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SOME RESULTS OF ANALYSIS
IN THE NORMED ALGEBRAS

This paper concerns some problems of analysis in the normed (complex
or real) algebra X.

The main tool in the investigations of the functions in complex commu-
tative Banach algebras with unity is the Gelfand theory of maximal ideals
(see [1], [3]). Developing this idea E. R. Lorch in [3] put forward the question
when in algebra X, the following conditions are equivalent:

(1) differentiability of the function (in the sense defined by Lorch),

(2) vanishability of the line integral of the function along the closed
curve,

(3) power series expansibility of the function.

This paper includes, in particular, some proposal of the method of solu-
tion of this problem without using Gelfand theory.

The presented theory is based on two ideas:

— derivative of the function and, consequently, the primitive function as
a map from X to X, (chapter 2);

— surrounding subsets of the X by closed curves, (chapter 5).

Main results of this paper are parallel to the Cauchy—-Riemann equations,
Cauchy-integral theorem, Cauchy-integral formula, Taylor and Laurent se-
ries expansions, Morera and Liouville theorems.

1.Introduction

Let X be a normed algebra (commutative or non-commutative) over
the field & (C or R). We will use the following denotations: by N-set of
all natural numbers, Ng := NU {0}. For z € X and r > 0 by B(z,r) we
will denote as usual the open ball with the centre z and the radius r. By
6-f(h) we will denote directional derivative of the function f at a point z
in the direction h; f’(z)-Frechet’s derivative at a point z. For z¢, z, € X,
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Ty # 1 by (o, 1) we will denote the segment {zo +t(z; — o) : t € (0,1)}.
Analogously we define the segments (zo,z1), (¢, 1) and (zg, z3).
Now let us define

L:={x€X: /\ zy;éO}, fora € Ry
i 0#yeX

1*:={zeX: \ allX|l lyll < lloy]} and L := L2\{0}.
yeEX
From the definitions there follows immediately

LEMMA 1.1. For any a > 0 the set L® is closed and L§ C L; fora > 1
L3 =0 and if 0 < a; < a2, then L% C L™.

We introduce the following notation: L* = {J,,, L%, Ly = L*\{0},

aj=supf{a:Ly #0} andfor z€L; P,=sup{a:z€ Lg}.

Later on we will often consider the sets D C X satisfying the following
property:
(*) ifreD and 0#te€ K, thentz € D.

It is clear that if the set D and the sets of the family {D,} have property
(%), then |J D, (1 D5 and X\ D also possess (*).

It is also clear that L§ C L and the sets L®, L§, L* and Lg have prop-
erty ().

LEMMA 1.2. (a) If zo € L§ for some a > 0, then for every € > 0 there
ezists such a number b, > 0 that B, := B(zg, M) C LS‘.

14¢
(b) Ifz € L§ and b € (0,a), then B(z, 233||z||) C L§.

Proof. Let us takee > 0 and z¢ € B.. By 1.1 a € 1, hence

al|zol|
1 - < — .
(1) llz1 — zoll 1te < ||=oll

Since z¢ € L§, so for z,y € X

allzol| lyll < llzoyll < lI(zo — z)yll + lizyll < llz - zoll lIyll + ll=9ll-
Therefore for z # 0

al|zo|| — [Iz — 2ol

llzl

(2) bellzl| lyll < llzyll,  where by =

It follows from (1) that x; # 0 and

5 dlzoll _ __allzoll  _ allzoll e
Tl @t e)llmll  flzall 1+e

b
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Since ||z1]| < ||z1 — @ol| + |||, then from (1) we obtain bz, > Fzt7s =

be > 0. Hence and from (2) it follows that z; € Li¢. For the proof of (b) it
is enough to put € = %’l

1.3 COROLLARY. Ifz € L§, then B(z,al||z|}) C Lg.

Thus, if z € L§, then B(z, P;||z||) C Lg. From 1.2 and 1.3 we get the
following

1.4 THEOREM. The set Lj is open. If a,, > 0 for n € N and lima, = 0,
then Ly = U, Int Lg™ = {J,5¢ Int L§.

An element of the set X\L* will be called a divisor of zero. Element
z € X, z # 0 will be called a topological divisor of zero if there exists such
a sequence (z,) in X that ||z,|| =1 for » € N, and lim, o 2z, = 0.
From the definitions of the sets: Lg, L* and L there follows

LEMMA 1.5. No topological divisor of zero lies in L and every element
of the set X\ L*is a topological divisor of zero. L\L* is the set of topological
divisors of zero which are not the divisors of zero.

Indeed, if z € L§ and ||z,|| = 1, then ||zz,|| > P:lz|| > 0. z € X\L*
implies that z ¢ L!/™ for any n € N. Therefore there exists a sequence

(yn) C X such that ||y,|| = 1 and ||zyn|| < liz]|/n. Hence lim, o 2y, = 0.
The last part of the statement follows from the definition of the set L.

1.6 THEOREM. Ifdim X < oo, then Ly = L.

Proof. Let z € L\L§ and S; = {z € X : |[z|]| = 1}. Then there
exists a sequence (z,) C S; such that limzz, = 0. The compactness of
S1 implies the existence of subsequence (z,,) convergent to zo € S;. Then
0 =limzz,, = zzo, thusz ¢ L.

