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T H E T H R E E - P A R A B O L I C P R O B L E M FOR 
T H E H A L F - U N B O U N D E D D O M A I N W I T H CURVILINEAR 

B O U N D A R Y C O N D I T I O N S OF LAURICELLA T Y P E 

1. Formulation of the problem 

The subject of the paper is the construction of a solution of the equation 

(1) P3u(x,t) = f(x,t), P3 = P(P2), P2 = P(P), P = Dl-Dt 

in the domain 

D = { (z , i ) : x > p(t), t 6 (0,T), T < oo}. 

satisfying the initial conditions 

(2) D\u(x,0) = fi(x), ¿ = 0,1,2 for x > p(0) 

and the boundary conditions 

(3) Diu{p{t),t) = hi+1(t), i = 0,1,2 for t € (0,T), 
(4) D{

xu{oo,<) = 0, ¿ = 0,1,2 for t 6 (0,T), 

where / , / , - , j = 0,1,2, hk, k = 1,2,3, are given functions. 

2. Motivation of the considered problem 
In [10] and [2] similar problems for the equation P3u = / for the time-

spatial curvilinear trapezium and for n-dimensional half-space are treated. 
In [1] and [11] similar problems for bicaloric equation are given. 
In the monograph [5] similar problem for the equation Pu — f with 

initial and boundary conditions was solved. In [12] the similar problem for 
the biparabolic equation with limit conditions of Lauricella type was treated. 

In the monograph [11], vol. II, p. 235 the biparabolic Cauchy problem 
was solved. 
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In [3] and [4] the similar biparabolic problems for the curvilinear trapez-
ium and for the strip are treated respectively. In [15] the nonlinear bi-
parabolic problem was solved . In [6] and [7] the three-parabolic problem for 
three-dimensional cylinder with boundary conditions of Riquier type and 
for the strip with boundary conditions of Lauricella type was solved respec-
tively. 

In [8] and [9] the polyparabolic problems with boundary conditions of 
Lauricella type for the quart-time-plane and for the strip was treated re-
spectively. 

3. Some definitions 
In the sequel C,Cj , i € N , denote positive constants. 

DEFINITION 1. Denote by (A'I) the class of all functions u : D — R , 

such that u{x,t) € C6'3{D) fl C2'2(D U S) and D\.u,D\u G B(D), t = 0 ,1 ,2 , 
where 5 = : x = p(t), t € (0 ,T) } , and B(D) denote a class of all 
functions u bounded in D, such that D'xu(oo,t) = 0, i = 0,1,2, / G (0, T]. 

DEFINITION 2. Denote by (A'2) the class of all functions p : [0,T] -»• R, 
such that p e C 2([0,T]), Dtp(t) > 0 for te [0,T]. 

DEFINITION 3. Denote by (A'3) the class of all functions / : Di —> R, 
Di = { ( x , 0 ) : x > p(0)}, such that / € C6{Di) D C 2 ( A ) and Di.f(p(0)) = 
Dif(oo) = 0, ¿ = 0,1,2. 

DEFINITION 4. Denote by (A'4) the class of all functions h : [0,T] R, 
such that h € C 3([0,T]) and D\h{0) = 0, i = 0,1,2. 

DEFINITION 5. Denote by (A'5) the class of all functions F : D R, 
such that F € C2,1{D) and comp.supp F C D. 

4. Reduction of the initial conditions to the homogeneous ones 

Let us consider the function 

w(x,t) = u(x,t) — r(x,t) 

where 
r{x,t) = f0(x) + tf1(x)+11t2f2(x). 

LEMMA 1. I f p e ( A ' 2 ) , /,• € ( A ' 3 ) , i = 0 , 1 , 2 , h i + 1 e ( A ' 4 ) , i = 0 , 1 , 2 and 
u € ( A ' i ) is a solution of the problem ( l ) - ( 4 ) , then w 6 (ATi) and satisfies 
the conditions 

( la) P3w(x,t) = F(x,t), F{x,t) = f(x,t) - P3r(x,t), (x,t) G D, 
(2a) D\w(x,Q) = 0, ¿ = 0 ,1 ,2 , x > p(0), 
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(3a) D'xw(p(t), t) = Hi+1(t), Hi+1(t) = hi+1(t) - D'xr(p(t), t), 
i = 0,1,2, 

(4a) Dxw(oo,t) = 0, ¿ = 0,1,2, t € (0,T). 

