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THE THREE-PARABOLIC PROBLEM FOR
THE HALF-UNBOUNDED DOMAIN WITH CURVILINEAR
BOUNDARY CONDITIONS OF LAURICELLA TYPE

1. Formulation of the problem
The subject of the paper is the construction of a solution of the equation

(1)  Pdu(z,t) = f(z,t), P*>=P(P?), P?*=P(P), P=D-D
in the domain
D =A{(z,t):z>p(t), t€ (0,T), T < o0}.

satisfying the initial conditions

(2) Diu(z,0) = fi(z), ¢=0,1,2 forz > p(0)
and the boundary conditions

(3) Diu(p(t),t) = hig1(t), i=0,1,2for te(0,T),
(4) Diu(oo,t) =0, i=0,1,2for te(0,T),

where f, f;,7=0,1,2, hy, k = 1,2,3, are given functions.

2. Motivation of the considered problem

In {10} and [2] similar problems for the equation P3u = f for the time-
spatial curvilinear trapezium and for n-dimensional half-space are treated.

In [1] and [11] similar problems for bicaloric equation are given.

In the monograph [5] similar problem for the equation Pu = f with
initial and boundary conditions was solved. In [12] the similar problem for
the biparabolic equation with limit conditions of Lauricella type was treated.

In the monograph [11], vol. II, p. 235 the biparabolic Cauchy problem
was solved.
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In (3] and [4] the similar biparabolic problems for the curvilinear trapez-
jum and for the strip are treated respectively. In [15] the nonlinear bi-
parabolic problem was solved . In [6] and [7] the three-parabolic problem for
three-dimensional cylinder with boundary conditions of Riquier type and
for the strip with boundary conditions of Lauricella type was solved respec-
tively.

In (8] and [9] the polyparabolic problems with boundary conditions of
Lauricella type for the quart-time-plane and for the strip was treated re-
spectively.

3. Some definitions

In the sequel C,C;, i € N, denote positive constants.

DEFINITION 1. Denote by (k) the class of all functions » : D — R,
such that u(z,t) € C®3(D)NC?*(DU S) and Diu, Diu € B(D),i=0,1,2,
where § = {(z,t) : 2 = p(t), t € (0,T)}, and B(D) denote a class of all
functions u bounded in D, such that Diu(co,t)=0,:=0,1,2,t € (0,T).

DEFINITION 2. Denote by (K7) the class of all functions p: [0,7]) — R,
such that p € C%([0,T]), D;p(t) > 0 for ¢ € [0, T].

DEFINITION 3. Denote by (K3) the class of all functions f : D; — R,
Dy = {(z,0): z > p(0)}, such that f € C¢(D;)N C?(D;) and D f(p(0)) =
Dif(c0)=0,i=0,1,2.

DEFINITION 4. Denote by (i) the class of all functions h: [0,T] — R,
such that k € C3([0,T]) and Dik(0)=0,:=0,1,2.

DEFINITION 5. Denote by (K’5) the class of all functions F : D — R,
such that F € C*!(D) and comp.supp F C D.

4. Reduction of the initial conditions to the homogeneous ones
Let us consider the function
w(z,t) = u(z,t) — r(z,t)
where
r(z,1) = fo(z) + Lhi(z) + 31 fo(2).

LemMA 1. Ifp € (I"2), fi € (A’S)a 1=10,1,2, hi+1 € (‘K4)a i=0,1,2 and
u € (K1) is a solution of the problem (1)-(4), then w € (K1) and satisfies
the conditions
(1a) Pw(z,t) = F(z,t), F(z,t) = f(z,t) - P’r(z,t), (z,t)€ D,
(2a) Diw(z,0)=0, i=0,1,2, z > p(0),
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(3) Diw(p(t),6) = Hipa(t), Hisa(t) = hira(t) = Dir(p(t),1),
i=0,1,2,
(4a) Diw(oo,t)=0, i=0,1,2, te(0,T).
Conversely. If the function w € (K1) and satisfies (1a)-(4a), then the func-
tion u = (w+ r) € (K1) and is a solution of the problem (1)—(4).

