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ON SOME GENERAL PROPERTIES
OF ORIENTED CONGRUENCE

1. Introduction

In this paper we are concerned with an oriented congruence, i.e. with an
equivalence relation § (or a halfequivalence §), which induces an equidistance
relation = with § ¢=.

For every halfequivalence § C X X X the relations § 0 § and 6 U § o
§ are equivalence relations in the set X (cf. [3]). In some earlier papers
we have investigated situations in which é 0 § or 6 U 6 o ¢ is an affine
parallelity relation (or directed affine parallelity relation), see [5], [6]. In
such a way we have obtained the systems which correspond (up to mu-
tual definability) to metric affine, ordered affine, or ordered metric affine
planes.

In this paper we consider the situation in which o8 or 6Ué0 6 coincides
with the equidistance relation = of some metric afline plane (and § ¢=).
It is not too difficult, to prove that for every equidistance relation = in the
set X there exists a halfequivalence § with § o § ==, but in general the re-
sulting structure (X;é) is not sufficiently homogeneous. We shall show that
homogeneous structures (X;é) inducing an equidistance relation = really
exist. Some general properties and characterizations of such structures are
established.

2. Basic notions and definitions
Let § = (F;+,-0,1) be a commutative field with char§ # 2 and let
€ € F,e # 0. Then we set F(v¢):= (F x F;8,0,0,1, ), where
(a1,81) © (az,B82) = (a1 + a2, b1 + Ba),
(a1,61) O (@2,82) = (ay oz + - f1 - B2, 01 - B2 + a3 - 1),
(a1,61) = (a1,—p1) forall aj,az,6,,8; € F,
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and 0=(0,0), 1=(1,0).

For convenience we define the norm v, in F X F by v.(a) = aa. The
structure §(1/€) is a commutative ring and the set R(F(v¢)) = F x {0}
is a subring of §(4/¢), isomorphic to §F under the map a — (e,0). Ev-
ery structure §(y/) will be called a complex ring; thus complex ring is a
special kind of commutative ring with the distinguished involutive automor-
phism. Whenever ¢ # o? for all @ € F, the ring F(\/) is a commutative
field.

The procedure which yields F(y/c) from § and ¢ is a well known Cay-
ley’s Method generalizing the construction of complex numbers and dual
numbers (cf. [1]).

Given any complex ring € = (C;+,-,0,1,~) we define the equidistance
relation =¢, the orthogonality relation Ll¢, and the parallelity relation ||¢
as follows

ab=¢ cd :¢ (a~b)(a—b) = (c - d){c - d),
ablecd ;& (a—b)(c—d)+ (c—d)(a—b) =0,
ablleed > (a ~ b){e— @) = (e - d){a = b),
for all a,b,c,d € C. Then we define the equidistance plane over €,
E(¢) := (C; =0),
and the affine plane over €,
A(©) = (Cile)-

One can easily calculate that if €1 # €2, then A(F(\/21)) = AF(VE2)). In
fact, the affine plane A(F(\/€)) coincides with the usual affine plane coor-
dinatized by § (cf. [7]). For a # b let L(a,b) be the line joining a and b
and let Ly be the set of affine lines of an affine plane U. For every complex
ring € and any a,b € € with a # b we set S(Z) = {z € C : az =¢ zb}.
Obviously, Laey = {S(}) : a,b € C, a # b} for every complex ring € with
|€| = C; therefore A(€) is definable in E(€). Moreover the structures E(C)
and (C; L¢) are mutually definable (cf. [2]).

If € = F(\/) is simply a complex field, then E(C) is a weak Euclidean
plane (cf. [1], [2]). If not, i.e. if ¢ = A% for some A € F, then E(Q) is a
Minkowskian plane, and §(v/&) 2 §(v/1) under the isomorphism (a, ) —
(0, 7B).

Now let us consider an ordered commutative field § = (F;+,-,0,1,<)
and let ¢ € F, ¢ # 0. In the set C = F x F we define the betweenness
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relation By C C? as follows (cf. [7]):

Bﬁ((al’ﬁl)’ (a2a ;32),(03’ ;63))
SMVAEPR)0<A<IAay = dag + (1= AN)az A By = Af1 + (1 - A)Gs).