Conversely. If the function w 6 (A'i) and satisfies (la)-(4a), then the func-
tion u = (w + r) £ (A'i) and is a solution of the problem ( l)-(4). 

We omit the simple proof. 

5. Potentials Wi 
Let us consider the potentials 

t 
wi(x, t) = A f qi{s)(t - s)3/2 exp(B(t, s)(x - p{s))2) ds, 

o 
t 

w2(x,t) = A f q2(s)(t - sy/2(x - p(s))exp(B(t,s)(x - p(s)f)ds, 
0 t 

w3(x,t) = A f q3(s)(t - s)-1'2^ - p(s))2)exp(B(t,s)(x - p(s))2)ds, 
0 

t oo 

Wi(x,t) = A f f F(y,s)(t-s)3/2exp(B(t,s)(x-y)2)dyds, 
0 p(4) 

wl(t) = w4(p(t),t) = 
t t 

= A J J F(y,s)(t-s)3/2exp(B(t,s)(p(t)-y)2)dyds, 
0 p(a) 

DxWi{p(t),t) = wj'^i) = 
J t oo 

= 2 A f I F(y,s)(t-s)1/2(p(t)-y)exp(B(p(t),y)2)dyds, 
0 P(s) 

t oo 

D2xwA(p(t),t) = w24'1(t) = -2A f J F(y,s)(t- s)3/2B(t,s)x 
0 p(s) 

x ( l - 2B(t,s)(p(t) - y)2)exp(B(t,s)(p(t) - y)2)dyds, 
t oo 

D2xWi(p(t),t) = wl'2(t) = 2A J J F{y,s){t-s)3/2B(t,s)x 
0 p(4) 

x ( l - 2B(t,s)(p(t) - y)2)exp(B(t,s)(p(t) - y)2)dyds, 
where A = (jt)_1, B(t,s) = ( - 4 ( t - s ) ) - 1 , qi(s), i = 1,2,3, are unknown 
functions continuous for s 6 [0,T]. 
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6. Properties of the potential W4 

Lemma 2. If /,• G (A'3), hj G (A'4), i = 0 , 1 , 2 , j = 1 ,2 ,3 . F G (A' s) and 
if F(p(s),s) = f (oo ,3) = 0, DyF(p(s),s) = DyF{oo,s), DsF{y, 0) = 0, 
then: 

1° P 3 W 4 ( X , i ) = F(x, t) for (x, t) € 

2° Dju^iz , 0) = 0, i = 0,1,2, x € (p(0), 00), 
3° there exist the boundary functions w\, continuous for t G [0,T]. 
4° Dj . t i ;4(oo ,f) = 0, i = 0 , 1 , 2 , t G [0,T], 

P r o o f . Ad 1°. Let us consider the integrals 
t 00 

Ii(x,t) = A j J F(y,s)(t-s)3/2Diexp(B(t,s)(x-y)2)dyds, ¿ = 0 , 1 , 2 

0 p(s) 

and let 

F(y ,s ) = F(y ,s ) for ( y , s ) e D and 
F(y,s) = 0 for (y,s) G ((-00,00) X [ 0 , T ] ) \ D . 

For j = 0 we have 
t 

| i j (* , t ) l < ¿ (^up |F|) f ( t - s)3/2
 ds = C0t5/2 ds = C0ts/2 < C0T5'2. 

D(T) 0 

Consequently the integral I°(x,t) is locally uniformly convergent for x £ 

[p(.s),oo), s G (0,T] and is continuous for x = p(t), t G [0,T]. i.e. 

i°(P(t),t) = w\(t) e c([o,T}). 

For j = 1 we have 
t 00 

l l ( x , t ) = - A J f F(y,s)(t - s)3/2(Dyexp(B(t,s)(x - y)2)dyds = 

0 p(s) 

y=oo 
ds+ 

y= — oo 
= - A f F(y,s)(t-sf/2exp(B(t,s)(x-y)) 

0 

t 00 

+ A f f (DyF(y,s))(t - s)3'2 exp(B(t,s)(x - y)2) dyds = 

0 - 0 0 
i 00 

= A J J ( D y F ( y , s ) ) ( t - s f ' 2 e x p ( B ( t , s ) ( x - y ) 2 ) d y d s . 

