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SOME RESULTS OF ANALYSIS 
IN THE NORMED ALGEBRAS 

This paper concerns some problems of analysis in the norrned (complex 
or real) algebra X . 

The main tool in the investigations of the functions in complex commu-
tative Banach algebras with unity is the Gelfand theory of maximal ideals 
(see [1], [3]). Developing this idea E. R. Lorch in [3] put forward the question 
when in algebra X , the following conditions are equivalent: 

(1) differentiability of the function (in the sense defined by Lorch), 
(2) vanishability of the line integral of the function along the closed 

curve, 
(3) power series expansibility of the function. 
This paper includes, in particular, some proposal of the method of solu-

tion of this problem without using Gelfand theory. 
The presented theory is based on two ideas: 
— derivative of the function and, consequently, the primitive function as 

a map from X to X, (chapter 2); 
— surrounding subsets of the A' by closed curves, (chapter 5). 
Main results of this paper are parallel to the Cauchy-Riemann equations, 

Cauchy-integral theorem, Cauchy-integral formula, Taylor and Laurent se-
ries expansions, Morera and Liouville theorems. 

1.Introduction 
Let X be a normed algebra (commutative or non-commutative) over 

the field K (C or R). We will use the following denotations: by N-set of 
all natural numbers, No := N U {0}. For x 6 X and r > 0 by B(x,r) we 
will denote as usual the open ball with the centre x and the radius r. By 
6xf(h) we will denote directional derivative of the function / at a point x 
in the direction h; / '(x)-Frechet's derivative at a point x. For XQ, XI € A', 
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xo ^ by (xo,£1) we will denote the segment {xo + <(xj - XO) : t G (0,1)}. 
Analogously we define the segments (xo,xi), (xo,xi) and (xo,xi). 

Now let us define 

¿ : = { x G X : f\ xy ^ o } , for a G R+ 

La := { x G X : / \ a\\X\\ ||y|| < |M|} and L% := £ a \{0} . 
yex 

From the definitions there follows immediately 

L E M M A 1.1. For any a > 0 the set La is closed and Lq C L\ for a > 1 
Lg = 0 and if 0 < ai < a 2 , then La2 C Lai. 

We introduce the following notation: L* — Ua>o ^o = -Z/*\{0}, 

ai = sup{a : LQ ̂  0} and for x & LQ PX = sup{a : x G LQ}. 

Later on we will often consider the sets D C X satisfying the following 
property: 

(*) if x G D and 0 ^ t G A', then ix G D. 

It is clear that if the set D and the sets of the family {Ds} have property 
(*), then |J-DS, P| and X\D also possess (*). 

It is also clear that LQ C L and the sets LA, LQ, L* and LQ have prop-
erty (*). 

L E M M A 1.2. (a) If XO G Lq for some a > 0, then for every e > 0 there 
exists such a number b£ > 0 that Be := B(xo, ^) C Lq' . 

(b) I f x G ig and b G (0,a), then B(x, ^||x||) C Lb0. 

P r o o f . Let us take e > 0 and xo G Be. By 1.1 a < 1, hence 

(1) | | x 1 - x o | | < ^ < | | x o | | . 

Since XO G Lq, SO for x,y G X 

a||x0|| \\y\\ < ||x0y|| < [K^o - + I M I < ||* - x0|| \\y\\ + \\xy\\. 

Therefore for x ^ 0 

(2) 6.11x11 ||y|| < ||xy||, where 6* = « I M - J | p g 0 " . 

It follows from (1) that x\ ^ 0 and 

a||x0|| a||x0|| _ a||g0|| £ 
11*1 II ( i + OIMI I M ' l + e" 
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Since ||xi|| < ||X! - x0|| + ||x0||, then from (1) we obtain bXl > (1+"/)+a := 

bc > 0. Hence and from (2) it follows that X\ € LQ'. For the proof of (b) it 
is enough to put £ = ^ ^ ^ • 

1 . 3 C O R O L L A R Y . If X E LQ, then 5(X,A||X||) c LQ. 

Thus, if x E LQ, then B(x,Px\\x\\) C L*0. From 1.2 and 1.3 we get the 
following 

1.4 THEOREM. The set LQ is open. If an > 0 for n € N aiid l i m a n = 0, 
then L*0 = U„ Int LA0• = U a > 0 ^ ¿o• 

An element of the set X\L* will be called a divisor of zero. Element 
x 6 X, x 0 will be called a topological divisor of zero if there exists such 
a sequence ( x n ) in X that ||£n|| = 1 for rc € N, and l im^oo xx n = 0. 

From the definitions of the sets: LQ, L* and L there follows 

L E M M A 1 . 5 . No topological divisor of zero lies in LQ and every element 
of the set X\L*is a topological divisor of zero. L\L* is the set of topological 
divisors of zero which are not the divisors of zero. 

Indeed, if x € and ||xn|| = 1, then ||zzn|| > Px\\x\\ > 0. x E X\L* 
implies that x £ Lxln for any n £ N. Therefore there exists a sequence 
{Vn) C X such that ||?/„|| = 1 and ||xj/n|| < ||x||/n. Hence l im^oo xyn = 0. 
The last part of the statement follows from the definition of the set L. 

1 .6 T H E O R E M . If dim A ' < oo, then LQ = L. 

P r o o f . Let x G L\LQ and 5i = {z 6 A' : ||a:|| = 1}. Then there 
exists a sequence ( i „ ) C Si such that l imxx n = 0. The compactness of 
Si implies the existence of subsequence ( x n k ) convergent to xo 6 S i . Then 
0 = limxxn j t = XXQ, thus x £ L. 