The ordered Gaussian plane over (§,¢) is finally defined to be the struc-
ture

G(Sig) = (C1 =¢, B3>
An alternative approach which makes use of the notion of directed complex
field is presented in [4]. Evidently, the Gaussian plane G(§,¢) is an expan-
sion of the structure E(F(y/€)). Finally, given any line K and points a,b,€ C
we set

Bz(a, K,b) & (3p € K)[Bz(a,p,b)Aa,b & K].

3. Converse and oriented congruence

A relation A C X x X is called a halfequivalence iff A is symmetric,
AoAoA = A, and for every a € X there is b € X with (a,b) € A. If A
is a halfequivalence, then the relation AU A o A is an equivalence relation
(cf. [3]). We are going to investigate such relations A, that AUA o A ==,
for some complex field € with ordered real part R(€). Any such a relation
A satisfying the additional assumption

0C1 abAcdhabAde=>a=bve=d

will be called a converse congruence (or a converse equidistance relation).
Let § be an ordered field and let £ € F, ¢ # A? for all A € F. We begin
with a geometric definition of the relation =3 ). First we define auxil-
iary

a =(z,0) b ¢ (0a =57 06N
(3p)lp # O A Op Ly 50a A Bg(b,L(0o,p),a)])VO=a=b
and next we put
ab=iz,ycd:ob-a=;z,)d-c

Clearly, the relation =; ) is definable in G(F,¢) and thus it is invariant
under automorphisms of G(J, €), in particular under isometries and similar-
ities.

ProrosiTiON 1. If @ = (a1,01) and b = (az,B2), then Qa =5, 0b is
equivalent to

ajay — €05,

(arag —ef1fB2) — (a} — ef8})

ag=bb & 0 < < 1.
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Proof. Proof is a straightforward calculation. We notice that
(i) 0(eB, @) Ly 5, B) for all @, B € F, and

(ii) for a,b as in Prop. 1 we have

(ya+ (1 - 7)b) € L(0,(eph, al).)

oaz—€f6 62
(12 —€f102) (o] —£06]

PROPOSITION 2. The relation =3 ) is symmetric, salisfies condition
OC1, and ab =3 ) ba holds for all a,b.

Proof. If a = (e,8), then a@ = (a® — £6%,0). Thus the symmetry of
=(3,c) is an immediate consequence of Proposition 1.

Next we prove that @ =(3.) —a for every a = (a, B). Indeed, clearly
ad = (—a)(—a) and in this case the coefficient v given by Proposition 1
is

with v = 5. .

_ _a2+5ﬂ2 _l
7= —a? +¢ef? - (a? —¢ep? X

so0<y<1

Finally we shall prove that ¢ = b, a = —b yields ¢ = 0. Let a # 0
and 0p.Lg /z0a. Then also 0plg 7 0(-a) and Bg(a,L(0,p), ~a). There-
fore there is no b such that a = b, Bz(a, L(0, p), b), and Bgz(—a, L(0,p),b). m

Next we define

ab =5,y cd & ab = cd A (~ab =5,y cdVa=b).
Clearly, we have now
ProposITION 3. The relation =5 .y is symmelric and reflezive. m

In every equidistance plane as above we have: ab = cc & a = b. This
yields

LEMMA 4. If b # 0, then

Ha=bsab =1

(ie=bsab™ =1

Proof. The map f : z — zb~! is an automorphism of G(F,¢) and
preserves 0. Therefore f preserves = and =, which proves (i) and (ii). »

LEMMA 5. Ifa = (a, (), thena =1 iffad = 1 and o < 0.

Proof. The condition a@ = 1 is equivalent to Qa = Q1. Next we note
that 0(0,1) L3501 and K = L(0,(0,1)) = {(7,6) : v = 0}; clearly for
every a = (a, )

Br(a,K,1) iff a<0. =
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PROPOSITION 6. The relation =3 ) is a halfequivalence iff € > 0.
Proof. We prove the following conditions:
(*) If € > 0, then
(a,b=1=>ab= 1
(ii) a,b=1=>ab=1, and
(ii)ez1Ab=1=ab=1.
(#+) If € < 0, then there exists a withe=1,a=1,and e = a.

