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NONRESONANCE FOR ELLIPTIC EQUATIONS
UNDER NONLINEAR BOUNDARY CONDITIONS

1. Introduction

Let 2 be a bounded domain in R®, n > 2, with smooth boundary 912
and let 3/0n denote the outward normal derivative to 3f2. We are interested
in studying nonresonance conditions, in the spirit of the pioneering works of
Dolph [3] and Landesman & Lazer [5], for the existence of a weak solution
to problems of the form

(BP) Au=0 in 2, OJu/On - a(z,u)u= f(z,u) on J12.
It will be proved that if

1|I§I|n inf a(z,€), limsupa(z,§)
—00 £|—o0

lie strictly between two consecutive eigenvalues of the associated eigenvalue
problem

(EP) Au=0 in 2, 0Ou/On=Au ondf?

then (BP) is solvable for functions f which are either sublinear or have linear
growth with sufficiently small slope. Qur results extend and complement
earlier results for (BP) due to Chmaj & Majchrowski [2] and Klingelhofer [4].

Our method of proof is based upon Schauder’s inversion method together
with the a-priori bound principle.

2. Preliminaries

Thoughout this note, ¢ denotes a generic constant.

Let Wk = Wk2(2)(k = 1,2) denote the usual Sobolev spaces with
norms || - ||x,2 defined by

lullea = ( [ Y IDu(@)?dz) "

2 laj<k
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and let v9 : W' — L?(812) denote the trace operator. It is well known that
there exists a constant ¢ such that

(1) Il‘)’oU”g,an < c||u||1,2 for all u € Wl.

Here ||-[|2,00 denotes the norm on L?(942). The corresponding inner product
on L?(802) will be denoted by (+,+)2,50-
Let B[-,-] denote the symmetric bilinear form associated with A:

n
Blu,v] = f E D;uD;vdz for all u,v € W', (D; = 8/0x;).
7 i=1
On W1 the following equivalent norm and corresponding inner product will
be convenient for our purposes:

llullf 2,0 = Blu, u] + [lvoull} 50 for all w € W?
(2) (u,)1,20 = Blu,v] + (10U, Yov)2,00 for all u,v € W
W{ will denote the Hilbert consisting of the set of functions u € W?! with
You = 0. (W3 )L will denote the orthogonal complement of W{} in W with

respect to the inner product (2).
We now recall some facts concerning eigenvalue problems of the form

(3) Au=0 inf2, Ou/On-a(z)u=au on Jf2
where a € L®(812), a(z) < 0 for z € 912.

A real number « is said to be an eigenvalue, with corresponding gener-
alized eigenfunction ¢ € (W¢ )1, for the eigenvalue problem (3) if

Bl¢,v] — f a(z)Y09 - Y0vdS = a(709,70v)2,80 for all v € (W) .
a0
These eigenvalues form a nondecreasing sequence 0 < a3 < a2 < ..., with
a, — 0. The corresponding eigenfunctions {¢;} are orthogonal and com-
plete in (W)L, whereas the corresponding traces {yo¢:} form a complete
orthonormal set for the space L2(912).
The smallest eigenvalue a; is characterized by

a1 = min (B[u, u] - f a(z)(you)? dS), Ivotllzon =1, we (W)t
an
whereas for n > 2, the n-th eigenvalue a, is characterized by the Courant
maximum-minimum principle

= : — 2
an = min max (B[u,u] a}])‘ a(z)(you) dS).

Here L, is the class of all the sets $ N L, where § = {u € (W})* :
l7o|l2,02 = 1} and L is an arbitrary n-dimensional subspace of (W{¢)*.
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With respect to the linear inhomogeneous problem
(4) Au=0 in 2, OJu/dn-a(z)u= f(z) on OR2
we shall need the following existence result which is of independent interest.

LEMMA 2.1. Let a € L®(802), f € L*(92) and suppose there ezist real
constants m, M and an integer N such that

AN<m<a(z) <M< ANy for all z €012

where Ay, An41 are conseculive distinct eigenvalues of (EP). Then there
erists a unique u € W' such that

Blu,v] — f a(z)vou - yovdS = f f(z)vovdS forall v e W!
Yo} 20
i.e., (4) has a unique weak solution u € W1,
Proof. Consider the bilinear form
Alu,v] = Blu,v] - f a(z)you - yovdS, u,ve€ W
a0

By virtue of the Fredholm alternative for bilinear forms and the projection
theorem, it suffices to show that u € (W})*t, A[u,v) = 0 for all v € (W})*
implies u = 0.

In this direction, let {w;}, with w; € (W{)*, be the generalized eigen-
functions corresponding to the eigenvalues {u;} of the eigenvalue problem

(5) Aw =10 in 2, Ow/0n— (a(z)— M)w = pw on 312
and let {;} be the eigenvalues of the eigenvalue problem
Az=0 inf2, 0z/0n—(m—M)z=~z ondf.
It follows, from the Courant maximum-minimum principle, that for each ¢
Aifpi<yi= A+ M—-m.
In particular,
UN—M4+m AN <m <M< Angr S pUN+1

which shows that M € (un,pun+1), i-e., M cannot equal yu; for any i.
Since the {w;} are generalized eigenfunctions of (5), we have

Alu, wi] + M(y0u, Yowi)2,00 = pi(Yot, YoWila,0n  for all u € (W)™
Thus, for u satisfying A[u,v] = 0 for all v € (W})! we see that
Hi(Y0u, Yowi)2,02 = M(7y0u,Yowi)2,00 forall i

which, in view of the completeness of the {yow;} and the fact that M # pu;
for each ¢, implies v € W{ N (W{)t,ie,u=0. =