1.7 E X A M P L E S , (a) Fix n E N. Let A' denote an algebra in R " over 
field R. Then there exist two-linear mappings : X2 R, k = 1 , 2 , . . . , n, 
such that for any x = (x i ) " = i , y = (2/>)"=1 G A" xy = (ak(x, y))JJ=1 = 

w h e r e = E?=1 and ajf € R. Let B{x) = 

det[6^(x)]jtit<n. It is obvious that 
n 

B(x) = B(xI,x2,...,x„)= ^ x'ixi2 •••a;«n det[a}lfc]j,jt<n 

»1. •••>»» = ! 
and L = {x £ X : B(X) ^ 0 } . From 1.6 L = LQ. B(Xi,...,xn) is a 
homogeneous polynomial, and we can factorize it, explicitly up to a constant 
coefficient, as the prime homogeneous polynomials: 

B(x i,...,xn) = F?1 (xi,... ,xn)... Fnm (xi,..., xn), 
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where dj = deg FP. Therefore X\LQ is the union of the hypersurfaces de-
fined by the equations Fj' ( x l f . . . , xn) = 0. The analogous result will be 
obtained taking X = C n . 

(b) Let X be a commutative algebra C(0,1) of real functions continuous 
on the interval I = (0,1), over field R. Taking N(x) = {t £ I : x(t) = 0} for 
x G X , we conclude that L is the set of those x G X for which N(x) is a 
boundary set. For a > 0, La is the set of x G X of the form x = sxo, where 
s G R, xo G X, ||x0|| = 1 and mjn |a;(i)| > a. Consequently, L — {x £ X : 

mjn|x( i ) | > 0}. 

2. Derivative 
Let LQ ^ 0, and let us fix any c £ LQ, ||C|| = 1. Element ye X will be 

called lc-inverse (left-hand-c-inverse) of a; € A* if xy = c. The set of point 
x £ X for which there exists an lc-inverse element will be denoted by r;(c). 

Let L* := LJ n Int r,(c) / 0 and for a > 0 L% := Ig n Int r,(c). 
The sets r/(c), L* and L" have property (*). For every x £ L* there exists 

only one lc-inverse element Al
c(x). Therefore we have defined a mapping A'c 

on L*. For every x € L* we get obviously the inequality 

M £ s i ^ H ' 

LEMMA 2 . 1 . For any a > 0 there exists ba > 0 such that 

(1) A U K ) C LB
0-

Thus, in particular, Al
c{L*) C 

P r o o f. If Al
c does not have property (1), then for any a > 0 there exists a 

sequence (xn) C L%, ||a;n|| = 1, such that yn = Al
c(xn) G X\Laln for n G N. 

Thus there exists zn G X such that ||2:n|| = 1 and ||2/n^n|| < ^Hi/nil < n-
Hence ||czn|| = H^nii/n^n)!! < n 0) hence which implies that c is a 
topological divisor of zero (see 1.5) and, consequently, c ^ LQ. 

Let us take an arbitrary x £ A', r > 0 and a function / defined on the 
set K(x, r) = (B(x, r) fl (L* + x)) U {a;} with values in X. 

If for an arbitrary a G (0, o;) there exist the limits 

L]un^A'c(h)(f(x + h ) - f ( x ) ) 

then by 1.1 these limits are equal for all a. Their common value will be 
denoted by Dicf(x) and called an lc-derivative of the function / at the 
point x. 
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If / has the lc-derivative at each point of the set M C A", then the 
mapping Dic : M 9 x »->• Dicf(x) will be called the lc-derivative of the 
funct ion / on M. 

For n € No we define the lc-derivative of order n of the function / as 
follows: Dlf = f , D?J = Dlc{Dl~lJ) for n > 0. 

2.2 THEOREM. For every x G X 
(a) if there exists Dicf(x) and for some h G L* there exists 6xf(h), then 

Dlef(x) = A'c(h)6xf(hy, 
(b) if there exists Dicf(x) and c is the unity in X (i.e. cz = zc = z 

for every z G A) , then for every h G L* there exists Sxf(h) and Dicf(x) = 
A'c(h)Sxf(h). 

P r o o f . Let 0 / i € A', /i € L*c and I(t) := i - 1 ( / ( a ; + th) - f(x)). 
Therefore th 6 and Dlcf{x) = l i m ^ o Al

c(th)(f{x + th) - f(x)) = 
limt_»o A'c(h)I(t) = Al

c(h)6xf (h). If h G L*, then for some a > 0 Al
c(h) := 

z G LQ . As c is the unity, so zh = c, and 

0 = lim | | z l { t ) - zhDlcf{x)|| > a||z|| Jim ||/(<) - hDlcf{x)||. 

2 . 3 T H E O R E M . If the function f has the Frechet derivative f'x at some 
point x and 

(1) ' Al
c{h)f'x{h) d 

does not depend on h G L*, then f has the lc-derivative at the point x which 
is equal to d, and | |D / c / (x) | | < a^Wf^]. 

P r o o f . Let R(x,h) = f(x + h) - f ( x ) - 6xf(h). From (1) for h G L* we 
obtain 

(2) Al
c(h)(f(x + h) - f{x)) -d = A'c(h)R(x,h). 

Let us suppose that h G for any fixed a G (0,a/). From (2.1) we have: 

/i—>-0 
Thus, it M o w s from (2) that d = Dtcf(x) and | | D l c f ( x ) \ \ = \\A'c(h)6xf(h)\\ 
< \\m\ llfclla-MlfcH-1. Hence | |2?,c/(x)| | < a ^ W f ' J . 

The set L* is open, thus includes a ball. Therefore, there exists a Hamel-
basis H = { h s } of the space A' such that H C L*. Let us fix such the basis. 
From 2.2 and 2.3 there follows 

2.4 THEOREM, (a) If the function f has the lc-derivative at the point 
x G X and the directional derivative in direction h,,ht G II, then 

(2.2) A[{hs)6xf(hs) = A[(ht)6xf(ht) := d 

and d = Dicf(x). 
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(b) If c is the unity of an algebra X (or X is a commutative algebra) 
and if the function f has the Frechet derivative at the point x, and for any 
hs,ht G H the equations (2.2) hold, then f has the Ic-derivative equals d at 
the point x. 

