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ON O R D I N A R Y LINEAR DIFFERENTIAL EQUATIONS IN CJ 

We consider the Cauchy problem for linear row-finite systems of ordi-
nary differential equations. We discuss the connection between solvability 
and spectral properties of the related matrices for first and second order 
equations continuing the work of Ulm, Lemmert and Weckbach. 

1. Introduction 
Let J be a countably infinite set and let C J be the Frechet space of all 

mappings x : J —»• C written as x = (xj)j^j provided with the product 
topology. The linear continuous mappings on C J can be represented exactly 
by the row-finite matrices. Now let A be a row-finite matrix, 

The solvability of (1) depends on the spectrum of A. The spectrum of A is 
defined as the set of all n € C such that A — ¡il is not invertible. It turns 
out that for a row-finite matrix either &{A) or <C\<r(yl) is at most countable 

In 1984 Lemmert and Weckbach [10] proved the following theorem. 

T H E O R E M 1. The following assertions are equivalent: 

a) cr(A) is at most countable. 
b) For every f £ C([0,T],C'7) and every yo G CJ there is exactly one 

y € C^QOjrj.C) that solves (1). 

f eC([0,T],&) and y0 € C J . 

We consider the initial value problem 

(1) 
y'(t) = Ay(t) + f(t) 
1/(0) = 2/0-

(cf. [9] or [16]). 

1991 Mathematics Subject Classification: 34G10. 
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EA. x 

——tn is convergent in <CJ for all x € CJ and all t € R. „ nl n-0 
Since linear initial value problems in Frechet spaces may be locally not 

solvable even in Montel spaces (cf. [6]), it is not clear what happens if <C\<T(A) 

is at most countable. We will prove the following theorem. 
T H E O R E M 2 . If C \ a(A) is at most countable, then for every f £ 

C([0,T],C J) and every y0 6 CJ there are infinitely many y G C 1 ([0,T], C J ) 
solving (1). 

Basing on these theorems we will survey row-finite initial value problems 
of second order and the uniqueness of positive solutions for initial value 
problems of the form (1) in the case that C \ er(/l) is at most countable for 
special sets of matrices that occur in applications, e.g., by semi-discretization 
of the heat equation on an infinite strip. 

2. Notation and basic facts 
In the following let J be a countably infinite set. The topological dual of 

<CJ can be represented by C j :— {(x j ) j z j • Xj € C, : x j ^ 0} < oo}. In 
the following we will consider the duality {x,y) = ^ Xjyj, x = (xj)j^j 6 

jeJ 
CJ,y = (yj)jeJ G C j . 

The continuous linear mappings of <CJ can be represented exactly by the 
row-finite matrices in which a matrix A = (aij)i , jeJ called row-finite if 
iaij)j€J £ "Cj for all i 6 </• The linear mappings of C j can be represented 
exactly by the column-finite matrices where a matrix A = (aij)ijej is called 
column-finite if (aij)i^j 6 C j for all j 6 J. If A = is a row-
finite matrix, the dual mapping is represented by the transposed matrix 
34 = (aji)itj£j which is column-finite; it holds that ( A x , y ) = (x,TAy) for 
all x G CJ, y € C j . 

We indentify the set of all row-finite matrices with L(CJ), the set of all 
continuous linear mappings on C J , and the set of all column-finite matrices 
with End(Cj) . 

D E F I N I T I O N 1. For A e End(Cj) resp. A e L(CJ) we denote the spec-
trum of A by 

<t(A) := {fi £ C : A- fil is not invertible (in End(Cj) resp. i / (€ J ) )} 

and the point spectrum of A by 

o'p(A) := {n € C : A — / / / is not injective}. 

For the following basic facts on row-finite and column-finite matrices, cf. 
Ulm [16], Korber [9] and Kaplansky [8]. 
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P R O P O S I T I O N 1. For A € L(CJ) the following statements hold: 

a ) <T(A) = <T(TA) I 0 . 

b) Either <r(A) is at most countable or C \ &(A) is at most countable. 
c) <rp(TA) is at most countable (ap(A) can be uncountable, cf. Korber [9]). 
d) o(A) is at most countable if and only if one of the following statements 

holds: 

1) {JAnx : n £ No} is linearly dependent for all x € Cj. 
2) {JAnx : n £ No} is linearly dependent for all x in a basis of C j. 
3) CTP(TA) = a(TA). 