Clearly, a,b =1 yields a - b = 1. Assume first that ¢ < 0.

(ii) Let a = (a1,a2), b = (f1,02), and a,b = 1. Then a;,5; > 0 and
a? —eal = 1= % —¢B%. We have ab = (a161 + a2, 0102 + az 1) and
thus, to get ab = 1, we must prove a;0; + a2 > 0.

Assume to the contrary a;8; + €az8; < 0. Then caz8; < —a161 < 0,
and, since ¢ > 0, we get a3 < 0. Thus a2 < 0,6, > 0 or az > 0,

B2 < 0. Assume a2 > 0 and B, < 0; then o3 = °’2€ and B2 = —1— imply

aZ-1 21
az =\ 1—, By = — Els— We have

7 7 _
eazfy = ‘E\/alg 1\/ﬂle = _\/(a% - DB - 1) < —euf,

so 11 > —+/(af - 1)(ﬁ1 —1) and thus a28? < (o — 1)(8} - 1) From
this we get 0 < —a? — 8 + 1 ie. o + B < 1. But then o? + 8} =
(1+ea2)+ (1 +62)=2+¢e(a2 +62) < 1leads to inconsistency.

(i) and (iii) are proved analogously.

(**) Now assume ¢ < 0. Let ¢ = (a,8) and @ = 1. Then a < 0 and,
clearly, @ = (a,—f3) = 1. We have aa™! = (a? + £6%,200). To get a = @ it
suffices to find o, 8 € F with o> +¢3? < 0,a® —¢3? = 1. Then ¢f% = o® - 1
and 2a% < lie.a? < %, B% = %l Clearly, one can find such «, 8 whenever
€<0. m

As an immediate consequence we obtain the following

PROPOSITION 7. If€ > 0, then = ;. is an equivalence relation, =z =
(23.09)% =G/ =5, YU =(g,)» ond the condition ab = =(Fe) cd &
ab =g, dc holds for all a,b,c,d€ F x F. m

If ¢ = A? for some A € F, then we can simply assume ¢ = 1. It is
known that E(F(v/1)) contains isotropic directions. In this case we modify
our definition of the relations = and = as follows:

a = bie (-0aLt0a A -0b10b A Oa =5vi) 0bA
AN3p)lp # 0 A OpL0a A B(a, L(0, p), b)])V
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V(0aL0a A0bLObA a,b#0AQaf 0b)Va=0=b;

ab =z cd:iob-a=G d-c

a S, ¢ (—0a1l0a A ~0bL10b A Oa =5VT) 05 A ~0a = 5,1y 0b)V

V(0aL0a AQbLObA a,b#O0AOal 0b)Va=0=Db;
ab=z)cdiob-a=sigyd-c
One can easily prove now

PRroOPOSITION 8. The relation =3,y is a halfequivalence, =z ;) is an
equivalence relation, and =z )= (2(3,1))*-

In the sequel we shall establish some more important properties of the
relations = and =. To this aim we shall define some classes of transforma-
tions of complex fields. For any complex ring € = F(\/¢) we sct

Is(E(2)) := {f : |€] — |€] : (Va,b)[ab =¢ f(a)S(b)]}.
The following characterization of the class Is(E(€)) is known (cf. [2]):

f € Is(E(€)) iff for some a € |€| with a@ = 1 and for some b

(1) (Va € |€)[f(2) = az + b], or

(i) (Vz € |€})[f(z) = aT + b).

Elements of Is(E()) are called isometries of E(C), clearly they form a trans-
formation group. Isometries characterized by the condition (i) form a sub-

group denoted by Is*(E(€)); such transformations are called direct isome-
tries. Let

Is™(E(¢)) = Is(E(€)) \ Is* (E(C)).
Now we set
CE(S,¢) := (F x F :=(3,9)),

SE(S',E) = (F x F :E(S,E))’
and ]
CIs(CE(F,¢))
={f:FxF— FxF:(Va,be Fx F)lab= 3 f(a)f(b)]}
SIs(SE(F,¢))
={f:FxF—FXxF:(Ya,be F x F)lab =3, f(a)f(b)]}.
Finally Tr(E€)) will be the group of translations and II(E(€)) — the set of
central symmetries of the plane EC).