The equations (2.2) are equivalent to Cauchy-Riemann equations. 
If the function / has the lc-derivative at the point x, then it does not 

have to be continuous there. However, we have the following 

LEMMA 2.5. If f has the lc-derivative at the point x, then for any a G 
(0, a/) there exist such positive numbers ra and Ga that for h G B(0, ra) fl 
|| f ( x + h)~ f(x)|| < Cj0||/i|| is satisfied. 

P r o o f . For a G (0 ,a / ) let us choose ba such that for h G ha
c Al

c(h) G LQ" 
(see 2.1). Applying (2.1) we get : \\f(x + h)~ f(x)\\ < b'11|Al

c(h)(f(x + h)~ 
/(a;)) | | ||/i||. The existence of the lc-derivative of the function / at the point 
x implies tha t for some ra > 0 and h G B(0, ra) fl La

c we obtain: 

l>\\A'c(h)(f(x + h ) - f ( x ) ) - D l c f ( x ) \ \ 

>\\Al
c(h)(f(x + h)-f(x))\\-\\Dlcf(x)\\. 

We take Ga = b~l(\\Dicf(x)\\ + 1); the proof is completed. 

We can prove that if A' is commutative and if / has the lc-derivative 
bounded in the domain M C X , then / is continuous on M. 

A function / will be called s t r o n g l c - d i f f e r e n t i a b l e of o r d e r n 6 N 
in the set M C X , if it has the lc-derivative of order n and the Frechet 
derivative of order n in M. The set of such functions will be denoted by 
HUM), Htc(M) means H}e{M) and H%(M) (XLi K?e(M). 

LEMMA 2.6. If the set M C X possesses the property (*) arid contains a 
ball, then there exists such a number G > 0 that for any z\,z2 € A", z\ ^ 
and for some y £ (z\ + M)C\(z2 +M) the inequalities ||2j — j/|| < — Z2W, 
i = 1,2 hold. 

P r o o f . 1. Let z2 - z\ G M, then (z!,z2) C z\ + M . Then taking y = 
i ( 2 l + z 2 ) we get y € (21 + M) n (z2 + M) and \\z{ - y\\ = i | | z i - z2\\. Thus 
we can take G = Similarly, when z\ — z2 6 M. 

2. Let us now suppose tha t zi — ¿2 & M. For some xq G M and r > 0 
B(x0,r) C M. Let to := ||2i — z^r'1, then B(t0x0,t0r) C M. Therefore 
Bi := B ( z i + t 0 X 0 , t 0 r ) C Zi+M for i = 1,2. Since | |(zi-HoZo)-(22+*oZo)| | = 
||z\ — z2\\ = tor < 2t0r, thus there exists y G B\ fl B2. Then for i = 1,2 we 
derive tha t : 

112/ - 2.11 < Hi/ - + '0^0)11 + |\Zi + t0x0 - Zi\\ < \\Zl - Z2|| + io||®oJ| 

= ( l + l k o | | r " 1 ) | | z i - 2 2 | | . 
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Concluding, we can take G — 1 + ||x0||r 

2 . 7 T H E O R E M . If Dicf = 0 in a certain domain M C X, then f is 

constant on M. 

The proof is preceded by two lemmas. 

L E M M A 1 . If D i c f ( x ) - 0 for certain x G X , then 6 x f ( h ) = 0 for any 

h G L \ 

Indeed, let us fix any h G L*. t ^ 0 implies that th G . Thus, 0 = 
D i c f ( x ) = l im t_0 Alc(h)I(t), where /( f ) = t~*(/(x + th) - f { x ) ) . From 2.1 it 
follows that Zh := Alc(h) G Lq for some b > 0. Hence 0 = l im t_0 11 -̂̂ (011 ^ 

l im t_0 P(0l l> therefore S x f ( h ) = 0. 

L E M M A 2 . Let B C X be a ball and x 0 € B. Then if D i c f { x ) - 0 for 

every x G KXo : = (B ^ ( ^ o + L*)) U { x o } > then f is constant on KXo. 

P r o o f . Let us take x\ G A' ro , x\ / xq. Then x\ — xo G L* and (xo, x i ) C 
KXQ. Since B is open there exists the a segment (xo>£i) C KXO such that 
(xo,x\) C (xo,X\ ) C KXo. From Lemma 1 we have that 6 x f { h ) = 0 for 
x 6 Kx0 and h € L*. In particular 6 x f ( x i — xo) = 0 for x G (xo,xi ) . Hence 
it follows that / is constant on (x 0 ,x i ) , thus /(xo) = f(xi). 

P r o o f of 2.7. Firstly let us suppose that M is a ball and let us choose 
arbitrary xo,xj G M. Then (xoi^i ) C M. Let d := d is t ( ( x o ,x i ) ,FrM) and 
for x G M Kx = ( J i n ( i + i ; ) ) U { x } . 

Let us choose from the segment (xq ,x i ) a sequence of points zq = xo, 
zi,...,zn = xi and y; G (zi + L*) n (zi+1 4- L*) such that ||z,- - ¡/¿|| < 
G||*i+i — Zi|| and G\\zi+i — z,-|| < d for i = 0,1, . . . , n — 1, and some G > 0 
(see 2.6). Then G M which gives that j/,- G KZi f~l A'2i+1 . 

From Lemma 2 it follows that for every x G M f is constantly equal to 
/ (x ) on KX, consequently 

/ ( * o) = /(¡to) = / ( z i ) = / (y i ) = . . . = / ( » „ _ ! ) = / ( * „ ) = / (x i ) . 

Now let M be an arbitrary domain. For any xo,xi G M there exists a 
complete sequence of balls B\, B2,.. •, Bn contained in M that x0 G B j, 

xi G Bn and 5, n ^ 0 for i = 1,2, . . . , n — 1. As in each of these balls 
/ is constant, /(x0) = / (x j ) . 