DEFINITION 2. A column-finite matr ix with an at most countable spec-
t rum is called locally algebraic. 

We will now s ta te and prove a theorem about a normal form of row-finite 
and column-finite matrices that is due to Ulm [16]; it will be the central tool 
for proving Theorem 2. 

P R O P O S I T I O N 2 . For every A 6 E n d ( C j ) with uncountable spectrum 
there is an invertible matrix T € E n d ( C j ) and an order on J such that 
C := T~x AT has (with regard to this order) one of the following six forms. 
There S denotes the column-finite matrix 

/ 0 0 0 • • 
1 0 0 ••• 
0 1 0 ••• 
0 0 1 ••• 

\ i i i / 

ordinal num-
ber of J form of C remarks 

nu, n 6 N 

• Si 0 . . . 0 \ 
j o S2 ••• 0 \ 

V 0 • • • s n / 

S, = S, 1 <1 <n 

nu + k, n, k € N 

/ S i 0 . . . 0 
0 S 2 ••• 0 H2 

l o 0 ... Sn Hn 
\ 0 0 ... 0 R / 

Si = S, 1 < / < n; 
R is a k x k matrix 
and every Hi, 1 < I < n, 
has k columns and 
infinite many rows 
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ordinal num-
ber of J form of C remarks 

(n + l)w, n 6 N 

/Si 0 ••• 0 
0 S2 • • • o H2 

0 0 . . . Sn Hn 
\ 0 0 ••• 0 R ) 

SI = S, 1 < / < n; 
R is column-finite with 
tr(R) at most countable 
and the ///, 1 < I < n, 
are column-finite 

nu>2, n € N 

/S! 0 0 
[ 0 S2 0 • \ 

0 0 53 ••• s, = s, i e n 

o»2 + k, k €N 

/5i 0 0 . . . 
0 S2 0 ••• H2 
0 0 s3 •• • tf 3 

\ 0 0 0 ••• R J 

S, = S, / € N; 
R and IIU I € N, 
like in the second Ccise 

u>2 + w 

/Si 0 0 . . . Hi\ 
0 S2 0 ••• H2 
0 0 s3 ••• H3 

\ 0 0 0 ... R / 

S,=S, I € N; 
R and H,, I € N, 
like in the third case 

P r o o f . We consider V := C j as C[A]-module generated by P{X).x = 
P(A)(x) , P £ C[A], x £ V. By Proposition 1 d), V is a torsion module if and 
only if cr(A) is at most countable. So we get an nonempty, at most countable 
maximal C[A]-independent subset U of V, and we define W the <C[A]-linear 
span of U. W is a submodule of V, and {A'.a; : I £ No, x £ U} is a Hamel 
basis of W. Now we consider the factor module V/W, P(A).x = P(A).x, 
x £ V/W, P £ C[A]. It holds that dim V/W is at most countable and that 
V/W is a torsion module. If there were an x £ V/W with P(X).x ^ 0 for all 
P £ C[A], P í 0, the set f/"l){x} would be C[A]-independent in contradiction 
to the maximality of U. Now let B\ be a Hamel basis for V/W and B\ a 
representative system of B\. Then B = {A'.x : I £ No, x € Í7} U Bi is 
a Hamel basis for V. B is a countably infinite set, and we order B in the 
following way: U and B\ are linearly ordered, {A'.a; : I £ No, x € U} is 
ordered lexicographically in ( x , l ) and {A'.z : I £ No, x £ U} < B\. So B 
looks like 

{ x i , A.xi, A 2 . X I , . . . , X 2 , A . X 2 , A 2 . X 2 , • • • , x¡, A.xj, A2 .x/, . . . , j/i, y2,..., yi,...}, 
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where B\ = {j/i, j/2? • • • ? Vii • • •}• B is well-ordered, and the ordinal number 
of B is: 

1) nu> in case that #{ / = n, B\ = 0, 
2) nu> + k in case that # t / = n, = 
3) (n + l)u> in case that #U = n, Bi infinite, 
4) cj2 in case that U infinite, B\ = 0, 
5) a;2 + k in case that U infinite, #Bi = k, 
6) CJ2 + u in case that U, B\ infinite. 

Now let <p be a bijective map between J and B and let J be ordered by 
the order induced by tp and the order of B. 