0 - 0 0 

Consequently lj(x,t) is locally uniformly convergent for x = p(t) and 
Dxu>i(p(t),t) = w\(t), are continuous for t G (0,T]. 
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For j = 2, we have 
t oo 

li(x,t) = A f f (D2yF(y,s))(t - s)3'2 exp(B(t,s)(x - y)2)dyds. 
0 p(s) 

Similarly as for I}(x, t) the integral / | (x ,<) is locally uniformly convergent 
for x G [p(.s), oo), s 6 (0, T] and is continuous for x = p(t), i.e. 

D2xw4(p{t),t) = w2(t)eC([Q,T)), 
For w4(x,t) = I$(x,t) ,we have 

PI°4(x, t) = D2xI°4(x, t) - DtI°4(x, t) = 
i oo 

= A J f {F(y,s)(t-s)3'2D2xexp(B(t,s)(x-y)2)-
0 - o o 

- F(y, s)Dt[(t - s ) 3 ' 2 exp(5(i , s)(x - y)2)]} dy ds = 
t oo 

=A J jF(y,s)[Dl[(x-sf/2exp(B(t,s)(x-y)2)}-
0 - o o 

- Dt[(t- s)V2exp(B{t,s)(x - y)2)]]dyds = 
t oo 

= A f f F(y,s)[D2J(t-s)2(t-s)-1/2exp(B(t,s)(x-y)2)]]-
o p(s) 

- Di[(t - s)2(t - s)~1/2 exp(B(t,s)(x - y)2)] dyds = 
t oo 

= A f f F(y,s){(t-s)2D2x[(t-Srl'2exp(B(t,s)(x-y)2)}-
0 p( 3 ) 

- (t - s)2Dt[(t - s)'1'2 exp(B(t, s)(x - j ,)2)]-
- 2(t - s)[(t - s)~l>2 exp(B{t, s)(x - i/)2)]} dy ds = 

t oo 

= - 2 A J J F(y, s)(t — s)v(x, y, t, s) dy ds, 
0 p(s) 

where 
v(x,y,t,s) = (t- s)-1'2 exp(B(t,s)(x - y)2). 

Similarly 
t oo 

P2I°(x,t) = -2A J ¡F(y, s)v(x,y,t,s) dyds 
0 p(s) 

and by Poisson theorem [11], vol. I, p. 522, we obtain 

P3I?(x, t) = F(x, t) for (z, t) G D. 
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Ad 2° We have the estimations 
t 

K 0 M ) l < c J (t- sf'2 = Cif5/2 < CiT5'2, 

o 
t 

( 5 ) | D t w A ( x , t ) \ < C 2 J (t- sf!2 ds = C3t3/2 < C3T3'2, 

o 
t 

ID2Wi{x,t)\ < C 4 J (t - s)-1'2 ds = C5tV* < C$T1!2. 

o 
By (5) we obtain the assertions 2° and 3°. 

Ad 4°. Let M = suppF = {(x, i) : p(t) + ai < x < a2? a2 < For 
j = 0, we have 

K 0 M ) l = 
t 02 

< 

< 

A / J F ^ X i - ^ e x p ( - ^ r f f ) ¿ I f * 

c I I ( t - s y C ' - v X t - v ) - 1 * * p ( ~ ( x ~ v ) 2 
n .1 i - V 0 p(«)+ai 

t 0.1 

C I I ^ y ( t - s ) 1 / 2 

t 02 

4 ( t - s ) 
dy ds < 

1 (x-v) ( d Z z v t ] d y A a 

t U2 1 "2 "I 
C f f tfyds < C f f 

J J X — V " J r . — n.n 
0 p(a)+Oi * o p(i)+ai 

4(t - S) 

t 02 

X — 0,2 

< 

= Ct—-—(02 — p(s) — (ii) < CT— > 0 as x —> oo. 
x — a.2 x — a 2 

7. Properties of the potentials Wi for i = 1,2,3 

LEMMA 3. If qi(s) <= C([0,T]), gf(0) = 0, i = 1,2,3, then: 

1° P3Wi(x,t) = 0 for (x,t) 6 D,i= 1,2,3, 

2° £>^¿(1,0) = 0 for x G (p(0),oo), k = 0,1,2, i = 1,2,3, 

3° Dhxwi(p(t), t)eC([0,T)),k = 0,1,2, i= 1,2,3, 

4° Dtwi(oo,t) = 0 ,te [0,T], k = 0,1,2, i = 1,2,3. 