Let M C X and let / be a function from M to X . Then a function 
F from M to X is called Ic-primitive of / on M if D[cF(x) = / (x ) for 
x G M. 

From 2.7, if the functions F\, F2 are lc-primitive of / on the domain 
M C X, then F\ — F2 is the constant function on M. 
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2.8 EXAMPLES, (a) For every linear mapping / : A' —» A', if there exists 
Dicf(xo) := d a t some xo € A', then D¡cf(x) — d for any x £ X , since 
/ e Hie(x). 

(b) If X is an algebra C with unity e = 1, then for every a 6 (0,1) we 
have LQ = LQ = r/(e) = <C\{0}. The le-derivative of the function agrees with 
the classical derivative. A class H]e(D) for D C C is the class of holomorphic 
functions on D . 

(c) Let X be an algebra in R 2 over field R, where for z\ = 
— (x2,V2) £ A", Z\Zi := ( x i x 2 + J/i2/2,^iJ/2 + Z22/I)- A' is a commutat ive 

algebra (complex hyperbolic numbers, see [5]) with unity e = (1,0) ; L = 
L* = {(x, y) G R 2 : i 2 / y2}. For a function / : z = (x, y) (u(z),v(z)) of 
A to X , equations (2.2) can be writ ten in the form : u'x = v'y, u'y = v'y. 

(d) Let A be an algebra in C2over the field C, where for z j = ( x j , y j ) , 
j = 1,2, Z1Z2 = (^1^2 — yiV2,Xiy2 + x2y\). X is a commutat ive algebra 
with unity e - (1 ,0) , L = LQ = {(x,y) G C2 : x2 + y2 ¿ 0}. For a function 
/ : z = (x,y) (u(z), v(z)) of A to A equations (2,2) can be writ ten in 
the form: u'x — v'y, u'y = -v'x. 

(e) In the example 1.7(b) we considered the algebra A' = C(0,1) with 
unity e. By a symbol ( x ( t ) ) let us denote a continuous function t 1-» x(t) 
for t € (0 ,1) . Notice tha t a mapping f : x y-y (f^x(s)ds) f rom A' to A' 
has not the le-derivative in any point. Indeed, this mapping is linear, for 
x £ X and for h € L* we have 6xf(h) = (J0 h(s)ds) and A'e(h)6xf(h) = 
( / i ( i ) - 1 fg h(s) ds) depends on h (see 2.2). In this algebra all functions pn : 
x HH> xn for n £ No have the le-derivative and D\epn = np n _ 1 for n 6 N. 

3. In tegra l a n d p r i m i t i v e f u n c t i o n 
By a c u r v e in an algebra A* we understand a continuous mapping 7 of 

the interval ( a , j3) C R in A'. Then ( a , (3) is called the p a r a m e t e r interval 
of the curve 7 , 7 ( a ) — the beginning, 7(/3) — the end of the curve 7 . We 
also will use the notat ion: 7* = {7(í) : t 6 (a , /?)}. A curve 7 is called 
regular , or a pa th , if it is of class C\ in the parameter interval. A point 
x of a curve 7 is a said to be A>valent (k £ N), if there exist exactly k 
different numbers ti,Í2> • • • ->tk f rom the interval parameter (a, ¡3) such tha t 
x = 7(^1) = 7(^2) = . . . = 7(ífc). By the l e n g t h of the pa th 7 we mean the 
number | 7 | = J¡ | | 7 ' ( í ) | | dt. 

Let 7 : ( a , ¡3) —> X be a pa th in X and and let / be a continuous function 
on 7 * in A . The /-integral of the function / over the pa th 7 we define as 
follows: / 7 f { z ) dz = / f 7 ' ( 0 / ( 7 ( 0 ) dt. 

The last integral is the integral in the Riemann sense. I ts existence follows 
f rom the continuity of / . (See e.g. [4]) 
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Let LQ ^ 0 and let us fix any c 6 Z-Q, ||C|| = 1. 

A path 7 is said to be correlated with La
c at some point to G (ct,/3) if 

7 ( t ) — j(to) 6 L°U {0} for t taken from some neighbourhood of the point to. 
If 7 is correlated with La

c at every point, at most except the finite number of 
the elements of interval (a,f3), then we will say that 7 is correlated with 
LI• 

If 7 is correlated with L* and b € (0,a), then 7 is correlated with Lb
c. 

We can formulate the following definition: 
A path 7 will be called correlated with L* (at the point to) if there 

exists a > 0 such that 7 is correlated with (at the point to). 
Let M C A'. Then by a symbol l(M) (resp. lo(M)) we will denote a set 

of paths (resp. closed paths) which lie in M and are correlated with L*. 
From these definitions it easily follows that if 7'(io) £ L* f° r some to 6 

(a,/3), then 7 is correlated with L* at to. 
If p, q € X, by the symbol jTq we will denote any curve where p and q 

are the beginning and the end of one respectively. 

L E M M A 3.1. If M c X is a domain, then for any p,q € M there exists 
a path p~q e l(M). 

P r o o f . Such a path can be constructed as in the proof of theorem 2.7. 
Therefore we can uniformly approximate any curve lying in the domain 

by the path correlated with L*. 

L E M M A 3 .2 . I f f is correlated with L* at the point to € ( a , / ? ) and a 
function F has the Ic-derivative at the point 7(io), then 

lcF(y(t))\t=t0 = Y(to)DlcF(j(to)). 

P r o o f . For any a > 0 and sufficiently small s ^ 0 we get As7 := 
-y(t0 + s) - i(t0) e La

c. Then 

C5-1[F(7(i0 + - F(7(fo))] = s~lAsl(^cF(l(tQ)) + d,), 

where d. = A^As^F^to) + Asl) - F( 7 ( i 0 ) ) ] - A c ^ T ^ o ) ) for Asl £ 0 
and dB = 0 for As7 = 0. If s —• 0, then As7 —• 0 and ds —> 0. 