Performing a basis transformation between {e, : i G J}, e, = (^ij) jeJi 
and B = {6,- : i G J } , we get a transformation matrix T = ( t i j ) i j ^ j such 
that C = T~XAT has exactly the form we claimed, depending on the order 
of J. In the case that Bi is infinite, the matrix block R is a column-finite 
matrix with at most countable spectrum, since the module V/W is a torsion 
module. • 

R e m a r k . The ordinal number of J is not uniquely determined by the 
matrix A. We consider, for example, the matrix A G End(Cj}) defined by 
Aen = En+i> n G N (e„ = (¿nJfe)*€N)» and so {ei} and {e2} are C[A]-
independent maximal subsets of Cfj. In the first case we get the ordinal 
number u and in the second case the ordinal number u + 1. 

3. Proof of Theorem 2 
First we will prove Theorem 2 for the special case 

/ 0 1 0 0 
0 0 1 0 •• 

A = 
0 
0 

\ 
It holds that cr(A) = C, and the linear homogeneous initial value problem 
y' = Ay, y( 0) = 0, has the solution y{t) = (h(t), h'(t), h " ( t ) , . . . ) 
for every h G C°°(R,C) with 0) = 0, n G N0. So there is a lot of 
nontrivial solutions of this initial value problem. For example, take 

i 0, 
t = 0 

(cf. Deimling [2]). 

PROPOSITION 3 . Let J = Theorem 2 holds for the matrix A. 
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P r o o f . Since / G C ( [0 ,T ] ,C N ) , / has the form / = ( f k ) k & , fk G 
C ( [0 ,T ] ,€ ) . To every k € N there is a polynomial Pk such that \\fk-Pk\\oo < 

( i ) f c . We define 

t 1 t2 ti 

^fc(<):= / / ••• f J {fk{to)-Pk{to))dtodt1---dtk-2dtk-1 

{k € N, t G [0,71). It holds that I ^ I U < 1/lfe!, fc G N, and so := 
oo 
Z) 9k(t), t G [0,r ] , converges uniformly on [0,T], and we can define recur-
k-1 

sively ¿rj = /i, = 4 - fk, k G N . Then 2 := (zk)k& G C H M . C ? 1 ) 
and z'(t) = Az(t) + f(t), t G [0,T]. Now we choose a u G C 1 ( [ 0 ,T ] ,C N ) such 
that u'(t) = Au(t), t G [0,T], and u(0) = yo - ¿(0). Then y = z + u is a 
solution of (1). It is always possible to find such a function u (cf. Deimling 
[2], Example 6.3). Since we have already seen that the initial value problem 
y' = Ay, i/(0) = 0, has infinitely many solutions, Proposition 3 is proved. • 

Now we are able to prove Theorem 2. 
We will only consider the case of ordinal number w2 - fc j , since the other 

cases can be proved in the same way. 
According to Proposition 2, we may assume that A has the following 

form: 

A = 

( L X 

0 
0 

0 

¿2 
0 

0 
0 

L 3 

\ G i G 2 G3 

0 \ 
0 
0 

Ql 

where L„ = 

/ o 
0 
0 

A 
n G 

Q is a row-finite matrix with cr(Q) at most countable and Gn, n G N, are 
row-finite matrices. { A has the form of the transposed matrix in the sixth 
case of Propositon 2.) Remark that, since A itself is row-finite for every fixed 
row index j, the j-th row of Gn must be a zero-row for n > no{j). 

According to the order on J, we get / = (/1,/2,. • •,/n, • • • ,/w) with 
fnt fu> e C ( [ 0 , r ] ,C N ) , n G N, and ¡11 the same manner y0 = (jfoi, 2/02, • • •, 
j/On? • • •, 2/0w)> yon,you £ C , r 6 N. Thus the initial value problem (1) can 
be written as infinitely many initial value problems: 

r y'n(t) = Lnyn(t) + /„(<), 

\ yn{ o) = yoni 
(l)n n G 

( 1 ) . 
Vu(t) = Qyu(t) + fu(t) + £ Gnyn(t), 

n=l 
yU o) = y0u. 
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By Proposition 3, the initial value problems ( l ) n are all solvable on [0,T], 
and there are infinitely many solutions for every n G N. If we fix a solution 
of ( l ) n for every n G N, by Theorem 1 the initial value problem ( l )w has 
a unique solution on [0,T], since &(Q) is at most countable and since -f 
oo oo 

