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1. Introduction 
In this paper we are concerned with an oriented congruence, i.e. with an 

equivalence relation <5 (or a halfequivalence <5), which induces an equidistance 
relation = with èÇ.=. 

For every halfequivalence SC. X x X the relations 60S and S U 6 o 
6 are equivalence relations in the set À" (cf. [3]). In some earlier papers 
we have investigated situations in which 6 o S or 6 U 6 o 6 is an affine 
parallelity relation (or directed affine parallelity relation), see [5], [6]. In 
such a way we have obtained the systems which correspond (up to mu-
tual definability) to metric affine, ordered affine, or ordered metric affine 
planes. 

In this paper we consider the situation in which « i o i o r i U i o i coincides 
with the equidistance relation = of some metric affine plane (and 6 £ = ) . 
It is not too difficult, to prove that for every equidistance relation = in the 
set X there exists a halfequivalence 6 with S o 6 = = , but in general the re-
sulting structure (X;6) is not sufficiently homogeneous. We shall show that 
homogeneous structures (X;6) inducing an equidistance relation = really 
exist. Some general properties and characterizations of such structures are 
established. 

2. Basic notions and definitions 
Let 5" = (F; + , -, 0,1) be a commutative field with char J / 2 and let 

£ € F,s i 0. Then we set £(v/F) := (F X F; ©, 0 ,0 ,1 , " ) , where 

( « ! , & ) © (a 2 , ft) = (<*i + a2,01 + ft), 
( < * i , f t ) © ( a 2 , f t ) = ( " i " f t , o i - f t + a 2 - f t ) , 

(<*i,ft) = (cti, —/3i) for all a i , a 2 , f t , f t € F, 



370 I\. Prazmowski 

and 0 = (0,0), i = (1,0). 

For convenience we define the norm ve m F x F by ve(a) = aa. The 
structure ^ ( V ? ) is a commutative ring and the set R(3"(y /F) ) = F X {0} 
is a subring of ^(n/e), isomorphic to 5 under the map a —> (a ,0) . Ev-
ery structure ^(y/e) will be called a complex ring; thus complex ring is a 
special kind of commutative ring with the distinguished involutive automor-
phism. Whenever e ^ a 2 for all a 6 F , the ring is a- commutative 
field. 

The procedure which yields from J and £ is a well known Cay-
ley's Method generalizing the construction of complex numbers and dual 
numbers (cf. [1]). 

Given any complex ring <£ = (C; + , -, 0,1, we define the equidistance 
relation =<r, the orthogonality relation and the parallelity relation ||c 
as follows 

ab =£ cd (a — b)(a — b) = (c -d)(c -d), 
abL^cd (a — b)(c — d) + (c — d)(a - b) = 0, 

ab\\<rcd (a — b)(c — d) = (c — d)(a — 6), 

for all a,b,c,d G C. Then we define the equidistance plane over 

E ( i ) := (C; =c), 

and the affine plane over <£, 

m := (CM. 
One can easily calculate that if £i ^ £2, then A(3"(-v/^i)) = MSTv/^))- I11 

fact, the affine plane A ^ ^ / i ) ) coincides with the usual affine plane coor-
d i n a t e d by 3" (cf. [7]). For a ^ b let L(a, b) be the line joining a and b 
and let C\x be the set of affine lines of an affine plane il. For every complex 
ring <£ and any a, b € <£ with a ^ b we set 5(£) := {x £ C : ax =<r xb}. 
Obviously, £a(c) — {$(1) a, b £ C, a ^ ¿»} for every complex ring <£ with 
|<£| = C; therefore A(<£) is definable in E(<£). Moreover the structures E(<£) 
and (C; are mutually definable (cf. [2]). 

If £ = \fe) is simply a complex field, then E(£) is a weak Euclidean 
plane (cf. [1], [2]). If not, i.e. if £ = A2 for some A G F, then E(£) is a 
Minkowskian plane, and y/e) = J( \ /T) under the isomorphism (a , (5) —> 
(a, A/3). 