Hence we obtain 

3.3 T H E O R E M . If M C X is a domain and a continuous function f 
has the Ic-primitive function F on M, then for any p,q £ M and any path 
p~q £ l(M) 

f f(z)dz = c(F{q)-F(p)). 
P'I 
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4. Integral theorems 
Let us now suppose that A' is an algebra with unity e. Obviously, e £ L*. 

From 3.3 we have that if M C X is a domain and a continuous function / 
has the le-primitive function F on M, then for any p £ M 

F(x) = f f(z)dz+F(p), 
p X 

where x £ M and jTx £ l(M). 
The following set: A = A(x,y,z) = {t\x + ¿22/ + hz '• h + h + ¿3 = 

1, > 0} will be called a triangle of with vertices x,y,z £ A , 
x / y ^ z. A closed path 7 such that 7* is a polygonal line with the vertices 
x, y, z is called the boundary of the triangle A and will be denoted by dA. 

LEMMA 4.1. If the function f : B —* X is continuous on the ball B C 
X and JdA f(z) dz = 0 for a boundary dA 6 ¡o(B) of any triangle A C 
B, then f has Frechet differentiable function which is le-primitive in some 
neighbourhood of any point of the ball B. 

P r o o f . 1) Let p G B, Kp := Bn(p + L*e) and let Fp{x) := J{p x} f(z)dz, 
for each x € B. For any x € Iip there exist b, r > 0 such B(x, r) C Bf\(p+Lb

e) 
(see 1.4). For any a > 0 let h e L% and \\h\\ < r. Then dA(p, x, x+h) € l0(B). 
Therefore h"1 (Fp(x + h) - Fp(x)) = fQ

l /( x + th) dt. From this it follows that 
1 
f f(x + th) dt - f(x) < sup || f(x + th) - / (z) | | >0, 

0 < 
so D\eFp(x) = f(x). This gives that Fp is an le-primitive function of / in 
Kp. 

2) Let us fix x € B. Since L* is an open set, we can choose q £ A in 
such a way that B C q + L*. L* has property (*) so, for i 6 R, i ^ 1, 
we have (x — q)t 6 L*. There also exists a number t\ 1 such that p 
q + — q) € B. Consequently x £ B fl (p + L*) = Kp. From part 1) Fv is 
the le-primitive function in some neighbourhood Bx of the point x. 

3) We will show that Fp has the Frechet derivative at any point z £ Bx. 
Let us fix 2 G Bx, and h € A such that z + h £ Bx. By 2.6 there exists such 
G > 0 and yh £ (z + L*t) D (z + h + L*) that ||z - yh\\ < G||/i||. Therefore 
the paths (yh,z + h), (2, j//i) are correlated with L*. In addition if ||/i|| is 
sufficiently small, then yh. £ Bx. 

From the above 

AhFp(z):=Fp(z+h)-Fp(z)= f / ( J /( 
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Taking f i , h ( t ) = z + t(yk - z), 72, h ( t ) = yh + t{z + h - yh), for t <E (0,1), we 
obtain 

1 1 

A h F p ( z ) = ( y h - z ) J [f(l2,h{t)) — /(7i,/i(0)] dt + h J f { n , h ( t ) ) d t . 

0 0 

Let R(z,h) := AhFp{z) - h / ( z ) . Then 

| | i ? ( z , /0 l l < | | f c | | ( G s u p | | / ( 7 2 , - / ( 7 i , f c ( 0 ) l l + s u p | | / ( 7 2 , f c ( 0 ) - f ( z ) \ \ ) -
t t 

Thus and by continuity of / it follows that l i m ^ o | | / i | | - 1 | | / i(z, = 0. 
Hence the mapping F'v(z) : h h f ( z ) is the Frechet derivative of a function 
Fp at the point z. 

From part 3) of the above proof we obtain 

4 . 2 C O R O L L A R Y . Let M C X be a domain and let f be continuous on 

M . I f f has an le-primitive function F on M , then F € H\e(M). 

L E M M A 4 . 3 . Let B be a ball in X . If f € H\e(B), then for any triangle 

A C B we have f g A f ( z ) d z = 0 . {We do not assume that d A is correlated 

with L*.) 

P r o o f . In the well known way we can construct a decreasing sequence 
of triangles A D Ai D Ai D ... such that 

( 1 ) || f f ( z ) dz\\ < 4 n | | / f ( z ) d z \ \ a n d \dAn\ = \dA\2~n. 

dA dA 

The compactness of A in A' implies the existence of the point XQ € H An. 
Since / has Frechet derivative at lo» thus there exists a number d > 0 and 
a function h R(xo,h), such that 

f ( x 0 + h)~ f ( x 0 ) = S x f ( h ) + R(x0,h) for ||/i|| < d, 

^ and lim l l / i i r 1 ! !^^ , /»)! ! = 0. 
h—*0 

From ( 2 ) , for x £ B(xo,d) := Bo we get (see 2 . 2 ) 

( 3 ) f ( x ) = f ( x 0 ) + (x - x 0 ) D i e f ( x 0 ) + R(x0,x - x0). 

Hence for n € N 

( 4 ) || J f ( x ) d x <|| / f ( x 0 ) d x +|| / ( x - x o ) d x DiJ(xo) 

dA dA dA 

+ / R{XQ,X - x0) dx . 
dA 
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By a simple computation we obtain that the values of the first two compo-
nents of the last sum are equal to zero. Let us take for x G Bq g(x — xq) := 
||z - a;o||~1||i2(xo,« - x0) | | for x ^ x0 , and fif(O) = 0. 

Since ||a: — xo|| < \&An\ for x € dAn so we infer that 

||J2(aro, x - x0)cia;|| 
< \dAn\sup{||R(x0,x - x0) | | : * G dAn} 

< \dAn\sup{£r(x — xo) : x G dAn} sup{||x - z 0 | | : x G dAn} 

< 4~n\dAn\2 sup{<7(a: - x 0 ) : x G dAn}. 