1.7 ExaMPLES. (a) Fix n € N. Let X denote an algebra in R" over
field R. Then there exist two-linear mappings a; : X* - R,k =1,2,...,n,
such that for any z = (2:)l.1, ¥ = (¥;)7=1 € X 2y = (ar(z,9))i=; =
(X5 bi(2)y;)r_,, where bl(z) = Y, alz; and ¢ € R. Let B(z) =
det[bi(z)]j,ks,l. It is obvious that

n
B(z) = B(z1,23,...,25) = Z TiTiy ... Ti, det[a;"k]j,kgn
il,...,in=1
and L = {z € X : B(z) # 0}. From 1.6 L = L}. B(z1,...,z,) is a
homogeneous polynomial, and we can factorize it, explicitly up to a constant
coefficient, as the prime homogeneous polynomials:

B(zy1,...,2z,) = F{'(21,...,2,) ... F&™ (zq,...,2,),
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where d; = deg F' ;l". Therefore X'\ Lj is the union of the hypersurfaces de-

fined by the equations Fin’(zl,...,a:n) = 0. The analogous result will be
obtained taking X = C".

(b) Let X be a commutative algebra C(0,1) of real functions continuous
on the interval I = (0, 1), over field R. Taking N(z) = {¢t € I : z(t) = 0} for
z € X, we conclude that L is the set of those z € X for which N(z) is a
boundary set. For a > 0, L° is the set of z € X of the form z = szg, where
s€ER,z0 € X, ||zo]| =1 and m}n |z(t)| > a. Consequently, L = {z € X :

mIinIx(t)l > 0}.

2. Derivative

Let Ly # 0, and let us fix any ¢ € Lg, [|¢|| = 1. Element y € X will be
called lc-inverse (left-hand-c-inverse) of z € X if zy = c. The set of point
z € X for which there exists an lc-inverse element will be denoted by r;(c).

Let L} := L NnIntri(c) # 0 and for @ > 0 L2 := L N Intr(c).

The sets r/(c), L; and L% have property (*). For every € L7 there exists
only one lc-inverse element A'(z). Therefore we have defined a mapping A!
on L}. For every z € L, we get obviously the inequality

l T

z'” I

LEMMA 2.1. For any a > 0 there exists b, > 0 such that
(1) A(LS) C Ly
Thus, in particular, AY(L2) C L.

Proof. If A does not have property (1), then for any a > 0 there exists a
sequence (z,) C L2, ||z,|| = 1, such that y, = Ai(z,) € X\L%/" for n € N.
Thus there exists z, € X such that ||z,]] = 1 and ||ynzal| < &|lyall < L
Hence ||cz|| = [|a(ynzn)ll < L — 0, hence which implies that ¢ is a
topological divisor of zero (see 1.5) and, consequently, ¢ & Lg.

Let us take an arbitrary z € X, r > 0 and a function f defined on the
set K(z,7) = (B(z,7)N (L% + z))U {z} with values in X.

If for an arbitrary a € (0, a;) there exist the limits

lim A (h)(f(z + k) - f(2))

L23h—0

then by 1.1 these limits are equal for all a. Their common value will be
denoted by D f(z) and called an lc-derivative of the function f at the
point z.
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If f has the lc-derivative at each point of the set M C X, then the
mapping Dy, : M 3 z — D, f(z) will be called the lc-derivative of the
function f on M.

For n € Ny we define the lc-derivative of order n of the function f as
follows: DY.f = f, D1 f = ch(D}Z"lf) for n > 0.

2.2 THEOREM. For every z € X

(a) if there ezists Dy f(z) and for some h € L} there exists é; f(h), then
Dicf(z) = Ay(h)b=f(h);

(b) if there exists Di.f(z) and c is the unity in X (ie. cz = zc = 2
for every z € X), then for every h € L} there exists 6, f(h) and Dy f(z) =
A (h)osf(h).

Proof. Let 0 # t € K, h € L} and I(t) := t~1(f(z + th) — f(z)).
Therefore th € LP and Dy f(z) = limio AL(th)(f(z + th) — f(z)) =
lim,_,o AL(R)I(t) = AL(R)é-f(h). If h € L%, then for some a > 0 AL(h) :=
z € L§. As c is the unity, so zh = ¢, and

0 = lim [121(t) ~ zh Dief(@)I| 2 allzl|lim [11(t) ~ D S ()]l

2.3 THEOREM. If the function f has the Fréchet derivative f at some
point z and

(1) AR (k) = d
does not depend on h € L%, then f has the lc-derivative at the point ¢ which
is equal to d, and ||Di.f(2)|| < a7 Y| FL))-
Proof. Let R(z,h) = f(z+ h)— f(z)— bz f(h). From (1) for h € L% we
obtain ‘
(2) A (f(z + h) = f(z)) - d = A(h)R(z, h).

Let us suppose that h € L? for any fixed a € (0,qa;). From (2.1) we have:

AL Bz, I < o B Rz, R0,

Thus, it follows from (2) that d = D;.f(z) and || Di.f(2)|l = |AL(R)é= F(R)]|
< 1£2I IBlla=[[Afl=". Hence || Dicf(2)|| < a; | £2]I-

The set L% is open, thus includes a ball. Therefore, there exists a Hamel-
basis H = {h,} of the space X such that H C L%. Let us fix such the basis.
From 2.2 and 2.3 there follows

2.4 THEOREM. (a) If the function f has the lc-derivative at the point
z € X and the directional derivative in direction hy,hy € H, then

(2.2) A(hs)b-f(hs) = AL(ht)b2f(he) :=d
andd = Di.f(z).
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(b) If ¢ is the unity of an algebra X (or X is a commutative algebra)
and if the function f has the Fréchet derivative at the point z, and for any
hsyht € H the equations (2.2) hold, then f has the lc-derivative equals d at
the point z.