Gnyn € C([0,T],<Cn). Remark that ]T] Gnyn is a finite sum in every 
n= 1 7i=l 
coordinate. • 

4. Linear row-finite differential equations of second order 
Let L,M € L(CJ), f G C( [0 ,T] ,€ J ) and y0,y1 G CJ. We consider the 

initial value problem 

m Jy"(t) = Ly(t) + My'(t) + f(t), 
[ J 13/(0) — 2/0; y'(0) = yi. 
The initial value problem (2) is equivalent to the row-finite system of first 
order of the following form 

f̂ X / iw') = iL M)(w) (/(t))' 
W 1 fv(0)\ _ (Vo\ I U(o)J - W ' 

wherein we consider j^) as a row-finite matrix with index set J\ — 
J x {1,2}. 

The initial value problem (2) has a solution y G C2([0, T], CJ) if and only 
if (3) has a solution G C 1 ([0, T], C J l ) , and the solution of (2) is unique 
if and only if the solution of (3) is unique. Thus we get as a consequence of 
Theorems 1 and 2: 

P R O P O S I T I O N 4. a) The following assertions are equivalent: 

1) <t((^> I f ) ) is at most countable. 
2) For every f £ C([0, T], CJ) and every y0, y± G CJ there is exactly one 

y G C 2 ( [0 ,T] ,C J ) that solves (2). 

b) IfC\(r((° M)) is at most countable, then for every f € C([0,T], CJ) 
and every yo,yi 6 CJ there are infinitely many y G C2([0, T], C 7 ) solv-
ing (2). 

Only using Proposition Id), it is hard to see whether (?((£ M)) 1S a t 

most countable or not. We will now look for conditions on L and M such 

that (2) is uniquely solvable. Therefore we will consider ^ ^ ^ and give 

some criteria for this matrix to be locally algebraic. 
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DEFINITION 3. For A,B,C,D G End(Cj) we define 

det(c D)"ad~bc-
In general, the invertibility of is not equivalent to the invertibility 

of AD — BC. The following proposition is obvious: 

P R O P O S I T I O N 5. Let A,B G End(<Cj) and a G C. Then 

( al A\ ( A B \ 
\ l B j ^ { - I a l ) 

are invertible if and only if their determinants are. 

From Proposition 5 we get 

PROPOSITION 6. a) ^ l°ca^y algebraic if and only if {X G C : 

A 2 / — ATM — TL is not invertible} is at most countable. 

b) T j ^ ^ î S n°t locally algebraic if and only if {A G C : A21 — 

ATM — TL is invertible} is at most countable. 

P r o o f . For every A G C it holds that 

det 
( / T M ) ~ X { O / ) 

= A21 - ATM - T L . 

So a) and b) follow from Propositions 5 and 1. • 

With this result we get a sufficient condition for ^ ^ ^ to be locally 

algebraic. 

P R O P O S I T I O N 7. a) The matrices AJM +JL, A G C, are locally algebraic 
either for all or for at most countably many A G C. 

b) If \tM+tL is locally algebraic for all A G C, then ^ ^ ^ is locally 

P roof , a) Without loss of generality, we may assume J = N. Let x G C^. 
Then there exist polynomials Pk,n,x € C[A], k G N, n G No, such that 
(ArM +rL)nx = (Pk,n,x(X))ke®> n £ No- Since TM and TL are column-
finite, there is a smallest index ko(n, x) G N such that Pk,n,x — 0 for all 
k > ko(n,x). If ko(n,x) is bounded in n for every x G Cn, it holds that 
{(AJM + JL)nx : n G N0} is linearly dependent for every x G Cn and so, by 
Proposition 1 d), ArM +rL is locally algebraic for every A G C. 
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If there is an x G Q j such that ko(n,x) is unbounded with respect to 
n, it holds that for every A G f ) {¡i G C : Pk,n,x{n) i1 0} the set 

Pk. 
{(ATM +rL)nx : n G No} is linearly independent. Since |J {fi G C : 

Pk, n,x*0 
Pk,n,x(fi) = 0} is at most countable, A J M +rL is locally algebraic for at 
most countably many A 6 C. 

