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Gerd Herzog

ON ORDINARY LINEAR DIFFERENTIAL EQUATIONS IN C’

We consider the Cauchy problem for linear row-finite systems of ordi-
nary differential equations. We discuss the connection between solvability
and spectral properties of the related matrices for first and second order
equations continuing the work of Ulm, Lemmert and Weckbach.

1. Introduction

Let J be a countably infinite set and let C’ be the Fréchet space of all
mappings z : J — C written as ¢ = (z;);es provided with the product
topology. The linear continuous mappings on C” can be represented exactly
by the row-finite matrices. Now let A be a row-finite matrix,

fec(o,T],C’) and y € C’.
We consider the initial value problem
(1) {y'(t) = Ay(t) + (1),
y(0) = wo.

The solvability of (1) depends on the spectrum of A. The spectrum of 4 is
defined as the set of all u € C such that A — ufl is not invertible. It turns
out that for a row-finite matrix either 0(A4) or C\ o(A) is at most countable
(cf. [9] or [16]).

In 1984 Lemmert and Weckbach [10] proved the following theorem.

THEOREM 1. The following assertions are equivalent:

a) 0(A) is at most countable.
b) For every f € C([0,T],C’) and every yo € C’ there is ezactly one
y € C1([0,T},C7) that solves (1).
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o0
A" . .
c) E n'xt" is convergent in C’ for allz € C’ and all t € R.
n=0 :
Since linear initial value problems in Fréchet spaces may be locally not
solvable even in Montel spaces (cf. [6]), it is not clear what happens if C\o(A)
is at most countable. We will prove the following theorem.

THEOREM 2. If C\ o(A) is at most countable, then for every f €
C([0,T),C7) and every yo € C’ there are infinitely many y € C'([0,T],C’)
solving (1).

Basing on these theorems we will survey row-finite initial value problems
of second order and the uniqueness of positive solutions for initial value
problems of the form (1) in the case that C\ o(A) is at most countable for
special sets of matrices that occur in applications, e.g., by semi-discretization
of the heat equation on an infinite strip.

2. Notation and basic facts
In the following let J be a countably infinite set. The topological dual of
C’ can be represented by C; := {(z;)jes:2; €C, #{j:2; # 0} < 00}. In
the following we will consider the duality (z,y) = 3 z;y;, ¢ = (z)jes €
jed

C’,y=(yj)jes €Cy.

The continuous linear mappings of C’ can be represented exactly by the
row-finite matrices in which a matrix A = (aij); jes is called row-finite if
(aij)jes € Cy for all ¢ € J. The linear mappings of C; can be represented
exactly by the column-finite matrices where a matrix A = (a;;); jes is called
column-finite if (a;;)ics € Cy for all j € J. If A = (aij)i,jes is a row-
finite matrix, the dual mapping is represented by the transposed matrix
™ = (aj;)i,jes which is column-finite; it holds that (Az,y) = (z, Ay) for
alla:ECJ,yECJ.

We indentify the set of all row-finite matrices with L(C’), the set of all
continuous linear mappings on C’, and the set of all column-finite matrices

with End(Cj).

DEFINITION 1. For A € End(Cy) resp. A € L(C’) we denote the spec-
trum of A by ‘

0(A):= {u € C: A— pul is not invertible (in End(Cj) resp. L(C’))}
and the point spectrum of A by
op(A) :={p € C: A— pul is not injective}.

For the following basic facts on row-finite and column-finite matrices, cf.
Ulm [16], Korber [9] and Kaplansky {8].
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PROPOSITION 1. For A € L(C”) the following statements hold:
a) 0(A)=a() #0.
b) Either o(A) is at most countable or C\ 0(A) is at most countable.

c) op("A) is at most countable (0,(A) can be uncountable, cf. Korber [9]).

d) o(A) is at most countable if and only if one of the following statements
holds:

1) {A"z : n € No} is linearly dependent for all z € C.
2) {4z : n € Ny} is linearly dependent for all z in a basis of Cy.
3) ap(U) = o ().