P r o o f . Ad 1°. For the function w\ we have 

Pwi(x,t) = D2xwi(x,t) - Dtwi(x,i), 
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D2xw1(x,t) = 
t 

= Af q1(s)(t-s)3/2B2xexp(B(t,s)(x-p(s))2)ds = 
o 

t = A f g1(s)(t-s)2D2J(t-s)-1/2exp(B(t,s)(x-p(s))2)]ds = Jn(x,t), 
o Dtwx(x,i) = 

= lim qi(s)(t - s)3'2 exp{B{t, s){x - p{s))2) + In(x, t) = Iu{x, t), 
S—ft 

where 

In(x,t) = 
t 

= A J qi(s)Dt[(t-s)2(t-s)-1/2exp(B(t,s)(x-p(s))2)]ds = 
o 

= Af qi(s){[(t - s)2(t - 8r1'2 exp(B(t, s)(x - i>(*))2)]+ 
0 

+ 2(t - s)[(t - s)~ll2 exp{B(t, s)(x - p(s))2)]} ds. 
PWl(x,t) = 

t = Aj qi(S)[(t-s)2[DlV(x,t,s)~DtV(x,t,s))+ 
o 

t + 2(t-s)V(x,t,s)]ds = 2 f qi(s)(t — s)V(x,t,s)ds. 
o 

P2
Wl(x,t) = 

t = 2 f q1(s)[(t-s)D2xV(x,t,s)-(t-s)D2tV(x,t,s) + V(x,t,s)]ds = 
0 

t = 2 f q1(s)V(x,t,s)ds, 
0 

where V(x, t, s) = (t - s)~1/2 exp(B{t, s)(x - p(s))2). 
By [10], vol. I, p. 484, we obtain P3wl{x,t) = 2 J* q1(s)PXtiV(x,t,s) = 0. 
For the function we have 

w2(x,t) = A f q2(s)(t-s)2[((x-p(s))(t-s)-V2)x 
o 

x exp(B(t, s)(x - p(s))2)] ds, 
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Pw2(x,t) = A f q2{s){t-s)2[D2xW(x,t,s)]ds-
o 

t 
-A J q2(s)[(t-s)2DtW(x,t,s) + 2(t-s)\V(x,t,s)]ds 

o 
t 

= 2A J q2(s)(t- s)W(x,t,s)ds, 

where 

W(x, t, s) = ((x - p(8))/(t - s)3'2) exp(B(t, s)(x - p(s))2), 
t 

P2w2(x,t) = 2A J q2(s)(t — s)D2W(x, t, s) ds— 
o 

t 
-2A J q2(s){t-s)DtW(x,t,s)ds-

o 
t t 

-2A J q2(s)W(x ,t,s)ds - 2A J q2(s)W(x,t,s) ds, 
o o 

t t 
Pzw2{x,t) = - 2 A J q2(s)D2xW(x,t,s)ds + 2A f q2(s)DtW{x,t,s)ds = 

0 0 
t 

= 2A J q2(s)[-D2xW{x,t,s) + DtW(x,t,s)}ds = 0. 
o 

For the function w3, we have 

t 
w3(x,t) = A f q3(s)(x -p(s))2V(x,t,s)ds, 

0 
t 

Pw3(x,t) = A J q3(S)[(x-p(S))2D2xV(x,t,s) + 4(x-p(S))DxV(x,t,S)+ 
0 

t 
+ 2V(x,t,s)]-A J q3(s){x - p(s))DxV(x,t,s)ds = 

0 
i t 

= A J q3(s)4(x-p(s))DxV(x,t,s)ds + 2A f q3(s)V(x , t, s) ds, 
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t 
P2w3(x,t) = P(Pw3(x,i)) = AP f q3(s)V(x,t,s)ds+ 