Now let us consider an ordered commutative field 5" = (F; + , •, 0,1, <) 
and let e 6 F, s ^ 0. In the set C = F x F we define the betweenness 
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relation By C C 3 as follows (cf. [7]): 

B ,((«!,/?!), ( a 2 , f t ) , (a3,/33)) 
(VA € F)[0 < A < 1 A A2 = AQX + (1 - A)A3 A fa = A/3X + (1 - A)/?3], 

The ordered Gaussian plane over (J , £) is finally defined to be the struc-
ture 

G(ff , £) = < C ; = C , B J > . 
An alternative approach which makes use of the notion of directed complex 
field is presented in [4]. Evidently, the Gaussian plane G({$",£) is an expan-
sion of the structure E(5(v/F)). Finally, given any line K and points a, b, G C 
we set 

B , ( A , A , b) ( 3 p € A ' ) [B , ( a , I> , 6) A a , b £ A']. 

3. Converse and oriented congruence 
A relation A C X x X is called a halfequivalence iff A is symmetric, 

A o A o A = A, and for every a e X there is b £ X with (a, b) G A. If A 
is a halfequivalence, then the relation A U A o A is an equivalence relation 
(cf. [3]). We are going to investigate such relations A, that A U A o A = = c 
for some complex field £ with ordered real part R(<£). Any such a relation 
A satisfying the additional assumption 
O C 1 abAcdAabAdc=i-a = bVc = d 

will be called a converse congruence (or a converse equidistance relation). 

Let # be an ordered field and let e € F, e / A2 for all A € F. We begin 
with a geometric definition of the relation =(5,e)- First we define auxil-
iary 

( 3 p ) \ p / O A 0 p l ? ( v ^ 0 a A B,(6, L ( o , p ) , a)]) V 0 = a = b 

and next we put 

a b c d b
 ~

 a d ~ c -

Clearly, the relation is definable in G(3", £) and thus it is invariant 
under automorphisms of G ^ f ) * in particular under isometries and similar-
ities. 

PROPOSITION 1 . If a = (AI,/?i) and b = (a2,/32), then Oa 06 is 

equivalent to 

aa = b b k 0 < ^ < 1 . 
( a w - e f i M - (a? - ef3\) < ' ' 
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P r o o f . Proof is a straightforward calculation. We notice that 

( i ) Q(£/7,a).Lj (vG)fl(a,/?) for all a, ¡3 £ F, and 
(ii) for a,b as in Prop. 1 we have 

( 7 o + ( l - 7 W € l ( 0 , ( e A , a i ) ) 

with 'V — ala2~c0102 _ 
W U n 7 ~ (aai-eft/hMai-eW * 

PROPOSITION 2. The relation is symmetric, satisfies condition 

0C1, and ab ba holds for all a,b. 

P r o o f . If a = {a,P), then aa = (a2 — e/32,0). Thus the symmetry of 

is a n immediate consequence of Proposition 1. 
Next we prove that a —a for every a = (a,P). Indeed, clearly 

aa = (—a)(—a) and in this case the coefficient 7 given by Proposition 1 
is 

_ - Q 2 + SP2 _ 1 
7 ~ - a 2 +£P 2 - (a2 — sP2 ~ 2 ' 

so 0 < 7 < 1. 
Finally we shall prove that a ^ b, a ^ —b yields a = 0. Let a ^ 0 

and O p X ^ ^ O a . Then also 0pJLy(^)0( —a) and By(a,L(0,p) ,— a). There-
fore there is no b such that a = b, Bj?(a, L(0,p), b), and B y ( - a , L(0,p), b). m 

Next we define 

ab cd ab = cd A (->a6 cdW a = b). 