The equations (2.2) are equivalent to Cauchy-Riemann equations.
If the function f has the lc-derivative at the point z, then it does not
have to be continuous there. However, we have the following

LEMMA 2.5. If f has the lc-derivative at the point z, then for any a €
(0, a;) there ezist such positive numbers r, and G, that for h € B(0,r,)N L%
(| f(z + k) — f(z)|| £ G.|lk|| is satisfied.

Proof. For a € (0,a) let us choose b, such that for h € L* Al(h) € L=
(sce 2.1). Applying (2.1) we get : |f(z +h) — f(z)]| < b3 [ AL(R)(F(z + h)
f(2)|l l|B||- The existence of the lc-derivative of the function f at the point
z implies that for some 7, > 0 and h € B(0,r,) N L2 we obtain:

12 ([ Ac(h)(f(z + h) = f(2)) = Dicf(2)
> [|4c(h)(f(z + k) = f(@))l| = 1 DicSf(2)]I-
We take G, = b7 1(|| Dicf(2)|| + 1); the proof is completed.

We can prove that if X is commutative and if f has the lc-derivative
bounded in the domain M C X, then f is continuous on M.

A function f will be called strong lc-differentiable of order n € N
in the set M C X, if it has the lc-derivative of order n and the Fréchet
derivative of order n in M. The set of such functions will be denoted by
HE(M), Hie(M) means H}, (M) and H{2(M) := e, HR(M).

LEMMA 2.6. If the set M C X possesses the property () and contains a
ball, then there ezists such a number G > 0 that for any 21,22 € X, z1 # 2,
and for some y € (zy + M) (22 + M) the inequalities ||z; — y|| < G||21 — 22|,
1=1,2 hold.

Proof. 1. Let z; — 2y € M, then (z1,2) C 2z + M. Then taking y =
Hzi+ 22) weget y € (21 + M)N (224 M) and ||2; — y|| = 3||z1 — 22]|. Thus
we can take G = %— Similarly, when 2y — z, € M.

2. Let us now suppose that zy — z0 ¢ M. For some zg € M and r > 0
B(zo,7) C M. Let to := ||21 — 2|jr~!, then B(tozo,tor) C M. Therefore
B; := B(zi+tozo,tor) C z;+M fori = 1,2. Since ||(z1+toz0)—(22+t0x0)]| =
{21 — 22|| = tor < 2tor, thus there exists y € By N By. Then for i = 1,2 we
derive that:

ly — zill < lly — (zi + tozo)|| + |lzi + tozo — zil| < ||z1 — 22|l + tol|zo|

= (L+ flzolir™")ll21 = 2.
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Concluding, we can take G = 1 + ||zo||7 ™.

2.7 THEOREM. If D;.f = 0 in a certain domain M C X, then f is
constant on M.

The proof is preceded by two lemmas.

LEMMA 1. If D;.f(z) = O for certain z € X, then 6, f(h) = 0 for any
hel?.

Indeed, let us fix any h € LX. t # 0 implies that th € Lf». Thus, 0 =
Di.f(z) = lim¢—o AL(R)I(2), where I(t) = t~}( f(z +th)— f(z)). From 2.1 it
follows that z, := A(h) € L§ for some b > 0. Hence 0 = lim;_o ||zn I(£)]] >
bl zp|| im;—g || I(t)]], therefore 6. f(h) = 0.

LEMMA 2. Let B C X be a ball and o € B. Then if Di.f(z) = 0 for
everyz € Ky, := (B N(zo+ L2))U {zo}, then f is constant on K.

Proof. Let us take z; € K,, 21 # Zo. Then z;~z¢ € L% and (2o, 1) C
Kg,. Since B is open there exists the a segment (Zo,%;) C K, such that
(z0,21) C (Fo,%1) C K. From Lemma 1 we have that é,f(h) = 0 for
z € K, and h € L}. In particular é, f(z1 — z¢) = 0 for = € (Zo,Z;). Hence
it follows that f is constant on (Z,,Z;), thus f(zo) = f(21).

Proof of 2.7. Firstly let us suppose that M is a ball and let us choose
arbitrary zg,z1 € M. Then (zo,z;) C M. Let d := dist({zo, 1), Fr M) and
forze M K, =(Mn(z+ L2))U{z}.

Let us choose from the segment (z¢,z1) a sequence of points zp = zo,
Zyy.oos2n = 21 and y; € (2i + L2) N (2i41 + L) such that ||z; — 3]l <
G||zig1 — zi|| and G||zig1 — zi|| < d for t = 0,1,...,7n — 1, and some G > 0
(see 2.6). Then y; € M which gives that y; € K,, N K, .

From Lemma 2 it follows that for every £ € M f is constantly equal to
f(z) on K., consequently

f(zo) = f(yo) = f(z1) = f(y1) = - = f(yn—1) = f(z) = f(21).

Now let M be an arbitrary domain. For any z¢,21 € M there exists a
complete sequence of balls By, B,,..., B, contained in M that zy € B,
z1 € Bpand B;N Biyy #0 fori=1,2,...,n— 1. As in each of these balls
f is constant, f(zo) = f(z1).