b) Assume ^ ^ ^ not to be locally algebraic. Then, by Proposition 

6, A2/ — XtM —tL is invertible for at most countably many A G C. Since 
A tM + tL is locally algebraic for all A £ C, X2I — XTM -JL is locally algebraic 
for all A G C. So A ( A 2 J - A T A r - 1 i ) = av(\21-\JM-JL) by Proposition 1 d) 
and, therefore, there are uncountably many A G C such that there exists an 

0, with (A21 - A J M - t L ) x a = 0. We define l(z) = max {k G 
N : zk # 0} U {0}, z G CN . Since l(xx) G N0, there is an n0 G N and 
uncountably many A G C such that l(x\) < no holds. For a column-finite 
matrix A = {a.ij)i,je® and n G N we define /l[n] = (a,ij)ij=i n , and for 
z G Cpj, n G N, we define Z[„j = ( z j , . . . , zn). So we get 

(A2/[nol - ATM[no] -T^[no])(a:A)[7io] = 0 

for uncountably many A G C. Since l(x\) < no, it holds that (£A)[n0] ^ 0. 

Thus det (A2/[no] —A1Af[ri0] -^[„Q]) = 0 for uncountably many A G C. But 
this is a contradiction, since det (A2/[no] — ATA/[ri.0] —TL[no]) is a polynomial 

of degree 2no and therefore has at most 2no zeros. So ^ ^ is locally 

algebraic. • 

We do not know whether A JM + JL locally algebraic for all A G C is 

necessary for ^ t 0 algebraic, but in some cases this is 

true as we will see now. 
We first need the following proposition. 

PROPOSITION 8. Let A, B be column-finite locally algebraic matrices. If 
A • B = B • A, then A • B and A + B are locally algebraic. 

P r o o f . Fix x G Cj \ {0}. Since B is locally algebraic, it holds that 
1 < d i m s p a n { 5 n i : n G No} = k < oo. We choose a basis {¿>i,..., 6*} of 
span{5 n x : n G No}. Then 
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dim span{(A5)nx : n G N0} = dimspan{Ani?nx : n G 
< dimspan{An6,- : n G N0, i G {1 , . . . , A;}} 

k 
< ^dimspan{A"6i : n G N0} < oo 

i=i 
and 

dim span{(A + B ) n x : n G 

= dim span j ^ Qa'B"'^ : n € N 0 | 

< dimspan{yln6i : n G No, i G {1 , . . . , k } } < oc. 

So again by Proposition 1 d) it follows that A • B and A + B are locally 
algebraic. • 

Now we get the following Proposition. 

P R O P O S I T I O N 9 . If the matrices L and M commute, the following asser-tions are equivalent: 
a) tL and TM are locally algebraic. b) XJM + tL is locally algebraic for all A G C. 
c) ^ j Tjrf ^ locally algebraic. 
P r o o f . a)=^b). For every A G <C it holds that ATM and r L are commuting 

and locally algebraic. Thus, by Proposition 8, it follows that ATM + J L is 
locally algebraic for all A G C. 

b)=S-c). This follows from Proposition 7b). 
c)=s>a). It holds that 

, (TM -XI -tL\ j /-XI tL \ 
d G t V - I - A / J = \ I J M — X I ) 

fTM -JL' 
for all A G C. By Propositions 5 and 6 it follows that also I ^ ) is 

locally algebraic. It holds that (TM -TL\ i 0 TL\_ ( 0 JL \ (TM \ - I 0 J \I tM J ~ \I JM J \ - I -TL\_f-TL 0 0 ) ~ l 0 -TL 
By Proposition 8, the matrices 

-TL 0 \ , fO rL\ , fJM -tL\ (tM 0 

0 —TL J A \I JM J ^ — J 0 J = (, 0
 JM 

are locally algebraic. Therefore J L and r M are locally algebraic. • 
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Another class of matrices, for which can be said more than in Proposi-
tion 7, is that of matrices with nonnegative entries: 

PROPOSITION 10. If the matrices L and M have nonnegative entries, the 
following statements are equivalent: 

a) TM + TL is locally algebraic. 
b) XTM +TL is locally algebraic for all A 6 C. 

c ) ( j }M) is locally algebraic. 