We omit the simple proof.

5. Potentials w;
Let us consider the potentials

wi(z,t) = A [ q1(s)(t - 5)*/* exp(B(t,5)(z — p(s))?) ds,
0

wy(a,t) = A [ ga(s)(t - 9)'/*(z - p(s)) exp(B(t, s)(z — p(s))*) ds,
0

wa(z,1) = A [ a3(s)(t - 5)7/*(z - p(s))?) exp(B(t, s)(z - p(s))*) ds,
0

wi(z,t) = A [ [ F(y,s)(t - 5)*/? exp(B(t,s)(z — y)?) dy s,
0 p(s)

wi(t) = wa(p(t),t) =

=4 [ [ F(,s)(t~s)** exp(B(t, s)(p(t) - 9)*) dy ds,
0 p(s)

Dz'w4(p(t)’t) = w-iyl(t) =

=34 [ [ F.s)t-9)""(0) - ) exp(B(p(1), 1)) dy s,
0 p(s)

DRun(p(t),t) = w20 = ~24 [ | F(yrs)(i— 9" B(t, )
0 p(s)
x(1—2B(t,s)(p(t) — y)*) exp(B(t, s)(p(t) — y)?) dy ds,

t oo
Diw(p(t)t) = wi*(t) =24 [ [ F(y,s)(t -9 B(t,5)
0 »(s)
x(1 = 2B(t, s)(p(t) - y)*) exp(B(t, s)(p(t) ~ y)*) dy ds,
where 4 = (7)1, B(t,s) = (-4(t — )71, qi(s), i = 1,2,3, are unknown
functions continuous for s € [0, 7).
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6. Properties of the potential w,

LEMMA 2. If f; € (K3), h;j € (K4),1=10,1,2,j=1,2,3. F € (K5) and
if F(p(s),s) = F(o0,8) = 0, DyF(p(s),s) = DyF(o0,s), D;F(y,0) = 0,
then:

19 P3wy(z,t) = F(z,t) for (z,t) € D,

20 D§w4(z,0) =0,:=0,1,2, z € (p(0), ),

30 there exist the boundary functions w}, continuous for t € [0,T).

4% Diwy(o0,t)=0,i=0,1,2,t€[0,T).

Proof. Ad 1° Let us consider the integrals

Ig(a:,t) =A ft ]OF(y,s)(t—s):’/zDi exp(B(t,s)(:c—y)z) dyds, j7=0,1,2
0 »(s)

and let

F(y,s) = F(y,s) for (y,s) € D and

F(y,s)=0 for (y,s) € ((—o0,00) x [0,T])\ D.

For 7 = 0 we have

[I2(z,1)| < A(sup |F)) ft (t —s)3%ds = Cot?/* ds = Cot®/? < CoTS/2.
D(T) 0

Consequently the integral I9(z,t) is locally uniformly convergent for z €
[p?.s),oo), s € (0,7] and is continuous for ¢ = p(t), t € [0,T]. i.e.

L(p(t), 1) = wi(t) € C((0,T]).

For j = 1 we have

I}(z,t)= — A f fF(y,s)(t — 8)3/%(D, exp(B(t, s)(z — y)*) dyds =
0 p(s)

= —A f F(y,s)(t - s)*/? exp(B(t, s)(z — y))'::io ds+
0

+A [ [ (DFw o)t~ 972 exp(Blt,s)(z - y)?) dy ds =
0 -—oo

=A

S,

J @, F @9t - 9 exp(Blt,9)(a - 1)) dyds.

