < (2n - l)e|A|. Moreover, 
if A is a band matrix with bandwith w then |F | < (2w — l)e|A|. 

P r o o f . The proof is similar in spirit to [7]. It is well known that if 
A € R n x n is symmetric positive definite, then 

(12) o f j < a^ajj for i, j = 1 , . . . , n. 

Let D = diag(aL a2 ^ •> • • • •> a n ] I 2 ) - We use the transformation: 

A = DAD, E = DED, b = Db and x = D~lx. 
Then the main diagonal elements of A are all equal to 1 and | a j j | < 1 for 
all i, j. We see that x satisfies a relation (A -f E)x = 6, where \E\ < f\A\. 
Consequently, from Theorem 2.2 we conclude that there exists a matrix 
F = FT e R n x n such that (A + F)x = b, where \F\ < (2n - l)c|A|. 

Let F = D^FD'1. Then F is symmetric and (A + F)x - b. It is readily 
seen that |F | < (2n - l )e |D^WAWD^l = (2n - l)c|/l | . The second part of 
Theorem 3.1 follows from Theorem 2.3. This completes the proof. • 

One question still unanswered is: "When does a symmetric perturbation 
A + F of a symmetric positive definite matrix A remain positive definite?" 
We first establish a relation between the eigenvalues of matrices A and A+F. 

If A € R n x n is a symmetric matrix, then we let Aj(A) denote the i-th 
largest eigenvalue of A. Thus, 

A i ( A ) > A 2 ( A ) > - - - > A„(A). 
It is well known that each eigenvalue of A satisfies the following "min-

max" characterization (see [9], [15]): 

THEOREM 3.2 (Courant-Fischer). If A = AT € R n x n then for i = 
1 , 2 , . . . , n 

Ax 

(13) Aj(A) = max min —=—. 

Now we can prove the following theorem. 
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T H E O R E M 3 .3 . I f A £ R n x n is a symmetric positive definite matrix and 

F = FT € Rnxn then for i = 1 , 2 , . . . , n 

where p( ) denotes the spectral radius. 

P r o o f . The Courant-Fischer theorem implies that 

( 1 5 ) A i { A + F ) = m a x m i n x T ( A + F î x . 

Since xTAx > 0 for 0 ^ x £ X, we have 

, x x T ( A + F ) x x T A x / t x T F x . 
( 1 6 ) + 

vu Ju JJ Jb tJu / i i ( / 

It is easy to check that 

xT Fx xT Fx 

xTAx xTx ' 

where we defined x = A l / 2 x and F = A~x!2FA~1!2. Note that F is sym-
metric, hence 

K ( F ) < XZ.^ < A 1 ( F ) . 
x1 x 

We observe that F is similar to A-1F, because F can be expressed as 
F = Axt2{A~lF)A~1!2, hence p ( F ) = p{A~lF). From this we conclude 
that 

_ p[A~xF)) <
 xT{AJtF)x < ̂ d + K A - * F ) ) . 

«(/ X X U/ 

This together with ( l ) - (2 ) imply 

\ i ( A ) ( l - p{A~lF)) < Xi(A + F ) < A , - ( .4) ( l + p i A - ' F ) ) , 

which completes the proof. • 

COROLLARY. In Theorem 3 . 1 suppose that 

( 1 7 ) ( 2 n - l ) e p ( \ A - l \ \ A \ ) < l . 

Then the Perron-Frobenius theorem implies that 

(18) p(A~1F) < ^ ( l / T ^ F I ) < (2n - l M l A ^ p l ) < 1. 

In other words, if (2n —l)f / j ( |A - 1 | | .4 | ) < 1 then the perturbed matrix A + F 
is symmetric positive definite. • 

We see that stability in a componentwise sense implies the strong com-
ponentwise stability on the class symmetric positive definite matrices. 
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Theorem 3.3 is very similar to a result of Demmel and Veselic (see [16], 
[17]). The bound in (14) is only little sharper. 
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