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A NOTE ON THE STRONG COMPONENTWISE STABILITY
OF ALGORITHMS FOR SOLVING
SYMMETRIC LINEAR SYSTEMS

1. Introduction

This work was intended as an attempt to find analogues of the results
obtained by Bunch, Demmel and Van Loan (see [6]). Instead of normwise
approach we use a componentwise way of measuring the size of the pertur-
bations in data.

An algorithm for solving linear equations Az = b is said to be nu-
merically stable if it gives a computed solution z satisfying a relation
(A+ E)T = b with ||E|| of order ¢||E]|, where € is the relative computer
precision. If all |e; ;| are of order €la;;|, then an algorithm is numerically
stable in a componentwise sense.

Note that the componentwise stability property may be achieved by the
use of iterative refinement techniques performed only in single precision. For
more details we refer the reader to [1], [3], [4], [12] and [14].

We will say that an algorithm for solving linear equations is strongly
stable for a class of matrices A if for each A € A, the computed solution Z
to Az = b satisfies AZ = b, where A € A and A is close to A (see [5]).

Bunch, Demmel and Van Loan (see [6]) show that if A is symmetric and
(A+E)T = b,Z # 0, then there exists F = FT such that (A+F)Z = b, where
|Fllz < ||E|l, and ||E||r < V2||E||F. In other words, any stable algorithm
on the class of nonsingular symmetric matrices is also strongly stable on the
same matrix class. D. J. Higham and N. J. Higham (see [11]) prove that no
such result holds when the perturbations E are measured indyvidually, i.e.
|E| < €|A|. See [11] where a detailed discussion of these concepts may be
found. Note that a matrix |A| is the matrix whose elements are |a; ;| and
we write |A| < |B| to mean that |a; ;| < |b; ;| for all 4, 5.
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In some numerical applications ([1], [6] and [11]) it is important that the
perturbed matrix A+F has the same structure as A. When the perturbations
E are measured indyvidually, then zeros in A force zeros in the corresponding
entries of the perturbed matrix A + E. Symmetric positive definite systems
or diagonally dominant matrices are the most frequently occuring classes
of structured linear systems. Bunch, Demmel and Van Loan (see [6]) prove
that any stable algorithm on the class of symmetric positive definite matrices
or on the class of symmetric diagonally dominant matrices is also strongly
stable on the same matrix class under suitable assumptions. The goal of this
paper is to obtain similar results using the componentwise approach.

Section 2 deals with the case of diagonally dominant matrices. In sec-
tion 3 we prove that stability in a componentwise sense implies the strong
componentwise stability on the class symmetric positive definite matrices.

2. Diagonally dominant matrices
A matrix A € R™"® is diagonally dominant if

(1) laiil > > laijl fori=1,...,n.
J#i
THEOREM 2.1. Assume that A € R"™*" is symmetric and diagonally domi-

nant. If (A+ E)Z = b, where |E| < €|A| and T # 0, then there ezists a matriz
F = FT € R™"® such that (A + F)Z = b and |F| < 3¢/A|.

Proof. It is sufficient to show that there exists a symmetric matrix F
such that EZ = FZ and |F| < 3¢|A|. Consider two cases.

Case (i): Assume that
(2) |Z1] < 172 < ... < (7l

Let figs =e1pand f;j=e€;jfori=1,...,nand j=1¢4+1,...,n. We need
to determine f; ; for : = 2,...,n so that

i—1

(3) fiiTi = €T + Z(ei,j - €;,i)T;.
i=1

If z; =0, let f;; =0 (from (2) we have Z; = Z, = ... = T;—; = 0). Suppose
z; # 0. Let

i—-1 ~

7.
(4) Jii=eii+ E (ei,; — ej,i)‘:,i:,_{-
i=1 i

All that remains is to show that |f; ;| < 3e|a;;|. Since |e; ;| < €]a; ;| for all
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i,j and |Z;| < || for j =1,2,...,i—1, hence
i-1
(5) |fiil < eaii] +2¢ ) Jail.
, =

By (1) we finally get |fi| < 3¢|ai .
Case (ii): Assume that
(6) |Zp,| < [Zp,| < -0 < |2, ]

for some permutation {py,pz,...,pn} of {1,2,...,n}.
Let P be the permutation matrix such that PT =[e,,,..., e, ].
Then P[il, 52, ‘e ,En]T = [51,1, Epz’ .. .,Epn]T. Let

£ = [Zp1,%pgr-+-rZp, )T, A= PAPT, E=PEPT and b= P

Clearly the matrix Ais symmetric and diagonally dominant and for all ¢, 5

(7) aij = Qp;,p;+
We see that 7 satisfies a relation (A + E)E = b, where |E| < ¢|A| and
(8) 21| <[22 < ... < |2l

Consequently, we see that there exists a matrix F = FT ¢ R™ such that
(A + F)z = b, where |F| < 3€|AI

Let F = PTFP. Then F is symmetric and (A + F)ZT = b. It is readily
seen that |F| < 3¢|P|T|A||P| = 3¢|A|. This completes the proof. m

We can use the similar arguments to prove the following theorem.