Clearly, we have now 
PROPOSITION 3. The relation is symmetric and reflexive, m 

In every equidistance plane as above we have: ab = cc O a = b. This 
yields 

Lemma A.Ifb ^ 0, then 

( i ) a ^ b a b ^ I ; 
(ii) a S i o ab_1 ^ L 

P r o o f . The map / : x xbis an automorphism of G(5",e) and 
preserves 0. Therefore / preserves ^ and which proves ( i ) and (ii). • 

Lemma 5. If a = (a , /?), then a ^ 1 iff aa = 1 and a < 0. 

P r o o f . The condition aa = 1 is equivalent to 0a = 0L Next we note 
that 0 (0 ,1 )1-3(^01 and A' = L (0 , (0 ,1 ) ) = { ( 7 , « ) : 7 = 0}; clearly for 
every a = (a,P) 

BF(a,K,l) iff a < 0. • 
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P R O P O S I T I O N 6 . The relation ¿S A half equivalence iff E > 0 . 

P r o o f . W e p r o v e t h e following c o n d i t i o n s : 

( * ) If e > 0 , t h e n 

( i ) a, b ^ 1 a 6 ^ I ; 
( i i ) a , 6 ^ i => ab ^ ¿ , a n d 

(iii) 

( * * ) If e < 0 , t h e n t h e r e e x i s t s a wi th a ^ 1, a ^ I , a n d a ^ a. 

Clearly , a , 6 = i yields a • b = L A s s u m e first t h a t £ < 0 . 

( i i ) L e t a = ( 0 1 , 0 2 ) , b = a n d a,b ^ L T h e n c * i , / ? i > 0 a n d 

Q i ~ £ a 2 = 1 = — £02- W e h a v e ab = ( a i / ? i + £ a 2 / ? 2 , <Ji/?2 + <a 2 /? i ) a n d 

t h u s , t o g e t ab ^ 1, we m u s t p r o v e a i / ? i + £02/^2 > 0 . 

A s s u m e t o t h e c o n t r a r y a i / ? i + £02/^2 < 0 . T h e n £02/^2 < - Q 1 P 1 < 0 , 

a n d , s ince £ > 0 , we g e t a 2 / ? 2 < 0 . T h u s c*2 < 0 , / ? 2 > 0 o r a 2 > 0 , 

/?2 < 0 . A s s u m e a 2 > 0 a n d fa < 0 ; t h e n a\ = a ' ~ 1 a n d f3\ = i m p l y 

" 2 = & = " V ^ t ^ - W e h a V e 

e a 2 f a = " V ^ T ^ V ® ? = - v / ( a ? - l)(/3? - 1 ) < - a ^ , 

so a i / ? ! > - ^ ( a 2 - 1 - 1 ) a n d t h u s a\(3{ < ( a j - l ) ( / ? f - 1 ) . F r o m 
this we g e t 0 < -a\ - + 1 i .e . <x\ + ¡3\ < 1. B u t t h e n <x\ + ¡3\ = 

( 1 + £a\) + (1 + £¡32) = 2 + £{a\ + f3\) < 1 leads t o i n c o n s i s t e n c y , 
( i ) a n d (iii) a r e p r o v e d analogously . 

( * * ) N o w a s s u m e £ < 0 . L e t a = {a, ¡3) a n d a ^ L T h e n a < 0 a n d , 
clearly, a = ( a , —¡3) ^ L W e h a v e a a _ 1 = ( a 2 + £(32,2a(3). T o get a ~ a it 
suffices t o find a, (3 e F w i t h a2+£(32 < 0 , a 2 -e(32 = 1. T h e n £(32 = a 2 - 1 
a n d 2 q 2 < 1 i .e . a 2 < I , / J * = 2 - ~ . Clear ly , o n e c a n find such a, (3 w h e n e v e r 
£ < 0. • 