Consequently I}(z,t) is locally uniformly convergent for ¢ = p(t) and
D, wy(p(t),t) = wi(t), are continuous for ¢ € (0, 7).
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For j = 2, we have

t oo
L,t)=4 [ [ (D}F(y9))t-9)°'* exp(B(t,5)(z = y)") dy ds.
0 p(s)
Similarly as for I}(z,t) the integral I}(z,t) is locally uniformly convergent
for z € [p(s),0), s € (0,7 and is continuous for z = p(t), i.e.

Dzws(p(1),1) = w3(¢) € C((0,T1),
For wy(z,t) = I(z,t),we have
PI{(z,t) = D I)(z,t) - DI)(z,t) =

=A [ [ {F(y,s)t—s)*/*Dlexp(B(t,s)(z — y)*)-

0 -—oo

— F(y,8)Dy[(t - .5)3/2 exp(B(t,s)(z — y)*)]} dy ds =

=A [ [ Fy,s)[D[(z - s)*/* exp(B(t,s)(z ~ y)*)]-

0 —oo

— Dil(t - s)*/% exp(B(t, 8)(z — y)?)]} dyds =

=A [ [ Fy,s)[D(t - s)*(t - s)""/* exp(B(t, s)(z — y)*)]]-
0 p(s)
~ Dy[(t~ 5)*(t — s)"Y? exp(B(t, 5)(z — y)?)] dyds =

=A [ [ F(y,s){(t-s)*D2[(t - s)7* /2 exp(B(t,5)(z ~ y)*)]-
0 p(s)
— (t=8)’Dy[(t — )" exp(B(t, s)(z — y)*)]-
— 2t — s)[(t — s)"M? exp(B(t,s)(z — y)*)]} dy ds =

t (<]
=-24 f f F(y,s)(t - s)v(z,y,t,s)dyds,
0 p(s)
where
v(z,y,t,8) = (t — s)"1/2 exp(B(t, s)(z — y)?).
Similarly

t [«
P R(z,t)= =24 [ [ F(y,9)0(z,v,1,5) dyds
0 p(s)
and by Poisson theorem [11], vol. I, p. 522, we obtain

PI)(z,t) = F(z,t) for (z,t) € D.
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(5)
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Ad 29 We have the estimations

t
( IW4(17,t), S C f (t - 8)3/2 = C1t5/2 S ClTs/z,
0

i
$ |1 Dawy(e, )| < Cy [ (t—8)1/2ds = Cat3/? < C3T/2,
0
t
| D?wy(z,t)| < Cy f (t—s)"2ds = Cs5t'/? < CsTV/2.
0

\

(5) we obtain the assertions 2° and 3°.
Ad 4°. Let M = supp F = {(z,t) : p(t) + &1 < = < a3, a3 < oc}. For

Jj =0, we have

|lws(z, t)l =
2

= (A F(y,s)(t — )/ exp —e—y) dyds| <

6]‘1’(3){01 ( 4(t ) )

2

<lef T a-9e-ne-n oo (D) wa <

0 P(-’)‘l‘al

1 (l‘—y) —(z - y)?

: C()fp(s){a z—y(t=-s)'? exP( 4(t-s) )dyds .
< Cf f ——dyds 5|cf f _azdyds =

0 p(s)+a1 0 p(s)+a1

-0 asz — o0.

1
= Ctz — az(ag —p(s) - (1.1) S CTII)

7. Properties of the potentials w; for i = 1,2,3

LEMMA 3. If gi(s) € C([0,T)), ¢:(0) = 0, i = 1,2, 3, then:
1° P3w(z,t) =0 for (z,t) € D, 1 =1,2,3,

20 D¥w;(z,0) = 0 for z € (p(0),00), k =0,1,2,:=1,2,3,
30 D';w,'(p(t),t) e C([0,T]), k=0,1,2,1i=1,2,3,

49 Drwi(00,t) =0, €[0,T), k = 0,1,2, i = 1,2,3.
Proof. Ad 1°. For the function w; we have

Pw,(z,t) = D w,(z,t) = Dyw(z,t),
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2 —
Diwy(z,t) =