DEFINITION 2. A column-finite matrix with an at most countable spec-
trum is called locally algebraic.

We will now state and prove a theoremn about a normal forin of row-finite
and column-finite matrices that is due to Ulm [16]; it will be the central tool
for proving Theorem 2.

PRrOPOSITION 2. For every A € End(C;) with uncountable spectrum
there is an invertible matriz T € End(C,) and an order on J such that
C := T~ AT has (with regard to this order) one of the following siz forms.
There S denotes the column-finite matriz

0 0 O
1 0 0
01 0
0 0 1
ordinal num-
ber of J form of C remarks
51 0 0
0 S 0
nw,n €N S5i=5,1<1<n
0 Sn
51 0 0 Si=8,1<l<n;
0 S5 0 Hp Ris a k x k matrix
nw+k nkeN . and every H;, 1 <1< n,
0 0 Sn  Hn has k columns and
0 0 0 R infinite many rows
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ordinal num-
ber of J form of C remarks
S5 0 - 0 H S;=8, 1<1<m;
0 52 -+ 0 My R is column-finite with
(n+1)w, neN o(R) at most countable
0 0 --- Sn Hp and the H;, 1 <1< n,
o o0 --- 0 R are column-finite
S; 0 0 ..
0 S, 0 ...
nw?, neN (0 0 S5 - S =81€N
/Sl 0 0 Hl\
0 52 0 P S51=8, leN;
w!+k keN 0 0 5 Hs Rand I, 1 €N,
like in the second case
\ 0 0 0 R }
(Sl 0 0 Hl\
0 S 0 .- M S5 =8, 1€N;
w? 4w 0 0 S3 -+ Hs Rand Hy, 1 €N,
like in the third case
\ 0 0 0o --- R )

Proof. We consider V := C; as C[A\]-module generated by P(A).z =
P(A)(z), P € C[)A], z € V. By Proposition 1 d), V is a torsion module if and
only if 0(A) is at most countable. So we get an nonempty, at most countable
maximal C[A}-independent subset U of V, and we define W the C[A]-linear
span of U. W is a submodule of V, and {\.z : 1 € Ny, z € U} is a Hamel

—

basis of W. Now we consider the factor module V/W, P(A).Z = P(A).z,
z € V/W, P € C[A]. It holds that dim V/W is at most countable and that
V/W is a torsion module. If there were an & € V/W with P()).z # 0 for all
P € C[A], P # 0, the set UU{z} would be C[A]-independent in contradiction
to the maximality of U. Now let El be a Hamel basis for V/W and B; a
representative system of El. Then B = {M.z: 1 € No, 2 € U}U B is
a Hamel basis for V. B is a countably infinite set, and we order B in the
following way: U and B; are linearly ordered, {\.z : | € Ny, z € U} is
ordered lexicographically in (z,!) and {M.z : 1 € Ny, z € U} < B;. So B
looks like

2 2 2
{21, A1, A%.21, .., T2, AT, A2, o T AL AT Y, Y2y e s Yl o)
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where By = {v1,¥2,.--,¥15---}. B is well-ordered, and the ordinal number
of B is:

1) nw in case that #U =n, B, =0,

2) nw 4+ k in case that #U =n, #B, =k,

3) (n + 1)w in case that #U = n, B; infinite,

4) w? in case that U infinite, B; = 0,

5) w?+k in case that U infinite, #B, = k,

6) w? +w in case that U, B, infinite.

Now let ¢ be a bijective map between J and B and let J be ordered by
the order induced by ¢ and the order of B.