0 
t 

+ A J q3(s)[8DlV(x,t,S) + 4(x-p(s))DlV(x,t,s)-
o 

t 
-4(x-p(s))D2xDtV(x,t,s)]ds = 8A J D2xV(x,t,s) ds, 

o 
t 

P3w1(x,t) = 8A J PxtD2xV(x,t,s)ds = 
o 
t 

= 8A J D2xPxtV(Pl(s),t,s)ds = 0. 
o 

Ad 2°. Obviously wi(x,0) = 0, because 
t t 

Ms.OI^Ce/ ( t - s f ' 2 d s < - { t - s f l 2 < CS7/2 < C7T5'2, 
o o 
t 

\DtWl{x,t)\ < C8 f (t - s)-1/2 ds < Cgi1^2 < CgT1/2 , 

< A f qi(s)[C10(t - s)-1'2 exp(B(x - p(s))2)+ 
o 

+ Cn(t ~ sy'2(x - p(s))2(t - s)~2 exp(B(t, s)(x - p(s))2)+ 
+ C12(t - sf'2{x - p(s))2(t - s)~3 exp(B(t, s)(x - p(s)2)+ 
+ C13(x - p(s))4(t - s)-5'2 exp (B( t , s)(x - p(s))2)] ds. 

We have the estimations 
t 

\A f q^CMt-sr^expiB^sXx-pis))2)!^ 
o 

< C14 f ( t - s)'1'2 ds < Cntx'2 < C1ST1/2, 
o 

t 
CuA f 9l(s)(x - p(s))2(t - s)l'2(t - s)~2 exp(B(t,s)(x - p(s))2)ds 

o 

< C 1 6 J ^ - 0 ^ ( t - s r l ' 2 e x p ( B ( t , s ) ( x - p ( s ) ) 2 ) d s < 
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< C17 f ( t - s)~1'2 ds < Clst1/2 < CisT1/2 . 
0 

Similarly 
t 

C U A f q 1 ( s ) ( t - s ) 3 / 2 ( x - p ( s ) ) 2 ( t - s ) - 3 e x p ( B ( t , s ) ( x - p ( s ) ) 2 ) d s < 

< C^'2 < C19T1/2 

and 
t C13A J qi(s)(x-p(s))4(t-s)-^2

Gxp(B(t,s)(x-p(s))2)ds\< 
0 

< C W 1 / 2 < C20TV2. 

Similarly we obtain assertion 2° for W{, i = 2,3. 
Ad 3°. Analogously as for 2°, in the proof of assertion 1°, we obtain the 

estimations 

(6) \D*Wi(x,t)\<C2ita <C2iTa, k = 0,1,2, i = 1 ,2 , . . . ,6 , 

where a being a positive number. 
By (6), we obtain the assertion 3°. 
Ad 4°. Let Ufa t) = £ gi(s)(t - s^-WHx - p(s)) ' -1 exp(5(i, s) x 

x(x - p(s))2) ds, t = 1 , 2 , 3 , j = 0 , 1 , 2 . 
Dividing and multiplying the kernels of the integrals j by the function 

(x 

we obtain 

IDiwi(x,t)\<C f (t-s)1-*-i£cn(z-p(s)y-n+1x 
0 n=0 

x exp s)(x - p(sds < 
3 t <C(x-p(s))-1^2(x-p(s))~n f ( t - , s ) n - , ' - * + * - 1 x 

n-0 

(x - p(s)) ( 1 
(t 

< [ c ¿ ( x - p(s))" ( n + 1 )] f ( t - s)»+«-(n/2)+072)+j-i < 

X - _ ^ e x P ( ¡ B ( t , s ) ( x - p ( s ) ) ^ ds < 

n=0 
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n=0 

< [ c ¿ ( x - p ( s ) ) _ ( n + 1 ) ] rn- i - (n/2 )+ ( i/2 )+ i - l _ Q a g _ Q0> 

n=0 

8. Integral equations compatible with the boundary conditions 
We suppose that the function 

4 
w(x,t) = 5>i(z,i) 

¿=1 

is a solution ( l a ) - ( 4a ) problem. By (3a)-(4a), we obtain the system of the 
integral equations for the functions qi, i = 1 ,2 , . . . , 6, of the form: 

6 

(ha) X)/i.i(0 = //,(0, 
t=i 

(ha) £/2,(0 = "2(0, 
«=1 
3 

(ha) *£h,i(t) = Il\t), 

where 

t=i 

h , i ( t ) = ^ - ^ ¿ ( / K O . O , AT = 1,2,3, t = 1,2,3, 

Hk(t) = Hk(t) - wk4(p(t),t), k = 1,2,3. 