A s a n i m m e d i a t e c o n s e q u e n c e we o b t a i n t h e following 

P R O P O S I T I O N 7 . If £ > 0 , then is an equivalence relation, = 

( y , e ) ) 2 ' = U a n d t h e c o n d i t i o n a b c d 

ab holds for all a,b,c,d € F x F. m 

I f £ = A2 for s o m e A 6 F , t h e n we c a n s imply a s s u m e £ = 1. I t is 
k n o w n t h a t E ( 3 " ( \ / l ) ) c o n t a i n s i s o t r o p i c d i rec t ions . In this c a s e we m o d i f y 
o u r definition o f t h e r e l a t i o n s ^ a n d ^ as follows: 

a b (->0a±Qa A - . 0 6 1 0 6 A 0 a 06A 

A ( 3 p ) [ p ^ 0 A O p l O a A B ( a , L ( 0 , p ) , 6 ) ] )V 
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V(0al0a A 06106 A a, 6 ̂  0 A 0a ][ 06) V a = 0 = 6; 

ab cd:&b- a = ( i 7 i i ) d - c; 

a C :<3> (-.OalOa A -.06X06 A Oa =y (N/i) 06 A ->0a 06)V 

V(OalOa A 06106 A a, 6 ̂  0 A Oa If 06) V a = 0 = 6; 

ab cd-<*b-a d-c. 

One can easily prove now 

PROPOSITION 8. The relation is a half equivalence, is an 

equivalence relation, and )2. 

In the sequel we shall establish some more important properties of the 
relations ^ and To this aim we shall define some classes of transforma-
tions of complex fields. For any complex ring £ = \Je) we set 

Is(E(<£)) := { / : |<£| \€\ : (Va,6)[a6 = e / (a)/(6) ] } . 

The following characterization of the class Is(E(<£)) is known (cf. [2]): 

/ € Is(E(<£)) iff for some a € |<£| with aa = 1 and for some 6 

( i ) (Vx G |£|)[/(x) = ax + b], or 
(ii) {Vxe \t\)[f(x) = ax + b]. 

Elements of Is (E(£) ) are called isomelries of E(<£), clearly they form a trans-
formation group. Isometries characterized by the condition ( i ) form a sub-
group denoted by I s + (E (£ ) ) ; such transformations are called direct isome-

tries. Let 

Is~(E(<£)) = Is(E(<£)) \ Is+(E(<£)). 

Now we set 

C E ( f f , e ) : = ( F x f : % ( ) ) , 

S E ( 5 " , £ ) : = ( F X F : % £ ) ) , 
and 

CIs(CE(3", £)) 

:={f :FxF~* Fx F: (Va, be Fx F)[ab f(a)f(b)}} 

SIs(SE (F,e)) 

{f F x F —> F x F : (Va, be Fx F)[ab / (a)/(6) ] } . 

Finally Tr(E<£)) will be the group of translations and II(E(<£)) — the set of 
central symmetries of the plane E<£). 

Evidently G(3",£) is an expansion of the structures C E ^ , £), SE(3",£), 
and E(£, e) and the structures CE(y, e) and SE(3", e) are definable in G(J, e); 
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thus we can use symbols IS(6(Ï ,Ê)), IS(SE(3",£)), and Is(CE(5',£)) in their 
natural meaning. 

LEMMA 9. If a function f is defined by the formula f ( x ) = ax + b with 
a / 0, then 

(i) f e C I s ( G ( ï , £ ) ) < » a ^ 1; 
(ii) f e S I s ( G ( ï , £ ) ) o a = Ê 1. 

P r o o f , (i) If / € CIS(G(Î,£)), then 01 / ( 0 ) / ( i ) = 6(6 + a), so 
a ^ L Conversely, if a ^ i , then for arbitrary x we get ax ^ x, since 
for every x the transformation y yx is a similarity of G(3", £)) and 
thus it preserves Therefore ax + 6 ^ x + 6, so f ( x ) f ( y ) ^ xy for 
all x, y. 