Let M C X and let f be a function from M to X. Then a function
F from M to X is called lc-primitive of f on M if D, F(z) = f(z) for
T EM.

From 2.7, if the functions Fj, F, are lc-primitive of f on the domain
M C X, then Fy — F3 is the constant function on M.
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2.8 ExaMPLES. (a) For every linear mapping f : X — X, if there exists
Di.f(zo) := d at some zo € X, then D\ f(z) = d for any z € X, since
f € Hi(X).

(b) If X is an algebra C with unity e = 1, then for every a € (0,1) we
have L§ = L§ = ri(e) = C\{0}. The le-derivative of the function agrees with
the classical derivative. A class Hje(D) for D C C is the class of holomorphic
functions on D.

(c) Let X be an algebra in R? over field R, where for z; = (z1,¥;),
22 = (Z2,12) € X, 2122 := (2122 + Y1y, T1y2 + 2291 ). X Is a commutative
algebra (complex hyperbolic numbers, see [5]) with unity e = (1,0); L =
Lt = {(z,y) € R? : 2% # y?}. For a function f:z = (z,y) — (u(z),v(z)) of
X to X, equations (2.2) can be written in the form : uj = vy, uy = v,

(d) Let X be an algebra in C?over the field C, where for z; = (z}, y;),
J =12, 212 = (2122 — y1y2, 212 + Z291). X is a commutative algebra
with unity e = (1,0), L = L = {(z,y) € C? : 22 + y* # 0}. For a function
f:z=1(z,y) — (u(2),v(2)) of X to X equations (2,2) can be written in
the form: u, = vy, uj = —v;.

(e) In the example 1.7(b) we considered the algebra X = C(0,1) with
unity e. By a symbol (z(t)) let us denote a continuous function t — z(¢)
for t € (0,1). Notice that a mapping f : z — (f(: z(s)ds) from X to X
has not the le-derivative in any point. Indeed, this mapping is linear, for
z € X and for h € L¥ we have 6, f(k) = (f) h(s)ds) and AL(h)é,f(h) =
(h(t)1 fot h(s)ds) depends on h (see 2.2). In this algebra all functions p, :
z +— 2™ for n € Ny have the le-derivative and Dy.p,, = np, 1 for n € N.

3. Integral and primitive function

By a curve in an algebra X we understand a continuous mapping 7 of
the interval (a, ) C Rin X. Then (a, §) is called the parameter interval
of the curve v, 7(a) — the beginning, 7(8) — the end of the curve y. We
also will use the notation: v* = {y(¢) : t € (a,8)}. A curve v is called
regular, or a path, if it is of class Cy in the parameter interval. A point
z of a curve 7 is a said to be k-valent (k € N), if there exist exactly &
different numbers t;,1;, ..., from the interval parameter (a, 3) such that
z=7(t1) =7(t2) = ... = 7(tx). By the length of the path ¥ we mean the
number [y] = [7 |7'(8)] .

Let v : {a,8) — X be a pathin X and and let f be a continuous function
on 4" in X. The [l-integral of the function f over the path y we define as
follows: [ f(z)dz = [2+'(1)(7(1)) dt.

The last integral is the integral in the Riemann sense. Its existence follows
from the continuity of f. (See e.g. [4])
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Let Lg # 0 and let us fix any ¢ € Lg, ||c|]| = 1.

A path v is said to be correlated with L? at some point {; € (a, 3) if
¥(t) ~v(to) € L2U{0} for t taken from some neighbourhood of the point .
If v is correlated with L? at every point, at most except the finite number of
the elements of interval {a, §), then we will say that v is correlated with
Lg.

If v is correlated with L2 and b € (0,a), then 7 is correlated with L3.

We can formulate the following definition:

A path v will be called correlated with L} (at the point o) if there
exists a > 0 such that v is correlated with L (at the point tp).

Let M C X. Then by a symbol [(M) (resp. Ip(M)) we will denote a set
of paths (resp. closed paths) which lie in M and are correlated with LZ.

From these definitions it easily follows that if 4'(t) € L} for some ty €
(a, B), then 7 is correlated with L} at to.

If p,q € X, by the symbol p'g we will denote any curve where p and ¢
are the beginning and the end of one respectively.

LEMMA 3.1. If M C X is a domain, then for any p,q € M there exists
a path pq € (M).

Proof. Such a path can be constructed as in the proof of theorem 2.7.
Therefore we can uniformly approximate any curve lying in the domain
by the path correlated with L7.

LEMMA 3.2. If v is correlated with L} at the point ty € (a,B) and a
function F' has the lc-derivative at the point y(tp), then

d
S FD)le=to = 7'(t) DicF(7(t0))-
Proof. For any a > 0 and sufficiently small s # 0 we get A,y :=
v(to + 8) — v(to) € L2. Then
esT [F(v(to + 5)) ~ F(x(to))] = sT' Ay (DicF(1(to)) + ds),

where d, = AL(As7)[F(7(t0) + A57) — F(1(t0))] — Dic F(1(to)) for Ayy # 0
and d; = 0 for Ayy =0.1f s — 0, then A,y — 0 and d;, — 0.
Hence we obtain

3.3 THEOREM. If M C X is a domain and a continuous function f

has the lc-primitive function F' on M, then for any p,q € M and any path
pgel(M)

J 1(2)dz = e(F(g) - F(p))-

rq
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4. Integral theorems

Let us now suppose that X is an algebra with unity e. Obviously, e € L.
From 3.3 we have that if M C X is a domain and a continuous function f
has the le-primitive function F on M, then for any p € M

F(x)= [ f(z)dz+ F(p),
pzT
where 2 € M and pz € I(M).
The following set: A = A(z,y,2) = {ix + by + i3z : t1 +t3 + 13 =
1, t1,t2,t3 > 0} will be called a triangle of with vertices z,y,z € X,
T # y # z. A closed path v such that 4* is a polygonal line with the vertices
T, y, z is called the boundary of the triangle A and will be denoted by 0 A.