Performing a basis transformation between {e; : i € J}, e; = (6i;)jeJ,
and B = {b; : i € J}, we get a transformation matrix T = (t;;)i jes such
that C = T~! AT has exactly the form we claimed, depending on the order
of J. In the case that B; is infinite, the matrix block R is a column-finite
matrix with at most countable spectrum, since the module V/W is a torsion
module. =

Remark. The ordinal number of J is not uniquely determined by the
matrix A. We consider, for example, the matrix A € End(Cy) defined by
Ae, = eny1, n € N (e = (bnk)ken), and so {e1} and {e;} are C[)\]-
independent maximal subsets of Cy. In the first case we get the ordinal
number w and in the second case the ordinal number w + 1.

3. Proof of Theorem 2
First we will prove Theorem 2 for the special case

0100
0010
A=19 0 0 1

It holds that o(A) = C, and the linear homogeneous initial value problem
y' = Ay, y(0) = 0, has the solution y(t) = (h(t),h'(2),h"(t),...,H(M(2),...)
for every h € C®(R,C) with h("(0) = 0, n € Ny. So there is a lot of
nontrivial solutions of this initial value problem. For example, take

1742
h(t)={e V14,
0, t=0

(cf. Deimling [2]).

ProrosiTiON 3. Let J = N. Theorem 2 holds for the matriz A.
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Proof. Since f € C([0,T],CY), f has the form f = (fi)ren, fx €
C([0,T],C). To every k € N there is a polynomial Py such that || fx~Pk]|eo <

(%)k We define -

ta

)= [ [ f

(k € N, t € [0,T]). It holds that ||gillec < 1/k!, £ € N, and so h(t) :=

> gk(t), t € [0,T], converges uniformly on [0,T], and we can define recur-
k=1

(fx(to) — Px(to))dtodty - - -dtp_o dtr_y

sively 21 = h, zx41 = 2, — fi, k € N. Then z := (zx)ren € CY([0,T],CY)
and 2'(t) = Az(t)+ f(t), t € [0,T). Now we choose a u € C([0,7],CN) such
that u'(t) = Au(t), t € [0,T], and u(0) = yo — 2z(0). Then y = z + u is a
solution of (1). It is always possible to find such a function u (cf. Deimling
[2], Example 6.3). Since we have already seen that the initial value problem
y' = Ay, y(0) = 0, has infinitely many solutions, Proposition 3 is proved. m

Now we are able to prove Theorem 2.

We will only consider the case of ordinal number w? +w, since the other
cases can be proved in the same way.

According to Proposition 2, we may assume that A has the following
form:

A= 0 0 L3 e 0 , WhereLn: ,TLEN,

0100
0010
0 001
G Gy G -+ @
Q) is a row-finite matrix with o(€) at most countable and G,, n € N, are
row-finite matrices. (A has the form of the transposed matrix in the sixth
case of Propositon 2.) Remark that, since A itself is row-finite for every fixed
row index j, the j-th row of G, must be a zero-row for n > ny(j).
According to the order on J, we get f = (f1,f2y.--, fny.--y fu) With
fns fu € C([0,T],CY), n € N, and in the same manner yo = (Yo1, Yoz, - - -»
Yons -+ +»Yow)s Yon,Yow € CV, n € N. Thus the initial value problem (1) can
be written as infinitely many initial value problems:

A(0) = Latn(8) + Ful0)
(A L) = o nek

(1), { Yo (t) = Quu(t) + fu(t) + ;; Grn¥a(t),
yw(o) = Yow-
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By Proposition 3, the initial value problems (1), are all solvable on [0,7],
and there are infinitely many solutions for every n € N. If we fix a solution
of (1), for every n € N, by Theorem 1 the initial value problem (1), has
a unique solution on [0, 7], since ¢(Q) is at most countable and since f, +
o0 o0

Y Gnyn € C([0,T),CY). Remark that Y Gy, is a finite sum in every

n=1 n=1
coordinate. m

4. Linear row-finite differential equations of second order

Let L,M € L(C’), f € C([0,T),C’) and yo,y; € C’. We consider the
initial value problem

) {3100 = Lo+ My'©)+ 1),

y(0) =y, ¥'(0)=m.