= A [ q(s)(t - s)*/* D2 exp(B(t, s)( — p(s))*) ds =
0

= A [ q(s)(t-s)’ DI[(t—s)"*exp(B(t, s)(z—p(s))})] ds = In(=,1),
0

thl(z,t) =
= lim g1 (s)(t - )32 exp(B(t, s)(z — p(s))*) + (2, 1) = I11(z, 1),

where
Iu(l‘,t) =
= A [ qi(s)Dl(t = )*(t - 5)™/* exp(B(t, s)(z — p(s))*)] ds =
0
= A [ qi(s){l(t - 5)*(t = 5)7 "  exp(B(t, s)(z — p(s))")}+
0
+2(t = 8){(t - 8)7* exp(B(t, s)(z — p(s))*)]} ds.
Pwy(z,t) =
= A [ q(s)(t - s)*[D2V(x,t,5) ~ DV (z,1,5)]+
0
+ 2(t — 8)V(z,t,s)]ds = 2 f q(s)(t — s)V(z,t,s)ds.
Plwy(z,t) =

=2 f ql(s)[(t - s)DﬁV(z,t,s) - (t - S)ng(z’t’s) + V(z,t,s)] ds =

o,

2 QI(s)V(z7t3s) ds7

where V(z,t,s) = (t — s)"V? exp(B(t, s)(z — p(s))?).

By [10], vol. I, p. 484, we obtain P3w,(z,t) = 2f0t 1 (8) Pz V(z,t,8) = 0.
For the function w;, we have

wa(z,) = A [ g(s)(t - 9)*[((z - p(s))(t — 9)7*/%)x

X exp(B(t, 8)(1: - p(s))2)] dsa
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Pwy(z,t)= A ft @ (s)(t — s)?[D W (z,t,s)] ds—
0
-A ft @ (8)[(t — 8) DiW (z,t,5) + 2(t — s)W(z,t,5)]ds
0
=24 j @(s)(t — s)W(z,t,s)ds,
0

where

W(z,t,8) = ((z ~ p(8))/(t - s)/*) exp(B(t, s)(z — p(s))*),

t
P2wy(z,t) = 24 [ q2(s)(t — s)D2W (z,t,5)ds-
0
t
- 24 f q@2(s)(t — s)DW(z,t,s)ds—
0
t t
- 24 f @(s)W(z,t,s)ds — 2A f q2(s)W(z,t,s)ds,
0 0
t i
PPwy(z,t) = — 24 [ q(s)D2W(z,t,5)ds + 24 [ q:(s)D,W(z,t,5)ds =
0 0
1
=24 f ¢ (8)[-DiW (z,t,8) + D;W(z,t,s)]ds = 0.
0
For the function w3, we have
t
ws(z,t) = A [ ga(s)(z — p(s))*V (2,1, 5) ds,
0
t
Puwy(z,t) = A [ g3(s)l(e - p(s))* D3V (z,1,5) + 4(z — p(s)) DV (2,1, 8)+
(1]
t
+2V(z,1,9)] - A [ g3(s)(z — p(s)) DV (z,t,8)ds =
0

t t
=A f g3(s)4(z — p(s)) DV (z,t,s)ds + 24 f g3(s)V(z,t,s)ds,
0 0
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t
PYws(z,t) = P(Pws(z,1)) = AP [ g3(s)V(z,1,5)ds+
0
t
+A [ gs(s)[8DIV(3,t,5) +4(z — p(s)) D3V (s, t,5)~
0
t
~4(z - p(s))DiD,V (z,1,5)]ds = 8A [ D3V (z,t,s)ds,
0
t
Piw(z,t) = 84 f P.:D2V(z,t,s)ds =
0