LEMMA 4.1. If the function f : B — X is continuous on the ball B C
X and [, , f(z)dz = 0 for a boundary dA € lo(B) of any triangle A C
B, then f has Fréchet differentiable function which is le-primitive in some
neighbourhood of any point of the ball B.

Proof. 1) Let p€ B, K := BN(p+ L%) and let F,(z):= f(p,x) f(2)dz,
for each z € B. For any z € K, there exist b,7 > 0 such B(z,r) C BN(p+L%)
(see 1.4). Forany a > Olet h € L% and ||h|| < . Then dA(p, z,z+h) € lp(B).
Therefore h=1(F,(z+ k)~ Fp(z)) = fol f(z+th)dt. From this it follows that

|| Ofl f(z +th)dt — f(z)“ < sup | f(z + th) - f(a:)[]E;O,

so D\eFp(z) = f(z). This gives that F, is an le-primitive function of f in
K,.

2) Let us fix z € B. Since L} is an open set, we can choose ¢ € X in
such a way that B C ¢+ L;. L} has property (%) so, fort € R, ¢t # 1,
we have (z — q)t € L. There also exists a number ¢; # 1 such that p :=
g+ ti(z — q) € B. Consequently z € BN (p+ L) = K,. From part 1) F}, is
the le-primitive function in some neighbourhood B, of the point z.

3) We will show that F, has the Fréchet derivative at any point z € B,.
Let us fix z € B,, and h € X such that z+ h € B,. By 2.6 there exists such
G>0and y, € (z+ L2)N(z+ h + L) that ||z — yu|] < G||h||. Therefore
the paths (yn,2z + h), (2,yn) are correlated with L}. In addition if ||A|| is
sufficiently small, then y, € B;.

From the above

AnFp(2) = Fp(z+ h) = Fp(2) = [ f(&)de+ [ f(&)de.

(z,yn) (yn 2+un)
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Taking v1,1(t) = 2+ t(yr — 2), T2.0(t) = yn + {2+ h—yn), for t € (0,1), we
obtain

1 1
AnFy(2) = (yn — 2) f [f(r2.6(8)) = f(m ()] dt + R f f(7r2,n(2)) dt.

Let R(z,h):= ApFy(2) — hf(z). Then

1R(z, Il < WIAIIG sup 1/ (72,4(8)) = SCr (@) + sup 1 (v2,1(8)) = F(2)])-
Thus and by continuity of f it follows that lim,_g [|A||7 | R(z,A)|| = 0.
Hence the mapping F;(z): h — hf(z) is the Fréchet derivative of a function

F, at the point z.
From part 3) of the above proof we obtain

4.2 COROLLARY. Let M C X be a domain and let f be continuous on
M. If f has an le-primitive function F on M, then F € H\(M).

LEMMA 4.3. Let B be a ball in X. If f € Hie(B), then for any triangle
A C B we have [, , f(2)dz = 0. (We do not assume that 9 is correlated
with L.)

Proof. In the well known way we can construct a decreasing sequence
of triangles A D Ay D Az D ... such that

(1) I [ f(z)dzll < 47| [ f(2)dz|| and |04.| = |oAj2™
[opal 34

The compactness of A in X implies the existence of the point z¢ € [} A,.
Since f has Fréchet derivative at zg, thus there exists a number d > 0 and
a function h — R(zg,h), such that

f(zo+ h) = f(zo) = 6 f(h) + R(zo,h) for ||h]| < d,
@) and Jim 18]~ Rzo, )| = 0.

From (2), for = € B(zg,d) := By we get (see 2.2)

(3) f(z) = f(zo) + (z — o) Die f(20) + R(z0,2 — 0)-
Hence for n € N

@ | f r@da| < | [ s@oyde| +| [ (2~ 20)dz Dief(zo)|
84 [2¥a) 84

+ “3‘£ R(zo,z — z0) dl‘“.
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By a simple computation we obtain that the values of the first two compo-
nents of the last sum are equal to zero. Let us take for z € By g(z — zp) :=
|z = o] ~}|| R(z0, = — z0)|| for & # z0, and g(0) = 0.

Since ||z — |} < |0A,] for z € 0A, so we infer that

[{R(zg,z ~ 0 )dz||
< 1045 sup{||R(zo,z — 20)|| : z € 04,}

< |0Ar|sup{g(z — z0) : z € A} sup{|lz — zo|| : = € A}
< 47"0A,|* sup{g(z — zo) : z € DA, }.
From (4), (1) and continuity of g at the point zero there holds

“ f f(2) dz” < |0AP sup{g(z — z0) : z € 8An}1:>oo.
84

From 4.1 and 4.3 we conclude

4.4 THEOREM. If M C X is an open set and f € Hi(M), then f has
differentiable in Fréchet sense function le-primitive in a neighbourhood of
any point of the set M.