P r o o f . (The following inequalities between elements of C j are meant 
elementwise.) 

a)=i>b). For every A G (0,1) and every e{ - {Sij)j£j, i G </, it holds that 
0 < (ATM + TL)nei < (JM+rL)nei. It M o w s that dim span{(ATA/+TZ,)"e< : 
n G No} < oo for all i G J. So ATM + TL is locally algebraic for all A G (0,1). 
Since (0,1) is an uncountable set, it follows by Proposition 7a) that ATM+TL 
is locally algebraic for all A G € . 

b ) ^ c ) . This follows from Proposition 7b). 
( I rL \ c)=>a). i j j J is locally algebraic. It holds that 

( I TL V _( I+ JL 2tL+tLtM \ 
\I tM + IJ ~\2I+tM tL + {tM + I)2J" 

Fix i 6 J . We define 

c M i > * * • 

Then it holds that 

0 < Cm +JL)nei < CL + (TA/ + I)2)nei < yn, n G N0. 

Since {yn : n G No} is linearly dependent because j : n G Noj is linearly 

dependent, it follows that {(TM +JL)ne{ : n G No} is linearly dependent 
and so JM + TL is locally algebraic. • 

From Propositions 7, 9 and 10 we get 

T H E O R E M 3 . Let L,M G L(CJ). Then for every f G C ( [ 0 , R ] , C J ) and 
every yo,yi G CJ there is exactly one y G C 2 ( [ 0 , T ] , C J ) solving ( 2 ) 

a) if a(XM + L) is at most countable for all A G C, 
b) on the condition that LM = ML if and only if a(L) and a{M) are 

at most countable, 
c) on the condition that L and M have only nonnegative entries if and 

only if <t(L + M) is at most countable. 
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EXAMPLE. Let L,M £ Z(<CN) be defined by 

Le2n = e2n-i, Le2n-i = 0, Me2n+i = e2n, Mex - Me2n = 0, n £ N. 

It holds that rM2 =T L2 = 0, so JL and JM are locally algebraic and 
therefore a(L) and cr(M) are at most countable, but L + M has uncountable 
spectrum. 

Since L and M have only nonnegative entries, by Theorem 3 c) and 
Proposition 4 b) the initial value problem (2) is always solvable, but the 
solution is never unique. 

5. On uniqueness of positive solutions of certain row-finite dif-
ferential equations 

We consider the following parabolic Cauchy problem: 

fA\ ( ut = V-xx, 
W \t i (0 , * ) = ? ( * ) , 

where (p is a nonnegative continuous function on R. 
In [14] Pollard showed that for T > 0 there is at most one nonnegative so-

lution u € C 2 ( ( 0 , T ] ,R )nC ( [ 0 , T ] ,R ) of (4). In the longitudinal line method 
(cf., e.g., Walter [19]) the derivative uxx is approximated by the symmetric 
difference quotient. This leads to the row-finite differential equation 

jy' = Ahy, 

[ ) U ( 0 ) = ito, 

where h > 0, Ah = ( S + S ' 1 -2I)/h2, S = (¿i,j-i)i,jez and y0 = (yon)nez = 

(<p(nh))nez. The matrix Ah = (a,ij)ij£z is quasimonotone, which means that 
aij > 0 for i ^ j, and it holds that ^(^U) is uncountable. 

In general, the initial value problems (4) and (5) can have more than one 
solution (cf. Gelfand [4], p. 60 for (4) and Theorem 2 for (5)). But we will 
see that, while looking only for positive solutions, also (5) has at most one 
solution. 

We first need the following proposition due to Bernstein (cf., e.g., [1]). 

PROPOSITION 11. Let f £ C°°([0,T],R) and > 0 on [0,T] for all 
n G No. Then 

n\ 
7 1 = 0 

Now we get the following theorem. 

THEOREM 4. Let A € L(CJ) such that there exist matrices B,C £ L(CJ) 

having only nonnegative entries with the following three properties: 
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a) A = B-C] 
b) BC = CB; 
c) a(C) is at most countable. 

Then for every yo G [0, oo)J the initial value problem 

has at most one nonnegative solution y G ( ^ ( [ ( ^T^O 7 ) . 