it
=84 [ DLP.V(pi(s),t,5)ds = 0.
0

Ad 2°. Obviously wy(z,0) = 0, because

t t
lwi(z,)| < Co [ (t=s)*/2ds < —(t - 5)*/?| < C7/* < TP,
0 0

t
|Dywy(z, )| < Cs [ (¢~ )72 ds < Cot'/? < CoT'V?,
0

|Dewi(z,0)| < A [ q1(s)[Cro(t — 5)™"/* exp(B(z — p(s))*)+

+ Cya(t — )% (z ~ p(s))(t — 5)"? exp(B(t, s)(z — p(s))*)+
+ Cr2(t — 5)*/*(z — p(s))*(t - 5)™° exp(B(t, s)(z — p(s)*)+
+ Cra(z — p(s))*(t — 5) %% exp(B(t, s)(z — p(s))?)] ds.

We have the estimations

|4 [ a1(s)Crot = 5)71/2 exp(B(t, 5)(= - p(s))*)| <

¢
<Cuis f (t — )72 ds < Cy5t11? < C1sTY?,
0

|c1a J o) = ple))0 = 912t - )7 exp(Blt, )z = ps)) ds| <

< Crs f ("’ (s)) — )"V exp(B(t, 3)(z — p(s))?) ds <
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14
<Crr [ (£~ )7 ds < Cuat'/? < CraTH2.
0
Similarly
i
'Cle f q1(s)(t — 8)*/*(z — p(s))*(t - 5) " exp(B(t, s)(= ~ p(5))*) dSI <
0

< Ciot'/? < CyoT?V?

and
[C1sd [ au(s)(z = p($))"(¢ — )7/ exp(B(t,s)(z — p(s))?) ds] <
0

< Caot!/? < Coyo T2

Similarly we obtain assertion 2° for w;, i = 2, 3.
Ad 3°. Analogously as for 2°, in the proof of assertion 1°, we obtain the
estimations

(6)  |DFwi(z,t)| < Cut* < CnT%, k=0,1,2,i=1,2,...,6,

where a being a positive number.
By (6), we obtain the assertion 3°.

Ad 4°. Let I;;(z,t) = fot g:(s)(t — 8)B/D-iDi(x — p(s))~exp(B(t,s) x
X(.’E —p(s))2)ds, t=1,2,3,7=0,1,2.
Dividing and multiplying the kernels of the integrals I; ; by the function
(= —p(s)Y(t = )77,

we obtain

|Diwi(z,t)| < C f (t- s)l-%-% ch(x — p(s))Hx
0 n=0
X exp (%B(t’s)(l‘ - P(S))2) ds <

<CE-p(s)™ S (@ -p(s))™ [ (t—s)nmimHHEIx
0

n=0

X %E%exp (%B(t,s)(m - p(s))z) ds <

< [C i(z - p(s))_(""'l)] j (t = s)nti—(n/2+(/2)+i-1 ¢

n=0
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i
S [C > (- p(S))“("“)] gr=i=(n/2+i-1 ¢
n=0
i
< [C > (@ p(s))""*”]T"—"—(n/2>+(:’/2)+j—1 0 as g — oo.

n=0

8. Integral equations compatible with the boundary conditions
We suppose that the function

1
w(z,t) = Z wi(z,1)
i=1

is a solution (1a)-(4a) problem. By (3a)-(4a), we obtain the system of the
integral equations for the functions ¢;, ¢ = 1,2,...,6, of the form:

6
(Ia) > 5ty = H'\(t),
i=1
3
(I2a) E Ii(t) = H(t),
(Isa) > Isu(t) = HY(1),
i=1
where

Iii(t) = DEYwi(p(t),t), k=1,2,3,i=1,2,3,
HE(t) = Hi(t) — wi(p(t),t), k=1,2,3.

