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NONRESONANCE FOR ELLIPTIC EQUATIONS 
UNDER NONLINEAR BOUNDARY CONDITIONS 

1. Introduction 
Let Q be a bounded domain in R n , n > 2, with smooth boundary dQ 

and let d/dn denote the outward normal derivative to dQ. We are interested 
in studying nonresonance conditions, in the spirit of the pioneering works of 
Dolph [3] and Landesman & Lazer [5], for the existence of a weak solution 
to problems of the form 

(BP) Au = 0 in Q, du/dn — a(x,u)u = f(x,u) on dQ. 

It will be proved that if 

liminf a(x,£), lim sup a(z, £) 
lil—°o 

lie strictly between two consecutive eigenvalues of the associated eigenvalue 
problem 

(EP) Au = 0 in Q, du/dn = Au on dQ 

then (BP) is solvable for functions / which are either sublinear or have linear 
growth with sufficiently small slope. Our results extend and complement 
earlier results for (BP) due to Chmaj & Majchrowski [2] and Klingelhofer [4]. 

Our method of proof is based upon Schauder's inversion method together 
with the a-priori bound principle. 

2. Preliminaries 
Thoughout this note, c denotes a generic constant. 
Let Wk = Wk,2(Q)(k = 1,2) denote the usual Sobolev spaces with 

norms || • H ^ defined by 

NU.2 = ( / E \Dau{x)\2dx)1'2 

n |a|<fc 
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and let 70 : W 1 —> L 2 ( d f i ) denote the trace operator. It is well known that 
there exists a constant c such that 
(1) 1170*112,81? < C|M|I,2 for all u £ W 1. 

Here ||-||2,ai? denotes the norm on L 2{dQ). The corresponding inner product 
on L 2(dQ) will be denoted by (-,-)2,dn-

Let denote the symmetric bilinear form associated with A: 
n 

B[u,v]= f ^ D i u D i v d x f o r a l l v € W 1 , ( D i = d / d x i ) . 

n «=1 
On W 1 the following equivalent norm and corresponding inner product will 
be convenient for our purposes: 

11*11?,2,0 = B[u, u} + bou\\ldn for all u £ W 1  

(2) (u,v)li2,o = B[u,v] + (70«, 701O2,9n for all u, v G W 1 . 

WQ will denote the Hilbert consisting of the set of functions u € W 1 with 
70 u = 0. (VKQ1)1 will denote the orthogonal complement of WQ in W 1 with 
respect to the inner product (2). 

We now recall some facts concerning eigenvalue problems of the form 
( 3 ) Au = 0 i n 0 , du/dn — a(x)u = au o n dfi 

where a € L°°(di2), a(z) < 0 for x G dQ. 

A real number a is said to be an eigenvalue, with corresponding gener-
alized eigenfunction <f> € (Wo)1 , for the eigenvalue problem (3) if 

B[<t>M ~ J a(x)7o<t> • 7ov dS = 0(70^,70^)2,9« for all v <E (Wo1)"1. 
9X7 

These eigenvalues form a nondecreasing sequence 0 < a j < < . . . , with 
a„ —> 00. The corresponding eigenfunctions are orthogonal and com-
plete in (WQ1 ) x , whereas the corresponding traces {fo4>i} form a complete 
orthonormal set for the space L 2(dQ). 

The smallest eigenvalue Qj is characterized by 

c*i = min «] - f a(x)(y0u) 2 dS^, ||to«||2,sj7 = 1, u G (VTo)-1-
dii 

whereas for n > 2, the n-th eigenvalue an is characterized by the Courant 
maximum-minimum principle 

an = min max(5[u,u] — f a(x)(7o«)2 dS). 
M€£„ u£M \ J J 

dn 

Here Cn is the class of all the sets S fl L, where S = {u € (Wo1)1 : 
||7o*||2,9fi = 1} and L is an arbitrary n-dimensional subspace of ( WQ ) 1 . 
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With respect to the linear inhomogeneous problem 

( 4 ) Au = 0 in Q, du/dn - a(x)u = f ( x ) on dQ 

we shall need the following existence result which is of independent interest. 