(ii) is proved analogously. • 

THEOREM 10. If e > 0, then the following conditions hold: 

(i) Tr(E(i?(v^)) Ç CIS(G(J,£))); 
(ii) I I ( G ( ï , £ ) ) Ç S I s ( G ( î , £ ) ) ; 

(iii) CIs(G(5", £)) is a subgroup o/Is+(G(3",£)); 
(iv) b + ( G , , e ) ) \ Cl8(G(y,£)) = SIs(G(î ,c)) ; 
(v ) [ I S + ( G ( 3 - , £ ) ) : C I S ( G ( Î , £ ) ) ] = 2. 

P r o o f , (i) is a consequence of the definition and (ii) is a consequence of 
Proposition 2. 

To prove (iii) we note first that by Proposition 6, CIs(G(F, £)) is a trans-
formation group. Evidently 

CIS(G(S,£)) U SIS(G(5\£)) C IS(G(5,£)). 

Let E(E(5(\ /£)) be the set of axial symmetries of the plane E(J(V/F)). We 
shall prove that 

(*) S(E(5"(v^)) n (CIs(G(î , £)) U SIs(G(5", e))) = 0. 

Assume that / € £(£(£(>/£)) and / 6 SIs(G(3",£)). There are a, be F x F 
such that a ^ b and / ( a ) = a, f{b) = 6. By the definition, ab ^ f(a)f(b) 
which yields I ^ i , or o = 6. Now assume f £ CIs(G(iJ, £)) and consider any 
point a with a ^ f(a); let 6 = f(a). By the definition, ab ^ f(a)f(b) = ba, 
so —1 ^ 1 or a = b. This proves (*). 

From this we get 

(**) Is~(G(S, £)) n (CIs(G(5, £)) U SIs(G(J, £))) = 0. 

Indeed, every element / of Is~(G(Ç, £)) can be written in the form / = g o h 
with h e £(£(£(>/£)), 9 G Tr (G( ï , e ) ) and in the form f = g'o h\ where 
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h' e E(E(ff(v^)), g' € n (6 ( f f ,e ) ) (cf. [FB]). Now (**) Mows from (i), (ii), 
and (*). 

The condition (**) immediately yields (iii) and the condition SIs(G(ff,£)) 

(iv) & (v) is a consequence of Lemma 9 and (i), (ii) and (iii) of the 
above. • 

As a consequence of Lemma 9 and Lemma 4 we get the following natural 
properties of the introduced classes of maps. 

THEOREM 11 [ H o m o g e n e i t y ] . 

(i) If ab ^ cd, then there is / € CIs(G(5,f)) with f(a)—c and f(b)=d. 
(ii) If ab ^ cd, then there is f G SIs(G(3',£')) with f(a) = c and 

f(b) = d. 

P r o o f . If a = b, then c = d; in such a case in (i) we set / to be a 
translation which maps a onto c, in (ii) / is a central symmetry which maps 
a onto c. If a ^ b, then we consider / defined by 

. . . c — d da — cb 
f(x) = 7X + T~ i a — b a — b 

which has the desired properties. • 

THEOREM 12 [Separation principle]. 

(i) If f € I s + (G(5 ,£ ) ) and ab ^ f(a)f(b) for some a,b with a ^ 6, then 
f € 0 1 8 ( 6 ( 3 " , e ) ) . 

(ii) If f € IS+(G(3",£)) and ab ^ f(a)f(b) for some a, b with a b, then 
f e s i s ( G ( t f , £ ) ) . • 

For the relation ^ we use the term oriented congruence. This term can 
be justified by the following theorem. 

THEOREM 13. Let M be a line in G(5 , f ) . Then for any a,b,c,d € M 
the following conditions are equivalent: 

(i) ab cd; 
(ii) there is a translation f with f(a) = c, f(b) = d; 

(iii) ab = cdA ab ]f cd. 