The initial value problem (2) is equivalent to the row-finite system of first
order of the following form

(2) =
3
o Ly~
wherein we consider ( I? 1{4) as a row-finite matrix with index set J; =
J x {1,2}.

The initial value problem (2) has a solution y € C%([0,T],C’) if and only
if (3) has a solution (*) € C1([0,T],C”!), and the solution of (2) is unique
if and only if the solution of (3) is unique. Thus we get as a consequence of
Theorems 1 and 2:

A+ ()
- (2,

ProrosiTION 4. a) The following assertions are equivalent:

1) a((l? 1{4)) is at most countable.
2) For every f € C([0,T),C’) and every yo,y1 € C’ there is exactly one
y € C*([0,T],C’) that solves (2).

b) IfC\o((L? ]{4)) is at most countable, then for every f € C([0,T],C’)
and every yo,y1 € C’ there are infinitely many y € C*([0,T),C’) solv-

ing (2).
Only using Proposition 1d), it is hard to see whether o(( [,)) is at
most countable or not. We will now look for conditions on LTand M such

and give

that (2) is uniquely solvable. Therefore we will consider (I) TAIjI

some criteria for this matrix to be locally algebraic.
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DEeriNITION 3. For A, B,C, D € End(C;) we define

A B
det(c D)—AD~—BC’.

In general, the invertibility of (g g) is not equivalent to the invertibility
of AD — BC'. The following proposition is obvious:

PROPOSITION 5. Let A, B € End(Cy) and a € C. Then

ol A A B
I B) ™P \_-I al
are invertible if and only if their determinants are.

From Proposition 5 we get

T
PROPOSITION 6. a) (3 TJ&) is locally algebraic if and only if {\ € C:

AT — AT —TL is not invertible} is at most countable.

T
b) 2 Tj{}) is not locally algebraic if and only if {A € C : N[ —
MM —~TL is invertible} is at most countable.

Proof. For every A € C it holds that

0 L I 0\] ., Ty T
det[(I TM)—'\<O 1)]_,\1—,\M—L.

So a) and b) follow from Propositions 5 and 1. m

0 L

I TM) to be locally

With this result we get a sufficient condition for (
algebraic.

PRroPOSITION 7. a) The matrices A™M +TL, AeC, are locally algebraic
either for all or for at most countably many A € C.

b) If \TM + L is locally algebraic for all A € C, then (? ij]) is locally
algebraic.

Proof. a) Without loss of generality, we may assume J = N. Let z € Cy.
Then there exist polynomials Py ,. € C[A], ¥k € N, n € Ny, such that
(A™ +TL)"z = (Pino(A))ken, n € No. Since ™M and L are column-
finite, there is a smallest index ko(n,z) € N such that Py, = 0 for all
k > ko(n,z). If ko(n,z) is bounded in n for every z € Cy, it holds that
{(A™ +TL)"z : n € Ny} is linearly dependent for every z € Cy and so, by
Proposition 1 d), A\TM + 7L is locally algebraic for every A € C.
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If there is an z € Cy such that ko(n,z) is unbounded with respect to

n, it holds that for every A € () {u € C : Pgn(p) # 0} the set
Pk,n.:¢0

{(A™ +7L)"z : n € Ny} is linearly independent. Since [|J {p € C:
Pk,n,:¢0

Py no(p) = 0} is at most countable, ATM + 7L is locally algebraic for at
most countably many A € C.