9. A b e l transformation of the system (/¡a), i = 1,2,3 
Applying Abel transformation [14], Vol. I, p. 14, to the system (/¿a), 

i = 1,2,3, we obtain the following 

L e m m a 4 . If qi e C ( [ 0 , r ] ) , H{ € C m - ' ' ( [ 0 , r ] ) , D t
m - ' 7 / ' ( 0 ) = 0 , i = 

1,2,3, then the system (Uà), i = 1,2,3 is equivalent to following system of 

Volterra integral equations of the second kind: 

(hb) An(t)qi(t) + A12(t)q2(t) + ¿13(093(0+ 

3 t 

+ E I DtSi,j(ti si)<ij(si) dsi = lP(t), 
j=1 0 

3 t 
(hb) A22(t)q2(t) + A23(t)q3(t) + Y , J DtS2J(t,sl)qi(s1)dsl=TP(t), 

j=l o 
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3 t 

(hb) ¿33(083(0 + £ J DtS3j(*,*i)<li(*i)d*i = 0 , 
j-1 0 

where 

A n ( o = ^ Q , 0 ( i + ( y ( O ) 2 , 

^ 3 ( 0 = ( - 4 p W ( 0 + ^ ' ( 0 ) 2 ) , 

¿ 2 1 ( 0 = 

¿ » ( o = ^ ( - y ( 0 ) , 

¿ 3 3 ( 0 ~ 3 ^ ( 2 ' 2 ) ' 

Hk(i) = DtHk(t), k = 1 ,2,3. 

0 

x e x p O B t M X K O - p O O ) 2 ) ] W « , 
t :=ix+(t—si)u 

P r o o f . For / i ^ , we have 

¿1,1 = W i ( K 0 > 0 = A f qi(s)(t-s)3/2exp(B(t,s)(p(i)-p(s))2)ds. 

Differentiating ¿1,1 (0> w e obtain 

D]h,x{i) = 
f (t - i-
0 

= A J ( < - i ) - V 2 | | + L l [ _ ( i _ a ) - 2 ( p ( i ) _ J | ( , ) ) 2 + 

n ^ 

+2(t-s)-\p(t)-p(s))p'(t)) + (t-s) 

- 2 ( i - a ) - 2 ( p ( o - p ( - ) y ( o -

- 2 ( i - 3 ) - 2 ( P ( o - p ( 5 ) y ( o - 2 ( i - 5 ) - i ( p ' ( o ) 2 + 2 ( i - 3 ) - i ( K o - M ^ y , ( o + 
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+\(t - s)~2(p(t) - p(s))2 + 2 ( i - s ) - \ p ( t ) - p(s))p'(t)]2] | x 

X exp(B(t,s)(p(t) -p(s))2)q1(s)ds. 

Applying to the D2Iit\(t) Abel transformation [14], Vol. I, p. 16, we obtain 

- ¿ ( - ( a - ' ! ) - ' ( ! < ' ) + 

+ 2 ( s - s 1 ) - \ p ( s ) - p ( s 1 ) ) p ' ( s ) ) + 
- - [ 2 ( s - S l ) - 3 ( p ( s ) - p(Sl))2 - 2(3 - 3l)-2(p(s) - p i s ^ p ' i s ) -

- 2 ( , - ¿ i ) " 2 ^ - (p(si))p'(s) - 2(3 - 31y1(p'(S))2 + 

+2(3-Sl)-1(p(s)-p(31))p"(s)+ 

+ 1(8 - S1)~2(p(s) - P ( s 1 ) ) 2 + 2(3 - 3 1 ) ~ 1 ( P ( s ) - P ( ' l M s ) } X 

X exp(5(5,5i)(p(5) - p(5i))2)g!(si) dsi-

Interchanging the order of the integration in the last formula and applying 
the change variable of the integral variable 

s = s\ + (t — Si)u, ds = (t — s\)du, u € (0,1), 

we obtain 
t r 1 

A l { l ( l - u ) i / 2 u i / 2 { 4
+ [ 4 + " ( ( i - i l ) « ) (P(«l + (*-«l)«)"J»(*l)) + 