P r o o f . Without loss of generality we can assume 0 £ M. Moreover we 
can assume a = 0 = c, because xy 0(j/ - x) and xy ][ 0(y — x ) for all 
x,y. Now the theorem is evident. • 

Evidently, by Proposition 7, the structures CE(3",£) and 8 1 ( 5 , £) are 
mutually definable for any £ > 0 such that £ ^ A2 for all A € F; clearly 
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i s definable in CE(5', e). The same holds for e = 1, in this case we 
have 

ab = cd <£> ab ^ cd V ab ^ cd(l(ab) A I(cd)), 

where I(a6) means that ab is an isotropic segment. The relation I can be 
defined in terms of ^ by the condition: 

2 

I(ab) ( V X I , £ 2 ) [ ^ x,b V axi ^ X{b) A x\ / a;2 =>• 

¿=1 

I1X2 ^ abV X\X2 S ab V a = b. 

We are going to prove that (3(3", e) is definable in CE(3",£) and thus ordered 
Euclidean geometry can be formulated in terms of one primitive notion ^ 
which is a halfequivalence, such that ^ U ( ^ ) 2 = = , and satisfying conclu-
sions of Theorems 11, 12 and 13. 

Let us fix a commutative ordered field ^ and e G F = |5"| with £ > 0. 
For any a,b £ F2 we set 

M £ ( a ,6 ) := {x : ax xb}. 

Evidently, Me(p,q) Ç 5 ( J ) for all points p, q. 

L E M M A 14. Let p = ( 0 , - a ) , q = ( 0 , a ) , a > 0 , and x = ( 7 1 , 7 2 ) . The 

following conditions are equivalent: 

( i ) x € M e ( p , q ) - , 

(ii) 72 = 0 and 7J < ea2. 

P r o o f . Clearly, 72 = 0 iff x £ S(Thus, we can simply assume 
x = (7 ,0). Set c = (x - p){q - i ) - 1 = (/3A,/32)- By Lemmas 4 and 5, 
px ^ xq iff c ^ 1, i.e. iff /?i > 0. By definitions, we calculate 

7 2 + £«2 

Pi = 5 T-
sa* — 

Therefore, x £ q) iff ea2 — f2 > 0, as required. • 

Note (cf. [2]) that for any a,b,a',b' with a / b and a' ^ b' there is a 
similarity / of such that / ( a ) = a' and f(b) = b'; similarity / pre-
serves so f(Me(a,b)) = M e ( / ( a ) , / ( 6 ) ) . As a consequence of Lemma 14 
we immediately conclude with 

P R O P O S I T I O N 1 5 . Every set M E ( A , 6 ) with a ^ b is an open segment in 

the plane (5(3", F ) . • 
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Any open segment is a convex set, which justifies the following defini-
tion: 

B £(abc) : « . f l = 6 = c V a / i A (Vp, q)[a, c G M e ( p , q) b £ M e(p, g)]. 

We say that squares are dense in 3" iff 5 satisfies the following condi-
tion: 

0 < a < b =S> (3c)[a < c2 < b]. 
PROPOSITION 16. Let squares be dense in 5" and let e > 0 be arbitrary, 

or let e be a square in $ and J be arbitrary. 
Then B £ = By . 

P r o o f . Proposition 15 immediately yields that By C B e . Let a , c be 
points with a -fi c. Assume Be(abc). If b = a or b = c, then the thesis is 
evident; thus we assume b ^ a,c. First we prove 

(i) a / c => (3 p, i ) [ p / ? A f l , c € M c(p, q)}. 

Without loss of generality we can assume a = ( - 7 , 0 ) , c = (7 ,0) , 7 > 0. By 
Lemma 14, it suffices to find a > 0 with 7 2 < ea2 and set p = (0, —a), q = 
(0 ,a ) . 

Clearly, B e (abc ) implies that a,b,c are collinear. To complete the proof 
it suffices to show the following: 

(ii) By(a tc ) A bjLc=> (3p, g)[a, b e Me(jp, q) A c £ M e ( p , q)}. 