T
b) Assume (0 not to be locally algebraic. Then, by Proposition

I ™
6, A\2I — ATM —7TL is invertible for at most countably many A € C. Since
ATM +TL is locally algebraic for all A € C, A\21 —A™M ~TL is locally algebraic
forall A € C. So o(A2I=ATM -"L) = 0,(A\*I=A"M ~TL) by Proposition 1 d)
and, therefore, there are uncountably many A € C such that there exists an
z) € Cx, ) # 0, with (A2 = ATM —TL)zy = 0. We define I(z) = max {k €
N : z # 0} U {0}, z € Cy. Since I(z)) € Ny, there is an np € N and
uncountably many A € C such that {(z)) < ng holds. For a column-finite
matrix A = (@;j)i,jen and n € N we define A = (aij)i j=1,...,n, and for
z € Cy, n € N, we define z(;,) = (21,...,2n). So we get

(NTjng) = A Ming) = "Ling) (22 )no} = 0

for uncountably many A € C. Since /(z)) < no, it holds that (z)[n,) # 0.

Thus det (AzI[nO]—/\TM[nO] —TL[nO]) = 0 for uncountably many A € C. But

this is a contradiction, since det (/\2I(n0] - /\T]W[no] —TL[nO]) is a polynomial
T,

of degree 2ny and therefore has at most 2ng zeros. So ? Tj{}) is locally

algebraic. m

We do not know whether ATM +T7L locally algebraic for all A € C is
0
I ™

true as we will see now.

necessary for ( ) to be locally algebraic, but in some cases this is

We first need the following proposition.

ProrosiTION 8. Let A, B be column-finite locally algebraic matrices. If
A-B=B-A, then A-B and A+ B are locally algebraic.

Proof. Fix £ € C; \ {0}. Since B is locally algebraic, it holds that
1 < dimspan{B"z : n € No} = k < 00. We choose a basis {b;,...,b;} of
span{B™z : n € Ng}. Then
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dim span{(AB)"z : n € Ng} = dimspan{A™B"z : n € No}
< dimspan{A"b; : n € Ny, 1 € {1,...,k}}
k
< Edimspan{A"bi :n € Ng} < oo
i=1
and
dim span{(A + B)"z : n € No}
. i n . .
= dim span { ; (i)A’B" ‘zin € No}
< dimspan{A™b; : n € Ny, i € {1,...,k}} < o0.
So again by Proposition 1 d) it follows that A+ B and A 4+ B are locally
algebraic. m
Now we get the following Proposition.

PRrOPOSITION 9. If the matrices L and M commute, the following asser-
tions are equivalent:

a) 'L and "M are locally algebraic.

b) ATM +7TL is locally algebraic for all X € C.

0 Y. .
c) I M) locally algebraic.

Proof.a)=b). Forevery A € Cit holds that ATM and "L are commuting
and locally algebraic. Thus, by Proposition 8, it follows that ATM +7L is
locally algebraic for all A € C.

b)=>c). This follows from Proposition 7b).
c)=>a). It holds that

™M-M -TL DY/
det( I —M)”de‘(f TM—AI)

™ -TL
for all A € C. By Propositions 5 and 6 it follows that also ( I 0 ) is
locally algebraic. It holds that

{ ™ -TL 0 Y (0 T ™ -\ _(-TL o0
\-I 0 I ™M) \I ™™ -I 0 - 0o -1/
By Proposition 8, the matrices
- o and 0 L L ™ -L\ (™ o
0 -1 I ™ -1 0 “\0 ™

are locally algebraic. Therefore 'L and "M are locally algebraic. m
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Another class of matrices, for which can be said more than in Proposi-
tion 7, is that of matrices with nonnegative entries:

ProPosSITION 10. If the matrices L and M have nonnegative entries, the
following statements are equivalent:

a) ™ +TL is locally algebraic.
b) A™ +TL is locally algebraic for all A € C.

c) 0 I is locally algebraic
I ™ ’

Proof. (The following inequalities between elements of C; are meant
elementwise. )

a)=>b). For every A € (0,1) and every e; = (6;;)jes, t € J, it holds that
0<(ATM+TL)"e; < (TM +TL)"e;. It follows that dim span{(ATM +TL)"e; :
n € No} < oo forall i € J. So ATM 4L is locally algebraic for all A € (0,1).
Since (0,1) is an uncountable set, it follows by Proposition 7a) that ATAM + 7L
is locally algebraic for all A € C.

b)=>c). This follows from Proposition 7b).