+2((t - a i ) « ) - 1 ^ « ! + (t ~ si)u) - p(si))p'(s1 + ( t - S!)u))+ 

+ ( ( t - S l ) u ) - -[2((t - s1)u)-3(p(s1 + ( t - Sl)u) - p(s1))2-

-2((t - sl)u)-2(p(sl + ( t - ax)«) - p(sl))p'(sl + ( t - Sl)u)~ 

-2(t - sl)u)'2(p(sl + ( t - Sl)u) - p(sl))p'(sl + ( t - si)u)+ 

+2((f - i i j u ) - 1 ^ ! + (i - si)u))2 + 
+2((t - s1)u)-1p(31 + ( t - Si)u - p(sl))p"(s1 + ( t -

+ -((t - Sl)u)-2(p(Sl + (t - S1))p(s1))2 + 

+ 2 ( ( t - s1)u)~1(p(s1 + (t - i j ) « ) - p(si))p'(sl + (t - S l ) u ) 
2-, 
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X exp((—4(i - S!)u) - 1)p(5i + (i - Si)u - p(si))2 du j g i ( s i ) dsi. 

Applying to the last formula the mean value theorem and differentiating 
with respect to i, we obtain 

/ (1 - n y / ^ 1 / 2 {f [- - - + - ) ) 2 

+2(t - s ^ u - ^ t - s^up'isi + 9{t - sl))p'(s1 + ( t - s i )u )+ 
+(t - si)u[(t - S l ) - \ - 3 ( ( t - S l ) 2 u 2 ( p ' { S l + 9(t - * i ) ) ) 2 ) -

-2(t - si)-2u~2{t - s^up'isi + 0(t - si))p'(Sl + ( t - si)u)+ 

+2(t - a i ) - 1 « - 1 ^ « ! + (t - 5i)u))2+ 

+2(i - ¿¡i)-1«"1^ - + 9(t - si))j/'(«i + (i - «i)u)]+ 

- 3i)-2«"2((i - s i ) V ( s i + 0(t - 5X)))2 + + 

+ 2 ( t - J J l ) - 1 « - 1 « * - Si)up'(si + 0(t - 3i)))p'(si + (t - Sl)u) 

x exp(( -4( i - i i ) « ) - 1 ) ( ( i - 5 i ) V ( s i + 9(t - Si))) 

t 

2 • 

du+ 
Sl = t 

where 

S i , i ( M i ) = f D 2 [ ( t - s ) 3 / 2 e x p ( B ( t , s ) ( p ( t ) - p ( s ) ) 2 ) ] 
o 

du. 
s: = s\ 
t: = s1+(t-s1)u 

By last formula we obtain 

+ ( P W ) + S D t S h l ( t , S l ) q i ( S l ) d S l , 

where ¡3 denote beta Euler function. 
Denoting An(t) = §/?(£, ¿)(1 + (p'(t))2) , we obtain 

t 

f D t S l t i ( t , s i ) q i ( s i ) d s i . 
o 

Similarly for h , i ( t ) = Wi(p(t),t), i = 2,3, we obtain respectively 
t 

¿12(092(0+ f DtSii2(t,Si)q2(si)dsi, 
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where 

1 
S i , 2 ( M i ) = f D 2

i [ ( t - s ) l / 2 e x P ( B ( t , S ) ( p ( t ) - p ( S ) ) 2 ) ] du 
S\ = S 1 

l:=«i+(i-si)u 
and 

i 
A13{t)q3(t)+ f BtS1,3(t,s1)ds1, 

0 

where 

i 
S i , 3 ( M i ) = / D2

t[(t-s)-1/2exp(B(t,s)p(t)(p(t)-p(s))2)} d « -

Differentiating 2-times, substituting t by i , « by si , multiplying 
by (t — s ) - 1 / 2 and integrating in the interval [0,f], we obtain 

Integrating the last formula by parts, we obtain 

2 ( * - s ) 1 / X / i 1 ( s i ) l o - 2 f ( t - s ^ ^ D l j l ' ^ d s , . 

o 
Differentiating the last formula with respect to t, we obtain 

t 
- 2 / ( i - ^ X ^ i ) ^ ! 

0 
because by assumptions is known that 

D\H\0) = 0. 