THEOREM 2.2. Assume that A € R™" is symmelric and salisfies
(9) Iai,j' S7|ai,il, ’i,j_—‘ 1’-"an
If (A+ E)T = b, where |E| < ¢|A| and T # 0, then there exists a matriz
F = FT ¢ R™" such that (A+ F)Z = b and |F| < (2(n — 1)y + 1)€|A|.

Proof. All that remains is to show that f;; defined by (4) satisfy the
inequalities
(10) [fiil € (2(n — 1)y + 1)efai .

This is because |f; ;| < €|a;i| + 2ey(i — 1)|a; ;| for all ¢ = 2,...,n, which
obviously proves (10). m

COROLLARY. In Theorem 2.1 suppose that
(11) laiil(1-3¢) > (143¢) ) ai| fori=1,...,n

i

Then the perturbed matriz A + F is symmetric and diagonally dominant. =
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We see that stability in a componentwise sense implies the strong com-
ponentwise stability on the class symmetric diagonally dominant matrices.

3. Symmetric positive definite matrices

Suppose now that A = AT € R™*" is positive definite, i.e. 2T Az > 0 for
all nonzero z € R"*". The following theorem is an immediate consequence
of Theorem 2.2.

THEOREM 3.1. Assume that A € R"™*" is symmetric positive definite and
(A+ E)z = b, where |E| < €|A| and T # 0, then there ezists a matriz
F=FT¢ R“"“ such that (A + F)z = b and |F| < (2n — 1)e|A|. Moreover,
if A is a band matriz with bandwith w then |F| < (2w — 1)e|A|.

Proof. The proof is similar in spirit to [7]. It is well known that if
A € R™" is symmetric positive definite, then

(12) a?j <a;a;; fori,j=1,...,n
Let D = diag(a,, 1/2, a, ;/2, ..,a;,ln/z). We use the transformation:

A=DAD, E=DED, b=Db and %=D7'%
Then the main diagonal elements of A are all equal to 1 and |a;, ]| <1 for

all ¢, j. We see that T satisfies a relation (A + E)a: = b, where |E| < e|A|
Consequently, from Theorem 2.2 we conclude that there exists a matrix
F = FT ¢ Rox such that (A + F)Z = b, where |F| < (2n — 1)¢A|.

Let F = D=F D=1, Then F is symmetric and (A+ F)z = b. It is readily
seen that |F| < (2n — l)eID‘1||;1\||D‘1| = (2n — 1)¢|A|. The second part of
Theorem 3.1 follows from Theorem 2.3. This completes the proof. =

One question still unanswered is: “When does a symmetric perturbation
A + F of a symmetric positive definite matrix A remain positive definite?”
We first establish a relation between the eigenvalues of matrices A and A+ F'.

If A € R™" is a symmetric matrix, then we let A;(A) denote the i-th
largest eigenvalue of A. Thus,

A(A) > Aa(A) > -+ 2 Aa(A).
It is well known that each eigenvalue of A satisfies the following “min-
max” characterization (see [9], [15]):

THEOREM 3.2 (Courant-Fischer). If A = AT € R™" then for i =
1,2,...,n

. zT Az
(49 MA) = il TTe

Now we can prove the following theorem.
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THEOREM 3.3. If A € R"™*" is a symmelric positive definite matriz and
F = FT ¢ R™" then fori=1,2,...,n
[Ai(A + F) = Ai(A)]
Ai(A4)

where p( ) denotes the spectral radius.

(14) < p(A7'F),

Proof. The Courant-Fischer theorem implies that

T
(15) Ai(A+ F)= max min z_(_ATii)f
dim(X)=i 0#z€EX Tz
Since zTAz > 0 for 0 # = € X, we have
tT(A+ F)z zTAx T Fz
(16) zTz 2Tz (1+ :cTAz)'

It is easy to check that

zTFz _ iTF3

tTAz ~ 277 °
where we defined 7 = A/2z and F = A~1/2FA~1/2 Note that F is sym-
metric, hence

~T T~

~ ! Fx ~
An(F) < T3 < M (F).

We observe that F is similar to il'lF , because F can be expressed as
F = AY?(A71F)A~1/2  hence p(F) = p(A~'F). From this we conclude
that
T Az
2Tz
This together with (1)-(2) imply
Ai(A)(1 = p(ATIF)) S M(A+ F) < M(A)1 + p(ATIF)),

which completes the proof. =

T T
TP T AT 4 a7 ).

(1-p(A1F)) <

Tz

COROLLARY. In Theorem 3.1 suppose that

(17) (20— Dep(JA~14]) < 1.
Then the Perron—Frobenius theorem implies that
(18) p(ATIF) < p(JATHIF)) < (2r - 1)ep(|A7H|A]) < 1.

In other words, if (2n —1)ep(JA™}|]A}) < 1 then the perturbed matrix A+ F
is symmetric positive definite. m

We see that stability in a componentwise sense implies the strong com-
ponentwise stability on the class symmetric positive definite matrices.
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Theorem 3.3 is very similar to a result of Demmel and Veselié (see [16],

[17]). The bound in (14) is only little sharper.
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