Evidently G(3F,¢) is an expansion of the structures CE(F,¢), SE(F,¢),
and E(§F, ) and the structures CE(F, ¢) and SE(F, €) are definable in G(F, ¢);
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thus we can use symbols Is(G(F,¢)), Is(SE(F,¢€)), and Is(CE(F,¢)) in their

natural meaning.

LEMMA 9. If a function f is defined by the formula f(z) = az + b with
a # 0, then

(i) f € CIs(G(F,¢)) € a= 1;

(i1) f € SIs(G(F,¢)) @ a=1.

Proof. (i) If f € CIs(G(F,¢)), then 01 = f(0)f(L) = b(b + a), so
a = 1. Conversely, if a = 1, then for arbitrary z we get az = z, since
for every z the transformation y — yz is a similarity of G(F,¢)) and
thus it preserves =. Therefore az + b = z + b, so f(z)f(y) = =zy for
all z,y.

(ii) is proved analogously. a

THEOREM 10. If ¢ > 0, then the following conditions hold:

(i) Tr(E(3(ve)) € CIs(G(F,¢)));

(ii) I(G(F,¢)) S SIs(G(F,¢));

(iii) CIs(G(g,¢)) is a subgroup of Is* (G(F,¢));

(iv) Is*(Gg,¢€)) \ CIs(G(F,¢)) = SIs(G(F,¢));

(v) [Is*(G(F,¢)) : CIs(G(F,¢))] = 2.

Proof. (i) is a consequence of the definition and (ii) is a consequence of
Proposition 2.

To prove (iii) we note first that by Proposition 6, CIs(G(F,¢)) is a trans-
formation group. Evidently

CIs(G(J,¢)) U SIs(G(3J, ¢)) € Is(G(F, £))-

Let L(E(F(V€)) be the set of axial symmetries of the plane E(F(\/£)). We
shall prove that

(*) L(E(3(Ve)) N (CIs(G(F, €)) U SIs(G(F, ¢))) = 0.

Assume that f € Z(E(F(1/)) and f € SIs(G(F,¢)). There are a,b € F x F
such that a # b and f(a) = a, f(b) = b. By the definition, ab = f(a)f(b)
which yields 1 = 1, or @ = b. Now assume f € CIs(G(F,¢)) and consider any
point @ with a # f(a); let b = f(a). By the definition, ab = f(a)f(b) = ba,
so —1 = 1 or a = b. This proves (*).

From this we get

(%) Is7(G(F,¢€)) N (CIs(G(F,¢)) U SIs(G(F,¢))) = 0.

Indeed, every element f of Is™(G(F,¢)) can be written in the form f = goh
with h € Z(E(F(VE)), 9 € Tr(G(F,¢)) and in the form f = g’ o k', where
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b € B(E(F(vE)), ¢' € I(G(F,¢)) (cf. [FB]). Now (»*) follows from (i), (ii),
and (*).

The condition (#*) immediately yields (iii) and the condition SIs(G(J,¢))
C Is*(G(3,¢)).

(iv) & (v) is a consequence of Lemma 9 and (i), (ii) and (iii) of the
above. m

As a consequence of Lemma 9 and Lemma 4 we get the following natural
properties of the introduced classes of maps.

THEOREM 11 [Homogeneity].

(1) If ab = cd, then there is fe ClIs(G(F,¢)) with f(a)=c and f(b)=d.

(ii) If ab = cd, then there is f € SIs(G(F,¢)) with f(a) = c and
f(b) =d.

Proof. If a = b, then ¢ = d; in such a case in (i) we set f to be a

translation which maps a onto ¢, in (ii) f is a central symmetry which maps
a onto ¢. If a # b, then we consider f defined by

c—d da —cb
f(z)—a_bx+ a_b?

which has the desired properties. m

THEOREM 12 [Separation principle].