T
c)=>a). (ﬁ TMI_'*_ I) is locally algebraic. It holds that

I T N _(I+4TL 2L4+TL™
I ™+1) " \2[+™M L+(M+1)?)"
Fix ¢ € J. We define

Tn I TL 2n 0
(?/n) - (I TM+1) (ei)’ n € Np.

Then it holds that
0< (™M +"L)"e; < (L + ("™ +I)*)"e; < yn, 7€ Ny.

Since {y» : n € Ng} is linearly dependent because {(“y”:) in € NO} is linearly

dependent, it follows that {(TM +TL)"e; : n € Ny} is linearly dependent
and so "M +TL is locally algebraic. =

From Propositions 7, 9 and 10 we get

THEOREM 3. Let L,M € L(C’). Then for every f € C([0,T],C’) and
every yo,y1 € C’ there is ezactly one y € C*([0,T],C’) solving (2)

a) if o(AM + L) is at most countable for all X € C,

b) on the condition that LM = ML if and only if o(L) and o(M) are
at most countable,

c) on the condition that L and M have only nonnegative entries if and
only if o(L + M) is at most countable.
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EXAMPLE. Let L, M € L(CN) be defined by
Leyn, = e2n—1, Lean_1 =0, Meyny1 =e€3n, Mey = Mey, =0, neN.

It holds that ™2 =T L? = 0, so 'L and "M are locally algebraic and
therefore o(L) and o(M) are at most countable, but L+ M has uncountable
spectrum.

Since L and M have only nonnegative entries, by Theorem 3 c) and
Proposition 4 b) the initial value problem (2) is always solvable, but the
solution is never unique.

5. On uniqueness of positive solutions of certain row-finite dif-
ferential equations

We consider the following parabolic Cauchy problem:

Uy = Ugz,
) {u(0,0) % p(a),
where ¢ is a nonnegative continuous function on R.

In [14] Pollard showed that for 7’ > 0 there is at most one nonnegative so-
lution u € C?((0,T],R)NC([0,T],R) of (4). In the longitudinal line method
(cf., e.g., Walter [19]) the derivative u,, is approximated by the symmetric
difference quotient. This leads to the row-finite differential equation

y' = Apy,
(5) { 4(0) = yo,

where h > 0, A, = (S-I-S—l —21)//12, S = (61',1'—-1)1',_1'62 and yo = (yOn)nEZ =
(¢(nh))nez. The matrix Ap = (aij)i,jez is quasimonotone, which means that
a;j > 0 for ¢ # j, and it holds that o(A)) is uncountable.

In general, the initial value problems (4) and (5) can have more than one
solution (cf. Gelfand [4], p. 60 for (4) and Theorem 2 for (5)). But we will
see that, while looking only for positive solutions, also (5) has at most one
solution.

We first need the following proposition due to Bernstein (cf., e.g., [1]).

ProposiTION 11. Let f € C*([0,T],R) and f(" > 0 on [0,T] for all
n € Ng. Then

. f(n)
fl@y=> %z", z €[0,T).
n=0

Now we get the following theorem.

THEOREM 4. Let A € L(C’) such that there ezist matrices B,C € L(C’)
having only nonnegative entries with the following three properties:
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a) A= B-C,
b) BC = CB;
¢) o(C) is at most countable.
Then for every yo € [0,00)” the initial value problem

(6) {yl(t) = Ay(t), t€[0,T),

y(O) = Yo,
has at most one nonnegative solution y € C'([0,T),C’).