From (4), (1) and continuity of g at the point zero there holds 

II f f{z)dz < | 5 z l | 2 s u p { f f ( a ; - a ; o ) : a ; G ^ n } >0. 
II " n-i-oo 

dA 

From 4.1 and 4.3 we conclude 

4 . 4 THEOREM. If M C X is an open set and f G HiE(M), then f has 
differentiate in Frechet sense function le-primitive in a neighbourhood of 
any point of the set M. 

Let M C X and 70, 71 be the paths in M having a common interval 
of the parameters I = (0,1), common initial and terminal points zq and 
z\, respectively. These paths will be called homotopical ly equivalent or 
homotopic in M if there exists a continuous mapping h : I x I M such 
that /i(0, t) = 70 ( t ) , h(l,t) = Ji(t) and h(s, 0) = zo, h(s, 1) = z\ for s,t G I. 

If the paths 70 and 71 are closed, then they are said to be homotopic in 
M if h(s, 0) = h(s, 1) for s G In both cases we will write: 7o~7i (in M). 

Using the above results the proof of the following theorem can be ob-
tained in the similar way as the proof of its well-known counterpart from 
the classical complex analysis. 

4 . 5 THEOREM. Let M be a domain in X and f G Ti\c(M), 
(a) 1/70,71 € l(M) and -y0~1/i (in M), then jig f(z)dz = ¡^ f(z)dz; 
(b) for any x G M and for any path 7 G Iq{M) if - f x (in M), then 

J' f ( z ) dz = 0 (by x we denote here a constant path); 
(c) if M is simply connected, then J^ f ( z ) dz = 0 for any path 7 G Iq(M) 

and f has le-primitive function F G H\e(M). 
The proofs of the analogoues theorems of the classical complex analysis 

(cf. e.g. [5]) are based on the fact of the local existence of the primitive 
function to the holomorphic function in the domain M C C. In view of 4.4. 
the functions of the class Hi c (M) satisfy that property. 
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5. Surrounding sets 
Let A be an algebra with unity e and dim A" > 2. 
B y a fc-valent circle (k £ N) with a centre at the point 0 we mean a 

closed curve fi whose each point, except its common beginning and end, is 
fc-valent lying in some sphere and some two-dimensional linear subspace A'. 
I f xq € A , then a curve fi + xo is called fc-valent circle of the center x0. 

A set M C A' is called s u r r o u n d a b l e in X\M if: 
( 1 ) 0 G M, M has property ( * ) and X\M is not simply connected (We 

treat X\M as the topological space with induced topology); 
( 2 ) there exists a circle /i with a centre at zero such that N 0 M = 0. 
We say that a curve 7 s u r r o u n d s s e t M if 7 ( i n X\M). Then we will 

write: 7 s u r r M. I f /z is a fc-valent circle then we will say that 7 surrounds 
M fc-valent and we will write 7 s u r r ^ M . For some D C A by a symbol 
7 surrjt M (in D) there will be denoted the fact that 7 surr^ M and 7 * C D. 

For any x £ X and surroundable M the notat ion 7Surr(jV/ -f x) (in D) 
denotes: ( 7 — X)SUTTM (in D — a;). 

R e m a r k , ( a ) Obviously, if M is a surroundable set, then there exists a 
two-dimensional subspace (i.e. a plane) L such that M fl L = { 0 } (a circle 
/x lies in L). 

(b ) Let K = R , dim A' > 2 and let L be a linear subspace of A . T h e n 
there exists a linear subspace LC C A such that LC\LC = { 0 } and any element 
x G X can be uniquely expressed in the form: x = xl + xc, x1 € L, xc £ Lc. 
L° is called complementary to the subspace L. A map P i : I 3 1 m ' € i 
will be called a project ion on L (parallel to LC). I f PI is continuous, then 
PL is a retract ion of the X\LC onto £ \ { 0 } . 

Let us assume that dimZ,2 = 2. T h e n L\ is a surroundable set in X\L\. 
Taking for n any circle of the centre in 0 lying in Z-2 we have: ¡i surr (in 
L2). Moreover,/x surr M (in ¿ 2 ) ) where M is any union of the complementary 
subspaces to ¿ 2 - Also if z E and 7 = n + z, then 7 surr Z^ (in XXL^)-

Using the Mazur-Gel fand theorem we see that if A is a commutat ive 
Banach-a lgebra over R with unity e, then any maximal ideal M in this 
algebra is surroundable in L* if codim M = 2, and M is not surroundable 
in X* if codim M — 1. 

I f A is an algebra over C , then every maximal ideal M is surroundable 
in L*. Taking then any maximal ideal M we have that a plane LI = {Ae : 
A € C } is complementary to M. Every element x G A can be uniquely rep-
resented in the form: x = Ae -f xM, where xM £ M, Ae = x~\M)e = PL2(X), 
X"{M) is the Gelfand transformation. I f 7 s u r r M (in £ * ) , then PL2{I) = 

7 r ( M ) e and 'f(M)e surr A/ (in Z-2\{0}) . 
Let M C A \ L * be surroundable in L* and let 7 be a path in L* such 
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LEMMA 5.1. (a) 5 ( 7 , M, 7 ) is open. For any z £ X and t G R + 

f S ( 7 , M , 7) = 5(7 , M, <7) and z + S(7, M, 7) = 5(7 , + z). 
(b) For any ball B C X there exists a path 7 G lo(X) such that B C 

s(rt, m, 7). 
(c) If D C X is an open set and z G D, then there exists such 7 € /o(-D) 

that z G 5(7 , Af, 7). 
The above lemma follows promptly from the definition (5.1). It is obvious 

that for any path 7, 7* is a compact set. Thus, if 7 lies in L*, then it lies 
in Lg for some a > 0. Let us denote P1 := sup{a : 7* C X®}. Then P 7 > 0 
and P1 = i n f fP^ : x G 7*} (sec p. 1). 