L E M M A 2 . 1 . Let a € L°°(dQ), f € L2{dQ) and suppose there exist real 

constants m, M and an integer N such that 

Ayy < m < a ( x ) < M < A^r+i for all x € dQ 

where are consecutive distinct eigenvalues of (EP). Then there 

exists a unique u £ W1 such that 

B[u, v] - J a(x)jou • jov dS = J f ( x ) d S f o r al l v 6 W1 

an dn 

i.e., ( 4 ) has a unique weak solution u € W1. 

P r o o f . Consider the bilinear form 

A[u,v] = B[u,v\— J a(x)foU ' lovdS, u, D G H ' 1 . 

91? 

By virtue of the Fredholm alternative for bilinear forms and the projection 
theorem, it suffices to show that u G (Wo)1, A[u,v] = 0 for all v £ (Wo)-1 

implies u = 0. 
In this direction, let { w j } , with W{ € (Wo)"1"' be the generalized eigen-

functions corresponding to the eigenvalues {/i j } of the eigenvalue problem 

( 5 ) Aw = 0 in Q, dw/dn - (a(x) — M)w = fiw on dQ 

and let { 7 ; } be the eigenvalues of the eigenvalue problem 

Az — 0 in Q, dz/dn — ( m — M)z = 7 2 on dQ. 

It follows, from the Courant maximum-minimum principle, that for each i 

K < Hi < 7« = A,- + M — m. 

In particular, 

f iN — M + m < A J v < m < M < Ajv+ i < 1 

which shows that M € (/X/V>MN+I)' M cannot equal /ij for any i. 

Since the {u>,} are generalized eigenfunctions of (5), we have 

A[u,Wi] + Af (7ou,7oWj)2,ai? = M«(7o«,7oW,)2 ,ai7 for all u 6 (Wo1)-1. 

Thus, for u satisfying r] = 0 for all v € (Wo1 )1 we see that 

Hi(70«,70^)2,9/7 = M(i0u,loWi)2,dn for all i 

which, in view of the completeness of the {70to,} and the fact that M ^ /¿; 

for each i, implies u € Wq fl (Wq)"1 , i.e., u = 0. • 
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3. Main results 
Formally, a function u £ Wl is a weak solution of (BP) if 

B[u,v\— J a(z, 7ou)you • lovdS = J f(x,f0u)i0vdS for all v £ W1. 
dn dn 

LEMMA 3.1. Let a,f : dfl x R -+ E 6e continuous functions. Then (BP) 
has at least one weak solution u £ W1 provided 

(i) There exists an integer N and real constants m, M such that 

Xn < m < a(x,£) < M < A jv+i for all x £ dfi, ( e E 

where AJV,AJV+I are consecutive distinct eigenvalues of (EP) and 
(ii) lim^i^oo / ( x , £ ) / £ = 0, uniformly for x £ dQ 

or 
(iii) There exist constants a > 0,/? > 0,R > 0 such that 

|/(x,f)| < " + for all x 6 0/2, > R 
with (3 sufficiently small. 

P r o o f . Let w £ W1. By Lemma 2.1 and elliptic regularity theory, the 
linear problem 

Au = 0 in J7, du/dn — a(x,w)u — f(x,w) on dQ 

has a unique weak solution u € W2. Thus, we can define a mapping T : 
W1 —>• W2 by Tw = u. Since a(x, 70w) is uniformly bounded for all w £ W1, 
the following standard a-priori estimatic holds: 

(6) |M|2 i2<c||/(-,7ow)||2,8fl for all u? £ W1 

where the constant c is independent of w. 
To complete the proof, we show that T has a fixed point by using the 

a-priori bound principle. In this direction we first show that T is continuous. 
Thus, suppose ||u>t — ^o||i,2 —* 0 as i —*• 00 and let u, = Twi for ¿ = 0 , 1 , 2 , . . . 
Clearly 

A(ui — uo) = 0 in Q 

d(u{ — uQ)/dn- a(x,Wi)(ui - u0) = 

f(x, W{) — f(x, wo) — (a(x, wo) — a(x, Wi)uQ on dQ 

in the weak sense. But this problem is of the same form as (BP) and hence, 
(6) implies 