Proof. Let y € C!([0,T],[0,00)’) be a solution of (6). It holds that
y'(t) + Cy(t) = By(t), t € [0,T]. Since B and C are commuting, z(t) =
eCty(t), t € [0,7) is a solution of

® {#2

The exponential e€* exists, since o(C) is at most countable (cf. Theo-
rem 1). Since B and C have only nonnegative entries, it holds tha.t 2™ >0

(n)
on [0,7T] for all n € Ng. By Proposition 11, we have z(t) = Z z n'(O)
n=0
in C/, t € [0 T], and since y(t) = e Ctz(t), t € [0,T], it follows that

y(t) = Z e t" t € [0,T). Since y(™(0), n € Ny, is uniquely deter-

mined by (6), y is the only nonnegative solution of (6). =

A special class of row-finite matrices which allow a decomposition as in
Theorem 4 is that of quasimonotone matrices with diagonal bounded below.
If A = (aij)i,jes is quasimonotone and a;; > 3,7 € J, we choose B = A-(1
and C = —f1. The matrices Ay in (5) are in this class.

The following example shows that there are quasimonotone matrices with
unbounded diagonal such that (6) has more than one nonnegative solution.

ExXAMPLE. Let

St t>0
t = € ? ?
(@) {0, t=0.

It holds that f(™(0) = 0, n € Ny, and tlim f™M@) = 0,n € N (cf.
(1, p. 180)).
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We consider the function g(t) = f(¢) + €', t > 0. It holds that g(t) > 1
on [0,00) and therefore it is possible to define recursively:
n1=9
y2 = ¢' + c1y1, ¢1 > 0 such that y; > 1 on [0, 00)
y3 = g" + cay2 + €19y, c2 > 0 such that y3 > 1 on [0, 00)

n-1
¥ =gV 4 Eckyin_k—l), ¢n-1 2 0 such that y, > 1 on [0, 00)
k=1

It holds that y := (yn)nen € C([0,00),CY) solves (6) with
—C 1 0 0 0
0 —c 1 0 0
A= 0 0 —C3 1 0
0 0 0 —cq 1

with yo = y(0).
Now we define recursively

n—1
z(t) = ' + Z cszc"_k_l), neN, t>0.
k=1 ‘

Since ¢; > 0, k € N, and f(™(0) = 0, n € Ny, the function z = (2,)nen is
another nonnegative solution of (6) on [0, o).

6. Final remarks

1) There is a lot of applications of row-finite aatrices on initial value
problems in Fréchet spaces. So, for example, Lemmert [11] showed the fol-
lowing theorem.

THEOREM 6. Let F be a real Fréchet space, f :[0,T]| X F — F continuous
and |[£(t, 1) — f(tu)ll < Lllur — vall, where || - || denotes a polynorm
¥l = (|ylln)nen of seminorms || - ||n, n € N, that induces the topology
on F, and L = (l;;)i jen denotes a row-finite matriz with only nonnegative
entries and o(L) at most countable. Then the initial value problem

¥ = f(t,y),
8
( ) { 3/(0) =%
is uniquely solvable on [0,T] for every yo € F.
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For further applications cf. [6].

2) There is less known about linear row-finite differential equations with
nonconstant coefficients. For some special systems see [3] and [18]. For linear
differential equations with constant operator in Fréchet spaces see, e.g., [5],
[12], [13] and [17].

3) Another proof that the initial value problem (1) always has a solution
with completely different methods can be found in [15]. Theorem 6.2 in [2]
treating row-finite systems is not correct.

4) Theorems 1 and 2 are in some way analytic characterizations of alge-
braic properties of column-finite matrices, since a matrix A € L(C’) with
o0(A) at most countable induces a torsion module by its transposed (cf.
Propositions 1 and 2). In [7], there can be found an analytic characteri-
zation of those row-finite matrices whose transposed induces a torsion-free
module.

5) This publication is part of the author’s doctoral thesis Uber gewéhn-
liche Differentialgleichungen in Fréchetrdumen. The author wishes to ex-
press his sincere gratitude to Dr. Roland Lemmert who initiated and took
care of this work.
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