6. Integral formula 
Now let X be a commutative algebra with unity e. In this case we will 

use a short notation: A'e(z) = z_1 for 2 € 20 = e, zn = ( z n - 1 ) 2 for 
nSN. 

Applying 2.5 we can easily prove the following 

6.1 THEOREM. If the functions f and g have the le-derivative at some 
point XQ 6 X , then the function fg has also the le-derivative there and 

D\efg(x 0) = f(x0)Dieg(x0) + g(x0)Dief(x0). 

6.2 THEOREM. Al
e E Hle{L*e). For any x € L* DieAl

e(x) = ~[A'e(x)]2. 

P r o o f . Let x G L*. If ||/i|| is sufficiently small, then x + h G L* and 
A'e(x + h)~ Al

e{x) = -hA'e(x)A'e(x + h). Hence 6xAl
e(h) = -h[A'e{x)}2. For 

h G L% we get 6xAl
e(h)Al

e(h) - ~[Al
e(x))2. Now it is enough to apply 2.3 

and 6.1. 
Let M C X\L* be surroundable in L* and 7 be a path in L* such that 

7 surri M . 

6.3 THEOREM. If D C A' is a convex domain and f G Hie{D), then for 
any path 7 G lo(D) and z G D (~l 5 (7 , M,7) 

where II^ = J £ 1 d£. 

P r o o f . Since 7* — z C L*, then there exists a number a > 0 such that 
7* C (Int L%-\-z)f\D := Da. Let us consider a function g{x) f(x)(x-z)~1 

for x G Da. From 6.1 and 6.2 we have g G H\e{Da). Let us remark that for 

(6.1) 
7 
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any s € (0,1) js := sf + z{\ - s) e l0(Da) and 7 / 7 0 n Da). Also 7S and 7 
lies in one component of the set Da. 4.5 implies that 

V = / $ ( £ ) # = Jg(t)dS 
7 7j 

= J / w e - z)-1 rfe + f [/(o - /(«)]«- d f . 
7« 7 

The last two integrals will be denoted by Ii and 12. Obviously /1 = 
Ilyfiz). For £ 6 7S* we have ||(£ - z)"1!! < a " 1 ^ - z\\~l (see (2.1)) and 
d := | 7 , | sup{||£ - : £ 6 7 ; } = | 7 | sup{||tj - z\\~l : r) € 7*} < 00. Hence 
and by continuity of / at the point z we get: 

||/2|| < da'1 sup{ | | / ( 0 - f(z)|| : £ € 7 . * } — 0 . 
«—•o 

Therefore I2 = 0. 
Using the above result and 5.1 (c) we can prove the following corollary. 

6 .4 COROLLARY. If D is an open set in A' , then for any ZQ £ D there 
exists a path 7 € IQ(D) and r > 0 such that equation (6.1) holds for z € 
B(z0,r) 

7. Taylor series 
Let us suppose now that A' is a Banach commutative algebra with unity 

e. In this case L = L* = r/(e) := G is the multiplicative group of invertible 
elements of algebra X. 

A function / is said to be analytic at the point zq € X if there exists 
a ball B — B(zo,r) (r > 0) and a sequence (an) of elements of A' such that 

00 

(7.1) f ( z ) = ^ an{z - z0)n for z e B. 
n=0 

A function / is said to be analytic in set D C X if / is analytic at 
every point of this set. A class of analytic functions in D will be denoted by 
AN(D). 

For fc, n € N0 and 2 € A' we have Dfezn = zn~k for k < n and 
Dfezn = 0 for k > n. 

Hence and from the well-known properties of power series we have 

7 .1 T H E O R E M . If the function f is a sum of the series (7.1) in certain 
ball B(zo,r), then there exists a ball Bq = B(zo,ri), 0 < ri < r, such that 
f e and for any k <= N and z e B 

00 , 
n=k ^ ' 
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Moreover 

an = ±D?ef(z0) /or » = 0 , 1 , 2 , . . . . 

Therefore if f 6 AN(D) for D C A', then Dfcf € AN(D) for any k € 
and AN(D) C Hf?(D). 

L E M M A 7 . 2 . Let 7 6e a curve in X and zq E X. If for some z 6 A ' 

(1) l*-zCG, r-ZoCG 

and 

(2) II*-*>| | < P 7 - * , d i s t ( 7 ' , 2 b ) :=H(j,z0), 

then for each £ £ 7* 

00 

n=0 which is uniformly convergent on 7*. 

P r o o f . If y ,y - x e G and xy_1 e -6(0,1), then 

(4) ( y - x ) - 1 ^ / ^ - 1 . 
71=0 

Obviously, y — x = y(e — x y - 1 ) . Hence 

00 

n=0 For £ € 7* we have: 

Putting x = z — zo and y = £ — zq in (4) we obtain (3). For fixed z there 
exists t E (0,1) such that ||z - zo|| = tll(f,z). Denoting by C„(£) the n-th 
term of series (3) we have 

l | c n ( o n < \ \ ( ' - z o r \ \ ll[(f - *o)~1]n+1ll < p ; - ; 0
1 [ [ " 1 ' s f f i • 

Hence 

Hmsup v f c ^ O H < P " ^ < t < 1 for any e e 7*. 

This completes the prof of uniformly convergence of series (3) on 7*. 
A class of such commutative algebras X with unity e for which there 

exists a set M C X\G surroundable in G will be denoted by (5). The (So) 
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denotes a subset of the class (5) including such algebras A' for which there 
exists M C X\G and 7 G Iq(G) such that 7surr M and /77 = / d£ G G. 

We can prove that if A' G {So), then the function 2 >-> exp 2 has a period 
ueG. 

Examples. In examples 2.8 (b), (d), (f) the algebras A' are of the class 
(5o) but in the (c) and (e) X £ (5). From remarks in the chapter 5, if X is 
an algebra over C, then X G (5). 