Again, without loss of generality we can assume a = (—7,0), b = (7 ,0) , 
c = (77,0), and 0 < 7 < 7/. In view of Lemma 14, we need to find a > 0 with 
7 2 < sa2 < T}2. Such a must exist, if squares are dense in 

Note that if e = A2, then both (i) and (ii) remain valid without assuming 
squares to form a dense set. Indeed, to prove (i) we set a = ^ + 1 and to 
prove (ii) we set a = • 

Then we come to the main 

T H E O R E M 17 . If squares are dense in then for arbitrary e with e > 0 
the structure G(3", e) is definable in CE(5',£) and in SE(5 ' ,s) . 

P r o o f . Proof is immediate in view of Propositions 7 and 16. • 

As a consequence we get that the relation and the relation ^ e can 
be used as a primitive notion for the theory of the class 

{<G(J,e) : 3" — a n ordered field, e > 0, squares are dense in 5}. 

4. General investigations on oriented congruence 
In this section we shall establish some properties of the general notion of 

oriented congruence. Let e ^ A2 for all A € F and let £ = E(3"(s/z)) = (P\ =) 
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be a fixed equidistance plane; let ^ C P2 x P2 be a weak oriented congru-
ence i.e. a binary relation on segments satisfying OCl and the following 
conditions: 

OCO ^ is an equivalence relation. 
OC2 for all a, be, d e P 

ab = ed O ab ^ cdV ab ^ dc. 

From the assumptions the relation = defined by the condition 

ab ^ cd ab ^ dc 

is a halfquivalence satisfying ^ U and such that ab ^ ba 
implies a = b for all a, b € P. 

Let VJl = (P; as previously we define 

Cls(im) := { / : P P : (Va, 6 6 P)[ab m / (o ) / (6 ) ]} 

and 

SIs(SDI) := { / : P P : (Va, b G P)[a6 =È / (a) / (6)]} . 

For every line K we consider the relation DA'4 and for every two 
points a,q we consider the circle c(a,q) = {x : ax = aq}. Let =x r be the 
quaternary relation defined by 

ab =Tr cd ( 3 / e T r ( £ ) ) [ / ( a ) = c A f{b) = d]. 

Next we consider the following conditions: 

Ce Tr (c) c c i s (my, 
CH a b ^ c d ^ ( 3 / e CIs(0Jt)[/(a) = c A f ( b ) = d\, 

Se n ( € ) c sis(an); 
SH a b ^ c d ^ ( 3 / € SIs(OTt)[/(a) = c A f { b ) = d]; 

D g f e Q, a ì b, ab f ( a ) f ( b ) => f € CIs(OT), for any Q C 
Is(C). 

We begin with some relationships between the above conditions. 

P R O P O S I T I O N 1 8 . The conditions C c and S c are equivalent. 

P r o o f . We note the following fact: 

( 3 / e Tr(<£))[/(a) = b A / ( c ) = d] o (3<r € n (C) ) [a (a ) = d A a(c) = 6], 

which immediately yields C c ^ S c . • 

We have also evident. 

P R O P O S I T I O N 1 9 . CC implies that ^ K = = X r \K for every line K . • 



380 K. P r a z m o w s k i 

Let (Ta be the central symmetry with center a. The set a0|c(0,i) is an 
equivalence relation; in every its (two element) equivalence class we choose 
one element. Thus for every x € c(o,q) = c we have an assignment 7rc : x i—>• 
7Tc(z) such that 7rc(z) = nc(y) O i = j V i = &<>{])) and oq = ox = oy. 
Using the function n we define 

ab cd (3TI,T 2 € Tr)[ri{a) = o = r2(c)A 

*C(0,TI(6)(&) = T i ( b ) & 7 T c ( o , T 2 ( d ) ( d ) = T 2 ( d ) ] . 

Immediately we get. 

PROPOSITION 20 . The relation is an ordered congruence satisfying 
the following condition: 

if ab || cd, then ab =„• cd ab =jr cd. 