() If f € IsT(G(F,¢€)) and ab = f(a)f(b) for some a,b with a # b, then
f € CIs(G(3,¢)).

(ii) If f € IsY(G(F,¢)) and ab = f(a)f(b) for some a,b with a # b, then
f € SIs(G(5,¢)). m

For the relation = we use the term oriented congruence. This term can
be justified by the following theorem.

THEOREM 13. Let M be a line in G(§,c). Then for any a,b,c,d € M
the following conditions are equivalent:
(i) ab =, cd;
(ii) there is a translation f with f(a) = ¢, f(b) = d;
(iii) ab = cd A ab || cd.
Proof. Without loss of generality we can assume 0 € M. Moreover we

can assume a = 0 = ¢, because zy =, 0(y — z) and zy [ 0(y — z) for all
z,y. Now the theorem is evident. m

Evidently, by Proposition 7, the structures CE(J,¢) and SE(J,¢) are
mutually definable for any ¢ > 0 such that ¢ # A? for all A € F; clearly
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E(F(+/€)) is definable in CE(F,¢). The same holds for € = 1, in this case we
have
ab=cd & ab= cdV ab= cd(I{ab) A I(cd)),

where I(ab) means that ab is an isotropic segment. The relation I can be
defined in terms of = by the condition:

2
I(ab) < (V(L‘l,xz)[ /\(azi =z;bVaz; = :l:,b) ATy -',é Iy =

i=1

1T = abV iz = ab] Va=5b.

We are going to prove that G(J,¢) is definable in CE(F,¢) and thus ordered

—

Euclidean geometry can be formulated in terms of one primitive notion =
which is a halfequivalence, such that = U(=)? ==, and satisfying conclu-
sions of Theorems 11, 12 and 13.

Let us fix a commutative ordered field § and ¢ € F = |§| with ¢ > 0.
For any a,b € F? we set

M,.(a,b) := {z : az =, zb}.
Evidently, M.(p, ¢) C S(fl’) for all points p, q.

LEMMA 14. Let p = (0,-a), ¢ = (0,a), a > 0, and & = (711,72). The
following conditions are equivalent:

(i) = € Mc(p, 9);
(ii) 72 = 0 and 7} < ea?.

Proof. Clearly, v, = 0 iff z € S(Z). Thus, we can simply assume

z = (v,0). Set ¢ = (z — p)(g — z)"! = (B1,5:2). By Lemmas 4 and 5,
pr = zq iff c =1, i.e. iff 5; > 0. By definitions, we calculate

_ 72'*'502
T ea? — 42

B

Therefore, z € M,(p, q) iff ea® — 4% > 0, as required. m

Note (cf. [2]) that for any a,b,a’,b’ with a # b and a' # b' there is a
similarity f of G(§,¢) such that f(a) = a’ and f(b) = ¥'; similarity f pre-
serves =, so f(M,(a,b)) = M.(f(a), f(b)).- As a consequence of Lemma 14
we immediately conclude with

PRroPOSITION 15. Every set M.(a,b) with a # b is an open segment in
the plane G(F,€). »
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Any open segment is a convex set, which justifies the following defini-
tion:

Be(abe):»a=b=cVa#bA(Yp,q)a,ce Mc(p,q) = b e Mc(p,q)].

We say that squares are dense in § iff § satisfies the following condi-
tion:
0<a<b=(3e)a<c? <b].
PRrOPOSITION 16. Let squares be dense in § and let € > 0 be arbitrary,

or let £ be a square in § and § be arbitrary.
Then B, = Bj;.

Proof. Proposition 15 immediately yields that By C B,. Let a,c be
points with a # c. Assume B,(abc). If b = a or b = ¢, then the thesis is
evident; thus we assume b # a, c. First we prove

(i) a # ¢ = (3, 9)lp # ¢ A a,c € Mc(p,q)).

Without loss of generality we can assume a = (—7,0), ¢ = (v,0),y > 0. By
Lemma 14, it suffices to find a > 0 with 42 < ca? and set p = (0,~a),q =
(0, a).