Denote by 
t 

JP(<) = - 2 / ( i - s x ) 1 / ^ / ^ ^ . 
o 

Consequently by (ha) we obtain the equivalent equation (lib) in the folow-
ing form 

3 t 

j=1 0 
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Similarly differentiating the equations (I ¡a), j = 2,3, 3 — j-times, substitut-
ing t by s and s by s i , multiplying both sides by (t — s ) - 1 / 2 and integrating 
in the interval [0,i], interchanging the order of the integration, applying the 
change variable s = si -f (/ — s i)u, u £ (0,1) in the integrals, applying the 
mean value theorem i»(-si + (f — Si)u)— p(si) = (t — si)up'(si +9(t — s i)) , 
8 € (0,1) and differentiating with respect to t, finally we obtain the eqivalent 
equations (Ijb), j = 2,3. 

Thus the proof of Lemma 4 is finished. 

10. Solution of the sys tem (lib), i= 1,2,3 

LEMMA 5. If the assumptions of the Lemma 4 are satisfied, then the 
solution of the system (/,£>), i = 1,2,3, is of form (/¿c) 

3 t 

(IiC) qi(t) = F\t) + £ / 9i(*)*ij(t>s) ds> »'=1,2,3, 
i=i o 

where 

Fl(t) = ( A 1 1 ( t ) ) " 1 [ £ H 0 - Al2(t)F2(t) - A13(t)F\t)], 
F2(t) = (A22(t))-1[JP{t) - A23(t)F3(t)], 
F\t) = {AMr'lPit), 

N!j(t, s) = (An( i ) )~ 1 [A 1 2 (0^2i ( i , s) + A13N3j(t, s) + DtSij(t, a)], 

j = 1,2,3, 
N2j(t,s) = (A22(t))-l[N3j(t,s) - DtS2j(t, s)], j = 1,2,3, 
N3j(t,s) = (A^t))-1 DtS3j(t, s), j = 1,2,3. 

P r o o f . Applying the method of the succesive elimination of the un-
known functions qi, i = 1,2,3, we shall determine succesively the densi-
ties Qj. 

By the equation (13b), we obtain 
3 t 

q3(t) = F\t) + ^2 J qj(s)N3j(t,s)ds, 
j= 1 0 

where F3(t) and N3j(t,s) are defined below. 
By the equation (12 b), we obtain 

3 t 
q2(t) = F\t) + Y, J qj(s)N2j(t,s)ds, 

j=1 0 

where F2(t) and N2j(t,s) are defined below. 
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By the equation (lib), we obtain 
3 t 

qi{t) = F\t) + ^2 J qj(s)Nlj(t,s)ds, 
j=1 o 

where F1^) and Nij(t,s) are defined below. 

11. Solution of the system (/ ¡c) , i = 1,2,3 
Let us consider the system with parameter A compatible to the system 

(/¿c) of the form 
3 t 

(/¿A) <7,(0 = F ' ( t ) + A £ f qi(s)Nij(t,s)ds, i = 1,2,3. 
j=i o 

Let 
3 t 

Nh(t's)= ]£ J Nik{t,Sl)Nkj(Sus)dSl, 
k=1 s 

3 t 
= E I Nik(t,sl)NZj(sus)ds1, n= 1 , 2 , . . . , i,j = 1,2,3, 

fc=l s 

A) = a) + \Nfj(t, s) + ... XnN-j(t, *) + ..., 
n = 1 , 2 , . . . , i,j= 1,2,3. 

By [14], Vol. I, p. 4 or by [5], p. 97, we obtain 

LEMMA 6. If the functions Fi e C 3 _ J ( [ 0 , T ] ) and D]~jH\0) = 0 , where 
t = 1,2,3 and j = 0 /or /c = 1, j = 1 /or lc = 2, j = 2 for k = 3, then the 
functions 

3 t 
qi(t,\) = F\t) + J2 J Rij{t,s,\)Fj(s)ds, ¿ = 1 , 2 , 3 

j=i o 
are i/ie solutions of class C([0,T]) /or erert/ A £ R of the system (/¿A) and 
the functions 

qi(t) = qi(t,l), ¿ = 1 , 2 , 3 
are i/ie unique solutions of class C([0,T]) of the system (/,c). 

12. Fundamental theorem 
By Lemmas 1-6, we obtain the following result. 

THEOREM. If the assumptions of Lemmas 1-6 are satisfied, then the 
function 

4 

i=l 
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is a solution of the problem ( l a ) - ( 4 a ) and the function 

u(x, t) = w(x, t) + r(x, t) 

is a solution of the ( l ) - ( 4 ) problem. 
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