Let us now suppose that M C X\G is a surroundable set in G and 
let us fix a path 7 G lo{G) such that 7surri M. Applying Lemma 7.2 and 
Theorem 6.3 we easily obtain 

7 . 3 T H E O R E M . Let D C X be a convex domain, 7 G /o(-D)> zo € 
5(7, M,7) and f €Hie{D). Then 

00 

(7.2) n ^ f ( z ) = Y^bn(z-zo)n forze D n 5(7, M, 7) n B(zo, / / ( 7 , *o)), 
71=0 

where 

bn= f /(£)(£ - dt for n G No, and II^ = f f"1 

7 7 

Moreover for n G No 

m 11 < I isuP{ll/(OII : £ € T*} 

R e m a r k . Theorem 7.1 is equivalent to the Taylor theorem and inequal-
ities (7.3) are analogues to Cauchy ones. 

From Theorem 7.3 and Lemma 5.1 we obtain 

7.4 COROLLARY. If X G (5), D C X is an open set and f G Hie(D), 
then n^f G AN(D). 

7.5 COROLLARY. If X G (5o) and D C X is an open set, then 

Hle(D) = ANle(D) = ?C(£>). 

Obviously, 7.4 implies that H\e{D) C AN(D) and from 7.1 we have 
AiV(D) C H£(D). 

From 7.3 and 7.1 we have 

7 .6 COROLLARY. Let us suppose that X G ( 5 ) , D C X is a convex 
domain 7 G l0(D) and f G Hle(D). If z0 G D n 5(7, M, 7), then for any 
n G N 0 

A e W K * ) = n! / / ( 0 ( f - ^ , ) - B - 1 r f f 
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and there exists a neighbourhood U of the point zq in which 
OO 1 

1 1 ^ = £ - W l W M i * - « O - " - 1 -L—' n\ 
7 1 = 0 

In particular, if 17^ € G (i.e. A' € (So)), then 
oo 1 

f W = £ " A e / t o X * - - o r for z € U. n! 
7 1 = 0 

7.8 T H E O R E M . (Morera) . Let X € (5O). / / / a continuous function 
on the open set D C X and JdA f ( z ) dz = 0 on the boundary OA € /O(JD) O/ 
any triangle A C D, then f £ Ti\e(D). 

P r o o f . Let us fix z0 € D. From 4.1 it follows that / has the Frechet 
differentiable le-primitive function F in some neighbourhood U of the point 
z0. Since F e Hu(U), so F e AN(U) and / = DleF € Hle{U). 

Using the obtained results the proof of the following theorem is analogous 
to the proof of Liouville theorem. 

7 . 9 T H E O R E M . (Liouville). If X e (S0), / G *Hie(X) and f is bounded 
on X , then f is constant. 

8. Laurent series 
Let X be a Banach commutative algebra with unity e, and let G be the 

set of invertible elements of algebra X. 
The Laurent series of the center zo € X will be called the sum of the 

following series 
oo oo oo 

(8.1) £ a _ n ( 2 - z o ) - n + £ a n ( 2 - z o ) n : = £ 
n=l n=0 n= —oo 

where an (n = 0, ± 1 , ± 2 , . . . ) are fixed elements of the space A'. 
For any curve 7 : (a, 6) —» X let | |7||c := sup{||7(i)|| : t € (a, b)}. 

Similarly as in Lemma 7. 2 we can prove the following 

L E M M A 8 . 1 . Let 7 be a curve in X and zo € X. If for some z 6 X we 
have: 7* - z C G, z - z0 € G and \\z - ZQ\\PZ-Z0 > ||7 - z0||c, then for £ € 7* 

00 

n=0 

and this series is uniformly convergent on 7*. 
Let us assume that X € (5) , a set (7 is connected, M C is the sum 

of all sets surroundable in G and M is also surroundable in G. Let us fix 
7 € lo(G) such that 7 surr j M (in G). 
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Applying Lemmas 8.1, 7.2 and Theorem 6.3 we obtain 

8.2 THEOREM. If X € (5), the set G is connected, for some zo € X and 
r > 0 / G Wie(A'0(*o,r)), where K0(z0,r) = B(z0,r) n (G + 2o), then for 
any path f € lo(Ko(zo,r)) such that 7 surri(A/ + 20) we have 

00 

£ (z~zo)n J 
71— — OO 7 

/or 2 € /v0(20,r) H 5 (7 , A/,7) fl B(z0, II(f,z0)). Therefore a function Il^f 
is the sum of the Laurent series in some set A'o^o? r i ) i > 0. 

R e m a r k . 1. We now assume that the set G is not connected. For a 
certain set A and a £ A let Ga denote a component of the set G,G = 
( J a £ A G a and Ma is the sum of all sets surroundable in Ga. For a certain 
a 6 A let f a 6 lo(Ga) and 7asurriA/Q (in Ga). Moreover for z £ X 
and r > 0 we denote Kg(z,r) = B(z,r) n (Ga + z). We can prove that if 
/ 6 Hie(Kg(z0,r)), 7 e lo{Ko(zo,r)) and 7surri(Aia + 20) for some z0 6 X 
and r > 0, then for a certain r\ > 0 and any 2 6 Kg(zo, r i ) we have: 

00 
n,j(z)= £ (z-z0r J u r n - * r * - 1 

71= —OO 7 

where 

*oo = j m i t - z r ' d z - f / m - z ) - 1 ^ 
12 7l 

and f i , 72 are some curves satisfying the following relations: 

f i surri(A/Q + z0) (in z0 + Ga) and 72 surri(Afa + z0) (in z0 - Ga). 
2. From Theorem 2.2 it follows that if A' is a commutative algebra with 

unity e, D C X is an open set and / 6 H\e(D), then for any z 6 D D\ef{z) 
is the derivative of the function / at the point 2 in the Lorch sense ([3]). 

3. For any x G X we can analogously define the rc-inverse element y 
(right-hand-c-inverse; see page 2) and consequently we obtain rc-derivative 
and the r-integral. In this way we have an equivalent of Theorem 4.5. 
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