Let M C X and 7y, 1 be the paths in M having a common interval
of the parameters I = (0, 1), common initial and terminal points z, and
z1, respectively. These paths will be called homotopically equivalent or
homotopic in M if there exists a continuous mapping h : I x I — M such
that h(0,t) = y0(t), h(1,t) = 71(t) and h(s,0) = 2o, h(s,1) = 2, for s,t € I.

If the paths v9 and 7; are closed, then they are said to be homotopic in
M if h(s,0) = h(s,1) for s € I. In both cases we will write: v 1 (in M).

Using the above results the proof of the following theorem can be ob-
tained in the similar way as the proof of its well-known counterpart from
the classical complex analysis.

4.5 THEOREM. Let M be a domain in X and f € Hy.(M),

() if y0,m € (M) and yom1 (in M), then [ f(2)dz = [ f(z)dz;

(b) for any ¢ € M and for any path v € lo(M) if vz (in M), then

f,y f(2)dz = 0 (by x we denote here a constant path);
(c) if M is simply connected, then f», f(2)dz = 0 for any path v € lo(M)
and f has le-primitive function F € H(M).

The proofs of the analogoues theorems of the classical complex analysis
(cf. e.g. [5]) are based on the fact of the local existence of the primitive
function to the holomorphic function in the domain M C C. In view of 4.4.
the functions of the class ;.(M) satisfy that property.



Analysis in the normed algebras 435

5. Surrounding sets

Let X be an algebra with unity e and dim X > 2.

By a k-valent circle (kK € N) with a centre at the point 0 we mean a
closed curve g whose each point, except its common beginning and end, is
k-valent lying in some sphere and some two-dimensional linear subspace X.
If zp € X, then a curve p + z¢ is called k-valent circle of the center zg.

A set M C X is called surroundable in X\ M if:

(1) 0 € M, M has property (*) and X\ M is not simply connected (We

treat X\ M as the topological space with induced topology);

(2) there exists a circle yu with a centre at zero such that u N M = .

We say that a curve 7 surrounds set M if y u (in X\ M ). Then we will
write: ¥ surr M. If p is a k-valent circle then we will say that v surrounds
M k-valent and we will write ysurry M. For some D C X by a symbol
qsurry M (in D) there will be denoted the fact that ysurry M and v* C D.

For any z € X and surroundable M the notation 7 surt(M + z) (in D)
denotes: (y — z)surr M (in D — z).

Remark. (a) Obviously, if M is a surroundable set, then there exists a
two-dimensional subspace (i.e. a plane) L such that M N L = {0} (a circle
p lies in L).

(b) Let K = R,dim X > 2 and let L be a linear subspace of X. Then
there exists a linear subspace L° C X such that LNL® = {0} and any element
z € X can be uniquely expressed in the form: z = 2! + z¢, z' € L, z¢ € L°.
L¢ is called complementary to the subspace L. Amap P, : X dzw—zl €L
will be called a projection on L (parallel to L¢). If P, is continuous, then
Py, is a retraction of the X'\ L¢ onto L\{0}.

Let us assume that dim Ly = 2. Then L§ is a surroundable set in X\ L§.
Taking for u any circle of the centre in 0 lying in L we have: gsurr L§ (in
L;). Moreover, psurr M (in L, ), where M is any union of the complementary
subspaces to Lz. Also if z € L§ and ¥ = p + z, then 7y surr L§ (in X\ L§).

Using the Mazur-Gelfand theorem we see that if X is a commutative
Banach-algebra over R with unity e, then any maximal ideal M in this
algebra is surroundable in L} if codim M = 2, and M is not surroundable
in L} if codim M = 1.

If X is an algebra over C, then every maximal ideal M is surroundable
in L. Taking then any maximal ideal M we have that a plane L, = {Xe:
A € C} is complementary to M. Every element z € X can be uniquely rep-
resented in the form: z = Ae + 2™, where zM € M, Ae = 2 (M)e = P (z),
(M) is the Gelfand transformation. If ysurr M (in L?), then Pr,(v) =
Y(M)e and v (M)esurr M (in L;\{0}).

Let M C X\L} be surroundable in L} and let ¥ be a path in L} such
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that Fsurr; M. For any closed path + let
(5.1) ST M,y):={z€X:(y-2)7 (in L7)}

LEmMMA 5.1. (a) S(7,M,7) is open. For any z € X and t € R4
tS(Y, M,v) = $(7,M,ty) and z + S(7,M,y) = S(7, M, v + 2).

(b) For any ball B C X there ezxists a path v € lp(X) such that B C
5(77M77)

(c¢) If D C X is an open set and z € D, then there exists such y € lo(D)
that z € S(7,M, 7).

The above lemma follows promptly from the definition (5.1). It is obvious
that for any path 4, v* is a compact set. Thus, if 4 lies in L}, then it lies
in L2 for some a > 0. Let us denote P, :=sup{a :y* C L2}. Then P, > 0
and P, = inf{P; : ¢ € y*} (see p. 1).

6. Integral formula

Now let X be a commutative algebra with unity e. In this case we will
use a short notation: AL(z) = 27! for z € L%, 2° = e, 2™ = (2"71)z for
n €N,

Applying 2.5 we can easily prove the following

6.1 THEOREM. If the functions f and g have the le-derivative at some
point o € X, then the function fg has also the le-derivative there and

Diefg(z0) = f(70)Dieg(zo) + g(0) Die f(20).