9. Abel transformation of the system (l;a), 1 = 1,2,3

Applying Abel transformation [14], Vol. I, p. 14, to the system ([;a),
¢t =1,2,3, we obtain the following

LemMa 4. If ¢; € C([0,T}), H' € C™~([0,T)), DT *H(0) = 0, i =
1,2,3, then the system (l;a), i = 1,2,3 is equivalent to following system of
Volterra integral equations of the second kind:

(I10)  Au(t)a(t) + Aa(t)ga(t) + Ara(t)gs(t)+

3t
+Z f DySy,5(t,51)gj(s1) dsy = H'(t),

=10

3
(I2b)  A22(t)ga(t) + A2a(t)ga(t) +

t
[ DiS2,(t,1)qi(s1) dsy = (1),
7 0

1
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3 t
(Isb)  Ass(Das(®)+ Y [ DiSsi(t,51)qi(s1) dsy = H(2),
0

- J=1

where

(1+(P'(1))%

)
oo,
(-
)

Au(t) = gAﬂ(
Axa(t) = %Aﬁ( )

1
2
1
>
A = 48( 3.3 ) (- w00 + J00F),

A (t) =0,
An(0) = 348313

Axs() = 3 AC-P(),

Aalt) = - 38(3.3),
H*(t) = D,H*(t), k=1,2,3.

1
Skilts1) = [ DYt = )P+ p(1) - p(s)) 7 x
0

x exp(B(L)p®) - s, ldu,

t.:=31+(t—31)u

Proof. For I ;, we have
Ly =wi(pt),t) = A [ qi(s)(t— s)*/* exp(B(t,s)(p(t) ~ p(s))?) ds.
0
Differentiating I; ;(t), we obtain
. Df[l,l (t) =
=4 [ a-97{ 3+ [ Hot- 9760 - e+
0
#2(1= )7 6(0) — O] + (0= )] = 2= 960 ~ (o)~

—2(t — s)7%(p(t) - p(s))P'(t)-
~2(t—3) "2 (p(t)—p(s))p'(t)-2(t—3) " (#'())* +2(t— ) "  (p(t)—p(s))p" (1) +
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#3570~ B + 20— 97 000) - PO
x exp(B(t, s)(p(t) ~ p(s)))ar(s) ds.
Applying to the D?I; 1(t) Abel transformation [14], Vol. I, p. 16, we obtain

A =971 [ (s34 [ L= 0010 - o)+
0 0
+2(s - 51)"1(a(s) — p(so)p'(s))] s

+(s—s1) [ - %{2(3 — 1) 73 (p(s) — p(s1))* — 2(s — 51)"*(p(s) — p(s1))p'(s)~

=2(s = 51)2(p(s) = (p(51))p'(s) = 2(s — 1) 7' (#'(5))*+
+2(s — s1) 7' (p(s) — p(s1))p" () +

1 2
+3(5 = s1)72(p(s) = p(s1))" + 2(s = 1) 7 (p(s) - p(sl))p'(S)] }X

x exp(B(s, 81)(p(s) — p(s1))")a1(s1) dsi.

Interchanging the order of the integration in the last formula and applying
the change variable of the integral variable

s=8+(t—-s1)u, ds=(t—-s1)du, wuce€(0,1),

we obtain

Aof { f (1— w)i2uli? u)11/2u1/2 {Z’L [2+ [‘i((’*ﬁ)u)‘z(ﬂ(sw(t—sl)u)—p(s1>)2+
+2((t — s1)u) " (p(s1 + (¢ — s1)u) — p(s1))p'(s1 + (2 — s1)u))+
+((t = s1)u) [ - %[2((75 = s1)u) 3 (p(s1 + (t — s1)u) — p(s1))*—

—2((t — s1)u) " *(p(s1 + (t — 81)u) = p(s1))p'(s1 + (t — s1)u)—
—2(t — s1)u) 2 (p(s1 + (t — s1)u) — p(s1))p'(s1 + (¢ — s1)u)+
+2((t = s1)u) 7 (P'(s1 + (t - 31)u))*+
+2((t — s1)u) " p(s1 + (¢ — s1)u ~ p(s1))p"(s1 + (¢ — s1)u)+

+ E((t — s1)u) "} (p(s1 + (t — 51))p(s1))*+

2
F2(t = 52)0) " (oo + (¢ = 1)) — pln))p (o1 + (¢ = sl)u)] ] }x
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x exp((—4(t — s1)u) " p(s1 + (L — s1)u — p(.sl))2 du}ql(sl) ds;.