P r o o f . Let y G C1([0,T],[0,oo)' ;) be a solution of (6). It holds that 
y'(t) + Cy(t) = By(t), t G [0,T]. Since B and C are commuting, z(t) = 
ecty(t), t G [0,T] is a solution of 

(7) J = Bz, 

The exponential ect exists, since cr{C) is at most countable (cf. Theo-
rem 1). Since B and C have only nonnegative entries, it holds that z^ > 0 

on [0,T] for all n € N0. By Proposition 11, we have z(t) = > ' ^ 77' n -n = 0 
in CJ, t G [0,T], and since y(t) = e~ctz(t), t G [0,T], it follows that 

y(t) = V 2 — L i t n , t G [0,T]. Since y(n)(0), n e N0, is uniquely deter-
i n! 

n = 0 
mined by (6), y is the only nonnegative solution of (6). • 

A special class of row-finite matrices which allow a decomposition as in 
Theorem 4 is that of quasimonotone matrices with diagonal bounded below. 
If A — is quasimonotone and ajj > (3, j G J, we choose B = A—fit 
and C = — /?/. The matrices Ah in (5) are in this class. 

The following example shows that there are quasimonotone matrices with 
unbounded diagonal such that (6) has more than one nonnegative solution. 

EXAMPLE . L e t 

/ ( i ) i e - 1 " , < > 0 , 
JK1 \0, t = 0. 

It holds that /<n>(0) = 0, n G N0, and lim / ( n ) ( 0 = 0, n G N (cf. t—>00 
[1, p. 180]). 
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We consider the function g{t) = f{t) -f e' , t > 0. It holds that g(t) > 1 
on [0, oo) and therefore it is possible to define recursively: 

yi = 9 
y2 = g' + ciyi, cj > 0 such that > 1 on [0,oo) 

2/3 = g" + c2y2 + ciy[, c2 > 0 such that y3 > 1 on [0, oo) 

n—1 
yn = 5 ( n _ 1 ) + ^2cky[n~k~1\ c n _i > 0 such that yn > 1 on [0,oo) 

k= 1 

It holds that y := (yn)n& G C71([0, oo), CN) solves (6) with 

f-Cl 1 0 0 0 
0 - c 2 1 0 0 
0 0 -C3 1 0 
0 0 0 - c 4 1 

\ : j j • 

with 3/o = i/(0). 
Now we define recursively 

n —1 
zn{t) = el + Y , c * 4 n ~ * _ 1 ) . " e N, i > 0. 

k-1 
Since cjt > 0, k G N, and / ( n ) (0) = 0, n G No, the function z = (zn)ne^ is 
another nonnegative solution of (6) on [0, oo). 

6. Final remarks 
1) There is a lot of applications of row-finite matrices on initial value 

problems in Frechet spaces. So, for example, Lemmert [11] showed the fol-
lowing theorem. 

T H E O R E M 6. Let F be a real Frechet space, / : [0, T ] X F —• F continuous 
and ||/(i,2/i) — /(i,J/2)|| < -^llfi ~~ 3/211» where || • || denotes a polynorm 
| |y| | = (||3/||n)n6N of seminorms || • ||n, n 6 N, that induces the topology 
on F, and L = (Ztj)»,jeN denotes a row-finite matrix with only nonnegative 
entries and cr(L) at most countable. Then the initial value problem 

¡y' = f(t,y), 
1 ; 1 2 / ( 0 ) = 2/0 

is uniquely solvable on [0,T] for every yo € F. 
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For further applications cf. [6]. 

2) There is less known about linear row-finite differential equations with 
nonconstant coefficients. For some special systems see [3] and [18]. For linear 
differential equations with constant operator in Frechet spaces see, e.g., [5], 
[12], [13] and [17]. 

3) Another proof that the initial value problem (1) always has a solution 
with completely different methods can be found in [15]. Theorem 6.2 in [2] 
treating row-finite systems is not correct. 

4) Theorems 1 and 2 are in some way analytic characterizations of alge-
braic properties of column-finite matrices, since a matrix A 6 L(CJ) with 
(T(A) at most countable induces a torsion module by its transposed (cf. 
Propositions 1 and 2). In [7], there can be found an analytic characteri-
zation of those row-finite matrices whose transposed induces a torsion-free 
module. 

5) This publication is part of the author's doctoral thesis Uber gewöhn-
liche Differentialgleichungen in Frecheträumen. The author wishes to ex-
press his sincere gratitude to Dr. Roland Lemmert who initiated and took 
care of this work. 
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