6.2 THEOREM. AL € Hio(L?). For any z € L} D Al(z) = —[AL(2)]%.

Proof. Let z € L. If ||h|] is sufficiently small, then z + A € L} and
Al(z 4 h) - Al(z) = ~hAl(2)A(z + h). Hence §,AL(R) = —h[AL(z)]?. For
h € L? we get 6;AL(h)AL(h) = ~[A}(z)]®. Now it is enough to apply 2.3
and 6.1.

Let M C X\L? be surroundable in L} and 7 be a path in L such that
Fsurr; M.

6.3 THEOREM. If D C X is a convex domain and f € H,.(D), then for
any path v € lo(D) and z € D S(F, M,7)

(6.1) Iyf(z)= [ J(&) (€—2)7"de

where II5 = f,.y{‘l d€.

Proof. Since ¥* — z C L}, then there exists a number a > 0 such that
v* C (Int L¢+2)ND := D,. Let us consider a function g(z) := f(z)(z—2z)"?
for z € D,. From 6.1 and 6.2 we have g € H)(D,). Let us remark that for
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any s € (0,1} 75 := sy + 2(1 — s) € lo(D,) and 75 v (in D,). Also 75 and 7y
lies in one component of the set D,. 4.5 implies that

L= [g&)de= [ g(&)ds

v Ys

I

J 1€ -2 de+ [ 1) - f(2)I(E - 2)7" dE.

The last two integrals will be denoted by I; and I,. Obviously I} =
II f(2). For £ € v we have ||(§ — 2)7!}| < a~1||€ — 2||7! (see (2.1)) and
d:= |y sup{fl€ - 271 : € € 77} = Iyl sup{lln— 2|7 : 7 € 47} < 0o. Hence
and by continuity of f at the point z we get:

221l < da™" sup{[|f(€) - f(2)l| : € € 1s3=——0.

Therefore I, = 0.
Using the above result and 5.1 (c) we can prove the following corollary.

6.4 COROLLARY. If D is an open set in X, then for any zo € D there
ezists a path v € lo(D) and v > 0 such that equation (6.1) holds for z €
B(ZO»T)

7. Taylor series
Let us suppose now that X is a Banach commutative algebra with unity
e. In this case L = L} = ri(e) := G is the multiplicative group of invertible
elements of algebra X.
A function f is said to be analytic at the point 2y € X if there exists
a ball B = B(zo,r) (r > 0) and a sequence (a,) of elements of X such that
o0
(7.1) f(z) = Z an(z — z9)" for z € B.
n=0
A function f is said to be analytic in set D C X if f is analytic at
every point of this set. A class of analytic functions in D will be denoted by
AN(D).
For k,n € Ng and z € X we have D,’:z" = (n_!k)! 2"k for k < n and
Dfz" =0 for k > n.
Hence and from the well-known properties of power series we have

7.1 THEOREM. If the function f is a sum of the series (7.1) in certain
ball B(zq,t), then there ezists a ball By = B(z9,71), 0 < r; < r, such that
f€HX(B) and foranyk e Nand z € B

Dff(z) = Z k)|an(z—- z)" k.
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Moreover
1
a, = mD,’f:f(zo) forn=0,1,2,.

Therefore if f € AN(D) for D C X, then DEf € AN(D) for any k € N
and AN (D) C H{2(D).

LEMMA 7.2. Let v be a curve in X and z9 € X. If for some z € X

(1) 7*_2CG7 7*_20CG

and

(2) ”Z - 20” < P‘Y—Zo diSt’(‘)’*szO) = H(7’20),

then for each £ € v*

(3) -2 =) (z-20)"(E-2)"",
n=0

which is uniformly convergent on v*.

Proof. If y,y —z € G and zy~! € B(0,1), then
(4) (y—2) Ez" —h
Obviously, y — z = y(e — zy~!). Hence

00
(y _ :l:)_l = y—l(e _ :ry_l)'l - Zzny—n—l.
n=0

For £ € yv* we have:

N -1 12 = zoll dist(7* z0)

o= 2)& =200 < B e ==l < el
Putting ¢ = 2z — 20 and y = £ — 2o in (4) we obtain (3). For fixed z there
exists t € (0,1) such that ||z — z|| = tH (7, 2). Denoting by C,(£) the n-th
term of series (3) we have

<1

2™

ICAON < li(z = 20)™}l 1€ = 20)~ 1)) < Py ﬁ
Hence

limsup {/(|Cn(€)|| < P zO ”f zO” <t<1l forany€&e~n™.

This completes the prof of uniformly convergence of series (3) on y*.
A class of such commutative algebras X with unity e for which there
exists a set M C X\G surroundable in G will be denoted by (S). The (.S))




Analysis in the normed algebras 439

denotes a subset of the class (5) including such algebras X for which there
exists M C X\G and 7 € ly(G) such that ysurr M and /I, = f,y £ldeeG.

We can prove that if X € (Sp), then the function z + exp z has a period
w€eQG.

Examples. In examples 2.8 (b), (d), () the algebras X are of the class
(So) but in the (c) and (e) X ¢ (5). From remarks in the chapter 5, if X is
an algebra over C, then X € (5).