Applying to the last formula the mean value theorem and differentiating
with respect to ¢, we obtain

1(t t SR S 4 t—s1) 2u"2(t—s1)%ulp'(s1 4+ 0(t - 51))?
q()!(l—u)1/2u1/2{4[ 4( ) ( )u'p( ( ))]+
+2(t = s1) 7 uT (= sy )up'(s1 + 0(t — 51))p' (51 + (£ — s8y)u)+
H(t = s1)ul(t — s1) w7 (0 - 81)" W’ (' (51 + 8(t ~ 51)))°)~
~2(t = 81) " 2u”2(t — sy )up'(s1 + 0(t — 51))p'(s1 + (£ = s1)u)+
F2(t = s1) a0l (o1 + (8 - s)u))+
+2(t = s1) Tt — sp)up'(sy + 0t — 51))p"(s1 + (t = 81)u)]+

#[30 = s (@ = sl + 00— )P+

2
+2(t — s1) 1w ((t - s1)up'(s1 + 0(t — 51)))p'(s1 + (¢ - .sl)u)] }x

x exp((—4(t — s1)u)"1)((t — s1)up'(s1 + 0(t — 51)))° ) du+
+ f DSy 1(t, s1)q1(s1) dsi,
where
1
Sualton = [ Di0- 9 (B G0 -2/,
0 ti=s)+(t—s)u

By last formula we obtain

at)> /3(— -)(1+(p(t) ?)+ f DSyt s1)a1(s1) dsn,

where 3 denote beta Euler function.
Denoting A11(t) = 36(%,3)(1+ (2'(t))?), we obtain

t .
Au@a®) + [ DiSia(ts)a(s:)dsi.
0
Similarly for I ;(t) = w;i(p(t),t), ¢ = 2,3, we obtain respectively

t
A1z(t)qz(t) + f Dy 81,2(8, 51)q2(81) dsa,
0
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where

ma(®) = 148(3.3) W OP,

1
S12(t,81) = [ D}{(t— )'/? exp(B(t, s)(p(t) - p(9))*)] du

0 :iz:i-*-(t—sl)u

and
A13(t)gs(t) + thSI,S(tasl)dsh
where ’
Arg(t) = Aﬂ(l, 3) ( — 4 (" (t) - z(p’(t))i'),
S1a(tysr) = f DAt exp(BU, OGO, d
t: =s14+(t—31)

Differentiating H!(¢) 2-times, substituting ¢t by s, s by s;, multiplying
by (¢t — s)~1/? and integrating in the interval [0,t], we obtain
f (t )1/2 H (sl)dsl

Integrating the last formula. by parts, we obtain
2(t - 3)1/2D H(s1)l6 -2 f (t—s1 )1/2D H'(sy) dsy.
Differentiating the last formula with respect to t, we obtain
~2 f (t—1)"/2D3 H'(s1)dsy
0

because by assumptions is known that
D HY(0) = 0.
Denote by

t
H'(t)= -2 [ (t—s1)"/*D3 H'(s1)dsy.
0

Consequently by (I;a) we obtain the equivalent equation (/;5) in the folow-
ing form

3t
All(t)41(t)+-412(t)112(t)+A13(t)Q3(t)+szt51,j(t,81)¢1j($1)d81=Fl(t)-

j=1o0
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Similarly differentiating the equations (I;a), j = 2,3, 3 — j-times, substitut-
ing t by s and s by s;, multiplying both sides by (¢ — s)~1/? and integrating
in the interval [0,¢], interchanging the order of the integration, applying the
change variable s = s; + (t — s1)u, u € (0,1) in the integrals, applying the
mean value theorem  p(s;+(t—s1)u)—p(s1) = (t—s1)up’(s1+0(t—s1)),
6 € (0,1) and differentiating with respect to ¢, finally we obtain the eqivalent
equations (I;b), j = 2,3.
Thus the proof of Lemma 4 is finished.