Hence satisfies Cc. • 

It is easy to show a function TT, such that does not satisfy CII nor 
SH. We also have an evident converse of Proposition 20. 

PROPOSITION 21. If ^ is an ordered congruence satisfying Cc, then 
some function ir. 

P r o o f . We define 

Tc(o,?)(z) = y ox ^ oy A ox || oy A oq = ox. m 

It is also possible to give an example of an oriented congruence not sat-
isfying Cc such that \K for every line A'; the construction however 
is rather artificial. 

PROPOSITION 22. No axial symmetry of E(<£) belongs to CIs(9tt)uSIs(9JT). 

P r o o f . If / is an axial symmetry, then there are points a,b,p,q with 
a / b and p ^ q such that ab ^ f(a)f(b) = ab and pq ^ f{p)f(g) = 
qp. • 

As a consequence we get. 

PROPOSITION 23. If an oriented congruence satisfies Cc, then 

CIs(iOT) U Sls(im) = I s t + (£ ) . 

Clearly, since ab ^ 6a, the condition SH implies CH. In the presence of 
Sc we have even more. 

PROPOSITION 24. Let ^ be an oriented congruence satisfying Sc. 
Then the following conditions are equivalent: CH, SH, Dist+(C). 
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P r o o f . The equivalence Cl IoSI I is evident. The remaining equivalences 
follow from Proposition 22 and 2-rigidity of the group Ist+(<£). • 

PROPOSITION 25. Let ^ be an oriented congruence such that CIs(9Jt) U 
SIs(2JT) C Ist+(<£) and let ^ satisfy Dist+(C). Then ^ satisfies Cc. 

P r o o f . If / £ Tr(<£), then / = g2 for some g <E Tr(<£). Clearly g € 
Cls(im) U Sls(im) implies g2 6 CIs(9K), which proves the thesis. • 

We write for short D instead of D l s t+(C). 
The structure VJX = {P; will be called a homogeneous oriented con-

gruence plane iff ^ is an oriented congruence satisfying Cc and C1I. 

P R O P O S I T I O N 2 6 . If VJl is a homogeneous oriented congruence plane, 
then [Ist+(<£) : Cls(im)] = 2 and Ist+(<£) \ Cls(im) = SIs(9K). 

P r o o f . We immediately prove that / € CIs(27t) and gi,g2 6 Sls(SJt) 
implies gi\fgi,gif € Sls(ajl) & gig2 G Cls(im). • 

Let <£ = Ist+(<£) and let 6 be a subgroup of <£ with [<£ : 6 ] = 2 and 
6 n n ( £ ) = 0. Let be defined by 

ab cd ( 3 / € 6 ) [ / ( a ) = c A f(b) = d]. 

P R O P O S I T I O N 27. The structure OT = (P; ¿5 a homogeneous ori-
ented congruence plane and CIs(fOT) = S . 

P r o o f . By [<£ : 6 ] = 2 we get Tr C 6 . Since II n 6 = 0, the relation 
satisfies OC1. The condition OCO and OC2 are evident, so is an 

oriented congruence. The equality CIs(97I) = 6 follows from 2-rigidity of 
the group Ist+(<£) and therefore 9Jt is homogeneous. • 

Thus one can see that homogeneous oriented congruences in E(£) are in 
a one to one correspondence with sets U C F x F such that 

(i) - I £ U, and 
(ii) U is a subgroup of index 2 in the multiplicative group {a £ F x F : 

v{a) = 1}. 

For a given homogeneous congruence we have U = {x : Ox ^ 01}; and given 
a set U with (i) and (ii) we define 

6 = { / : F2 - F 2 : (Vz)[/(z) = ax + b], a e U, b e F2} 

and we put 

If 5 is ordered and s > 0, then corresponds to the group 

U = {(«,/?): a 2 -e/32 = l, a > 0}. 
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