Let us now suppose that M C X\G is a surroundable set in G and
let us fix a path ¥ € lp(G) such that Fsurr; M. Applying Lemma 7.2 and
Theorem 6.3 we easily obtain

7.3 THEOREM. Let D C X be a convex domain, v € lg(D), z9 €
S(7,M,7) and f € Hyo(D). Then

(7.2) I5f(2) = an(Z—Zo)" Jor z€ DNS(¥, M, )N B(z0, H(7,20)),
n=0

where

b= [ f(E)E—2)"""dE forn€No, and Iy = [ €7 de.
Y gl
Moreover for n € Ny

) ] < 2RO € € 1)

PIEL dist(y7, 20)

Y—Z20

Remark. Theorem 7.1 is equivalent to the Taylor theorem and inequal-
ities (7.3) are analogues to Cauchy ones.
From Theorem 7.3 and Lemma 5.1 we obtain

7.4 COROLLARY. If X € (5), D C X is an open set and f € H(D),
then Il f € AN(D).
7.5 COROLLARY. If X € (S¢) and D C X is an open set, then
Hie(D) = AN(D) = HZ (D).
Obviously, 7.4 implies that H(D) C AN(D) and from 7.1 we have
AN(D) C H{2(D).
From 7.3 and 7.1 we have

7.6 COROLLARY. Let us suppose that X € (S), D C X is a conver
domain v € lg(D) and f € Hye(D). If 20 € D N 5(¥,M,7), then for any
n € Ny

DR[lT5f)(20) = n! [ f(E)(E~ 20) """ dE
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and there exists a neighbourhood U of the point z¢ in which
= 1 n —-n-—
e f(2) = 3 2y DRI a0z = 20) ™

In particular, if II5 € G (i.e. X € (S5p)), then
= 1
f(z)= Z% —Dief(z0)(z = 20)" forz € U.

7.8 THEOREM. (Morera). Let X € (So). If f is a continuous function
on the open set D C X and [, , f(2)dz = 0 on the boundary 04 € lo(D) of
any triangle A C D, then f € Hy(D).

Proof. Let us fix zp € D. From 4.1 it follows that f has the Fréchet
differentiable le-primitive function F in some neighbourhood U of the point
2. Since F € Hie(U),s0 F € AN(U) and f = D\F € Hi(U).

Using the obtained results the proof of the following theorem is analogous
to the proof of Liouville theorem.

7.9 THEOREM. (Liouville). If X € (Sy), f € Hi(X) and f is bounded
on X, then f is constant.

8. Laurent series

Let X be a Banach commutative algebra with unity e, and let G be the
set of invertible elements of algebra X.

The Laurent series of the center 25 € X will be called the sum of the

following series
o0

(>0} o0
(8.1) E a_n(z—2)"" 4+ Z an(z —20)" := Z an(z — z)",
n=1 n=0 n=-—00
where a, (n = 0,%1,42,...) are fixed elements of the space X.
For any curve v : (a,b) — X let ||y]lc := sup{|lr(t)l| : t € (a,b}}.
Similarly as in Lemma 7. 2 we can prove the following

LEMMA 8.1. Let v be a curve in X and zy € X. If for some z € X we
have: v*—z C G, z— zp € G and ||z — 2|| Py=z, > ||7 — 20|¢, then for £ € 4*

(-9 = Y (6 - 20)(z - )

and this series is uniformly convergent on v*.

Let us assume that X € (5), a set G is connected, M C X\G is the sum
of all sets surroundable in G and M is also surroundable in G. Let us fix
¥ € lp(G) such that Fsurry M (in G).
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Applying Lemmas 8.1, 7.2 and Theorem 6.3 we obtain

8.2 THEOREM. If X € (S5), the set G is connected, for some zo € X and
r > 0 f € Hie(Ko(20,7)), where Ko(z0,7) = B(20,7) N (G + 29), then for
any path vy € lo(Ko(20,7)) such that ysurr;(M + z0) we have

Iyf(z)= D (z=20)" [ SE)E—20)"7 dE

n=-oo ¥
for z € Ko(20,7) N S(7,M,v)N B(20, (7, 20)). Therefore a function Il f
is the sum of the Laurent series in some set Ko(zp,71), 11 > 0.

Remark. 1. We now assume that the set G is not connected. For a
certain set A and a € A let G, denote a component of the set G,G =
UaEA G, and M, is the sum of all sets surroundable in G,. For a certain
a € Alet 5, € lh(Gs) and F,surry M, (in Go). Moreover for z € X
and r > 0 we denote K§(z,7) = B(z,7) N (G4 + z). We can prove that if
f € Hie(K§(20,7)), v € lo(K§(20,7)) and ysurri(My + 29 ) for some 29 € X
and 7 > 0, then for a certain r; > 0 and any 2 € K§(2,71) we have:

o0
I f(z)= Y (z—20)" [ JE)(E~20)™""" d + &(z),
Y

n=-—0co

where

&(z)= [ fENE-2)T de— [ F(ENE—2)"dE
Y2 8!
and 77, v, are some curves satisfying the following relations:

y1surry (Mo + 20) (in 29 + Go) and  7yasurr (M, + 20) (in 20 — Go)-

2. From Theorem 2.2 it follows that if X is a commutative algebra with
unity e, D C X is an open set and f € Hj(D), then for any z € D Dy f(2)
is the derivative of the function f at the point z in the Lorch sense ([3]).

3. For any z € X we can analogously define the rc-inverse element y
(right-hand-c-inverse; see page 2) and consequently we obtain rc-derivative
and the r-integral. In this way we have an equivalent of Theorem 4.5.
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