10. Solution of the system (/;b),:=1,2,3

LEMMA 5. If the assumptions of the Lemma 4 are satisfied, then the
solution of the system (I;b), i = 1,2,3, is of form (I;c)

(Iic) g(t) = Fi(t)+ ) [ qi(s)Ni;(t,8)ds, i=1,2,3,

=1
where
FL(t) = (Au(0) 7 H (1) — An()F2 () - As(t)FP (1)),
F2(t) = (A22(t)) T [H(2) ~ Axs()F(1)),
F3(t) = (Ass(8) T H3(D),
Nyj(tys) = (Aun(t) A1 (1) N2j(t, s) + A Naj(t, 8) + DeSaj(t, 8)),
J=1,2,3,

Naj(t,s) = (Ana(t) ' [N3j(t, ) = DiSajlt,s)),  5=1,2,3,

N3j(t,s) = (A33(t))_1DtS3j(t,S), ] = 1,2,3.

Proof. Applying the method of the succesive elimination of the un-
known functions ¢;, ¢ = 1,2,3, we shall determine succesively the densi-
ties g;.

By the equation (I3b), we obtain

3 t
i(t)=F*)+ > [ ¢i(s)N3j(t,s)ds,

=10
where F3(t) and N3;(t,s) are defined below.
By the equation (I;b), we obtain

@)= FP )+ [ ¢i(9)N2;(t, ) ds,

=1 0
where F2(t) and Na;(t,s) are defined below.
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By the equation (I;b), we obtain

at)=F )+ > [ ¢i(s)Nuj(t,s)ds,

j=10
where F1(t) and Nyj(t,s) are defined below.

11. Solution of the system ([;c),:=1,2,3
Let us consider the system with parameter A compatible to the system
(Iic) of the form

3 t
(I,/\) q,'(t) = Fi(t) + /\Z f qi(s)Nij(t,s) ds, 1=1,2,3.
j=1 0
Let
3 t
Nit,s)= > [ Nik(t,51)Nij(s1,5) dsy,
k=1 s
3 t
NI sy = > [ Nu(tys))Ni(s1,8)ds1,  n=1,2,..., i,j=1,2,3,
k=1 s

Rij(t,s,A) = Nij(t,s) + /\N,-Ij(t, s)+ .. ANt s) +. .,
n=1,2,...,4j=1,2,3.
By [14], Vol. 1, p. 4 or by [5], p. 97, we obtain
LEMMA 6. If the functions Fi € C3~3([0,T]) and D27 Hi(0) = 0, where
t=123andj=0fork=1,57=1fork=2,5=2 fork =3, then the
functions

3t
a(t, )= Fi()+ Y [ Rij(t,s, VF(s)ds, i=1,2,3
j=1 0
are the solutions of class C([0,T)) for every A € R of the system (I;\) and
the functions

qi(t): qi(t?l)? 1=1,2,3
are the unique solutions of class C([0,T]) of the system (I;c).

12. Fundamental theorem
By Lemmas 1-6, we obtain the following result.

THEOREM. If the assumptions of Lemmas 1-6 are satisfied, then the
function

w(z,l) = E wi(z,t)
=1
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is a solution of the problem (1a)—(4a) and the function

u(z,t) = w(z,t) + r(z,t)

is a solution of the (1)—~(4) problem.
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(2]
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(6]
(7]
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