420 D. R. Dunninger

3. Main results
Formally, a function u € W! is a weak solution of (BP) if

Blu,v] - f a(z,vou)you - YovdS = f f(z,v0u)yvdS for all v € W.
X! a0

LEMMA 3.1. Let a, f : 02 x R — R be continuous functions. Then (BP)
has at least one weak solution u € W' provided

(i) There ezists an integer N and real constants m, M such that
AN<m<La(z, ) SM<Any1 forallzedf2, E€R

where AN, An4+1 are consecutive distinct eigenvalues of (EP) and
(ii) limgj o0 f(2,€)/€ = 0, uniformly for z € 02
or
(iii) There ezist constants a > 0,3 > 0, R > 0 such that
|f(z,6)| <a+ €l for all z € 092, |£| > R
with B sufficiently small.

Proof. Let w € W!'. By Lemma 2.1 and elliptic regularity theory, the
linear problem

Au=0 in 2, Ju/0n-a(z,w)u= f(z,w) on dN

has a unique weak solution u € W2. Thus, we can define a mapping 7T :
W! — W? by Tw = u. Since a(z,yow) is uniformly bounded for all w € W1,
the following standard a-priori estimatic holds:

(6) 1Twll2,2 < el f(-;v0w)ll2,00  for all w € W*

where the constant ¢ is independent of w.

To complete the proof, we show that T has a fixed point by using the
a-priori bound principle. In this direction we first show that T is continuous.
Thus, suppose ||w; —wpl|1,2 — 0 as ¢ = oo and let u; = Tw; fori = 0,1,2,...
Clearly

A(ui—ug)=0 in £
O(u; — up)/0n — a(z,w;)(u; — up) =
f(z,w;) — f(z,wo) — (a(z, wo) — a(z, w;)up on 12
in the weak sense. But this problem is of the same form as (BP) and hence,
(6) implies
llui — woll2,2 < cllfi — fo — (a0 — ai)r0uo||2,00
< e(ll(ao — a:)vouoll2,02 + | fi — foll2,62)

where we have set a; = a(z,w;), fi = f(z,w;) for i =0,1,2,...
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Since a, f are continuous with respect to L? convergence and ug is finite
a.e., it follows that ||u; — ugl|2,2 — 0. Thus T is continuous. Furthermore,
since W? is compactly imbedded in W1, the mapping T' : W! — W' is

compact.
Finally we need to show that every solution of v = ¢7Tu is uniformly
bounded in || - ||1,2, independently of o € [0,1]. To see this we first assume

that (ii) holds. Then the continuity of f implies that for an arbitrary § > 0,
there is a constant ms > 0 such that |f(z,€)| < é|€| + ms for all £ € R. An
application of Minkowski’s inequality yields

1/2
([ 17 v0u@)Pds) " < meldR? + 8llvoull 00
]

where |0§2| denotes the n — 1 dimensional measure of J2. Combining this
with (1) and (6) we have

lulliz = lloTull12 < exms + c26]fulls 2
where ¢;,c; are positive constants independent of u. Now by choosing §

small enough so that (1 — c26) > 0 we arrive at the desired bound.
Clearly a similar analysis is valid if (iii) holds. m

Under hypothesis (ii) we can relax condition (i) as follows.

THEOREM 3.2. Let a, f : 012 x R — R be continuous functions. Then
(BP) has at least one weak solution u € W' provided

(i) There ezists an integer N and real constants m, M such that
AN<m< llufunfa(z ,€) Llimsupa(z, ) < M < Any1

[}—o0

for allz € 002 and
(i) limg)~ oo f(2,£)/€ = 0, uniformly for z € 012.
Proof. By (i) there is a number r > 0 such that
(7 m-—e<a(z,§) < M+e
for z € 092, || > r, where ¢ is such that Ay < m —¢, M te < Antr.
Following Ahmad and Salazar {1], we define functions @ and f as follows:

Let ¢ = ¢(£) be a continuous function on R satisfying ¢(¢) = 1 if |¢| < r;
0<@(6) S Tif r < [€] < Jr < |€] < 2r; and $(€) = 0 if |¢] > 2r. Set

iflg|<r
i(2,6) = { ma(€) + a(z, E)(1 - $(€)) if r < [€] < 2r
o(z, ) if [§] > 2r

and

f(z,€) = [a(z,€) - &(z, )6 + f(=, ).
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Then @ : 32 XR — Ris continuous and satisfies (7) for all (z,£) € (092, R),
whereas f : 02 x R — R is continuous and satisfies condition (ii) of
Lemma 3.1. Since (BP) is equivalent to the boundary value problem

Au=0 in 2, 0u/dn-a(c,u)u= f(z,u) on df
the desired result follows from Lemma 3.1.

Remark. Let 82 = Sp U S; U S; where mes(Sp) = 0, mes(S;) > 0
and mes(S2) > 0. Then analogous results hold for the more general mixed

problem

v =0on 51, Ou/Ov — a(z,u)u = f(z,u) on S
where a;; = aj; are real-valued functions of class C 131, the matrix [ai;] is
positive definite, ag o < 0 and 3/0v denotes the outward conormal derivative
to Sz.

Remark. Analogous results also hold for corresponding higher order
problems such as the biharmonic problem

A’u=0in 02,
O0uf/dn =0, 0Au/0n — a(z,u)u = f(z,u) on 312.
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