11«. - «o||2,2 < c\\fi - f0 - (ao - a,i)7oUo\\2,dn 

< c(||(a0 - aj)7oUo||2,ai? + ||/« - /o||2,ar?) 

where we have set a,- = a(x, W{), fi = / ( x , w{) for i = 0 , 1 , 2 , . . . 
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Since a, f are continuous with respect to L2 convergence and u0 is finite 
a.e., it follows that ||uj — uo||2,2 - * 0. Thus T is continuous. Furthermore, 
since W2 is compactly imbedded in W1, the mapping T : W1 —»• W1 is 
compact. 

Finally we need to show that every solution of u = crTu is uniformly 
bounded in || • ||i)2, independently of a € [0,1]. To see this we first assume 
that (ii) holds. Then the continuity of / implies that for an arbitrary S > 0, 
there is a constant m j > 0 such that |/(x,OI ^ + m<5 f° r all f (E R. An 
application of Minkowski's inequality yields 

( f \ f { x , i 0 u ( x ) ) \ 2  d s ) 1 / 2 < + ^ll7oM||2,ar? 

dfi 

where \dfi\ denotes the n — 1 dimensional measure of dfi. Combining this 
with (1) and (6) we have 

IM|I,2 = lkr«||i,2 < Cim5 + C2<5||u||1)2 

where C\, c2 are positive constants independent of u. Now by choosing 6 
small enough so that (1 - c2£) > 0 we arrive at the desired bound. 

Clearly a similar analysis is valid if (iii) holds. • 

Under hypothesis (ii) we can relax condition (i) as follows. 

T H E O R E M 3 . 2 . Let a,f : dfi x R - » R be continuous functions. Then 
(BP) has at least one weak solution u € Wl provided 

(i) There exists an integer N and real constants m, M such that 

< m < liminf a(x,£) < limsup a ( z , f ) < M < Xn+i 
l iH 0 0 oo 

for all x € dfi and 

(ii) lim^i^oo /(x,£)/£ = 0, uniformly for x G dfi. 

P r o o f . By (i) there is a number r > 0 such that 

(7) m - e < a(x,£) < M + s 
for x € dfi, |£| > r, where e is such that A ¡v<m — e, M + e< Ajv+i-
Following Ahmad and Salazar [1], we define functions a and / as follows: 
Let 4> = 4>(£) be a continuous function on R satisfying <£(£) = 1 if |£| < r; 
0 < <f>(0 < 1 if r < | < dr < < 2r; and <£({) = 0 if > 2r. Set" 

{m if | < r 

m ^ ( 0 + a(x, 0 ( 1 - ^ ( 0 ) i f r < | f | < 2 r 
a ( x , 0 i f | i l > 2 r and / ( * , o = [ a ( * , 0 - « ( * , O K + /(*,£)• 
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Then a : dQ x R —• R is continuous and satisfies (7) for all (x ,£) £ (Oil, R), 
whereas / : dQ X R —*• R is continuous and satisfies condition (ii) of 
Lemma 3.1. Since (BP) is equivalent to the boundary value problem 

Au = 0 i n Q, du/dn — a(x, u)u = f ( x , u ) o n dQ 

the desired result follows from Lemma 3.1. 

R e m a r k . Let dQ = So U Si U 52 where mes(So) = 0, mes(Si) > 0 
and mes(S2) > 0. Then analogous results hold for the more general mixed 
problem 

I £ | i | .M<i Di(a.ij(x)Dju) = 0 in Q, 

\ u = 0 o n Si, du/dv — a(x, u)u = f ( x , u) o n 

where iijj — (iji real-valued functions of class CM, the matrix [a,j] is 
positive definite, ao,o < 0 and d/dv denotes the outward conormal derivative 
to S2-

R e m a r k . Analogous results also hold for corresponding higher order 
problems such as the biharmonic problem 

A2u = 0 in fi, 
du/dn = 0 , dAu/dn - a(x, u)u = / ( x , u) o n dQ. 
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