Clearly, B.(abc) implies that a,b,c are collinear. To complete the proof
it suffices to show the following:

(ii) Bg(abc) A b # ¢ => (3p, q)[a,b € Mc(p,q) A ¢ € Mc(p, 9)]-

Again, without loss of generality we can assume a = (—7,0), b = (v,0),
c¢=(n,0),and 0 < ¥ < 7. In view of Lemma 14, we need to find @ > 0 with
7% < ea® < 1. Such « must exist, if squares are dense in J.

Note that if ¢ = A2, then both (i) and (ii) remain valid without assuming
squares to form a dense set. Indeed, to prove (i) we set @ = 3 + 1 and to
atn

73

prove (ii) we set a = ..

Then we come to the main

THEOREM 17. If squares are dense in F, then for arbitrary ¢ with e > 0
the structure G(§,¢€) is definable in CE(F,¢) and in SE(F,¢).

Proof. Proof is immediate in view of Propositions 7 and 16. m

As a consequence we get that the relation =, and the relation =, can
be used as a primitive notion for the theory of the class

{G(F,¢) : F — an ordered field, € > 0, squares are dense in F}.

4. General investigations on oriented congruence
In this section we shall establish some properties of the general notion of
oriented congruence. Let ¢ # A2 forall A € F and let € = E(F(%)) = (P; =)
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be a fixed equidistance plane; let =C P? x P? be a weak oriented congru-
ence i.e. a binary relation on segments satisfying OC1 and the following
conditions:

OC0 = is an equivalence relation.

0C2 for all a,bc,d € P
ab=cd & ab= cdV ab = dc.
From the assumptions the relation = defined by the condition
ab=cd:& ab=de

is a halfquivalence satisfying = U === and (&)? == such that ab = ba
implies @ = b for all a,b € P.
Let 9 = (P; =); as previously we define
Cls():={f: P — P:(Va,b€ P)lab= f(a)f(b)]}
and
SIs(9) := {f: P — P :(Va,b € P)lab = f(a)f(b)]}.

For every line K we consider the relation = ;== NnK* and for every two
points a, g we consider the circle ¢(a,q) = {z : az = aq}. Let =1, be the
quaternary relation defined by

ab =1, cd :& (3f € Tr(€))[f(a) = ¢ A f(b) = d].
Next we consider the following conditions:

Cc  Tr(C) C CIs(Im);

CH ab=cd= (3f € CIs(M)[f(a) = cA f(b) =d];

Sc  II(€) C SIs(9M);

SH ab=cd= (3f € SIs(M)[f(a) =cA f(b) = d];

Dg f € G, a#b ab = f(a)f(b) = f € Cls(IM), for any G C
Is(€).

We begin with some relationships between the above conditions.
ProrosiTION 18. The conditions Cc and Sc are equivalent.
Proof. We note the following fact:
(3f € Te(O)f(a) = bA f(c) = d] & (30 € II(C))[o(a) = d A o(c) = b,
which immediately yields Cc<Sc. =
We have also evident.

ProrosITION 19. Cc implies that =g ==1, |k for every line K. m



380 K. Prazmowski

Let o, be the central symmetry with center a. The set 0,(o,q) is an
equivalence relation; in every its (two element) equivalence class we choose
one element. Thus for every z € ¢(o0,q) = ¢ we have an assignment 7, : z —
Te(z) such that 7.(z) = 7.(y) & 2 = yVz = 0,(y) and og = oz = oy.
Using the function 7 we define

ab=, cd:& (Ar, 7 € Tr)[n1(a) = 0 = 12(c)A

Te(0,m1(6)(8) = T1(8) & Te(o,ry(a)(d) = T2(d)).

Immediately we get.

ProposITION 20. The relation =, is an ordered congruence satisfying
the following condition:

if ab||cd, then ab =, cd & ab =T, cd.

Hence =, satisfies Cc. m

It is easy to show a function 7, such that =, does not satisfy CH nor
SH. We also have an evident converse of Proposition 20.

ProrositTion 21. If = is an ordered congruence satisfying Cc, then
===, some function .

Proof. We define
Te(o,)(T) =y & 0z S oy Aoz|loyAog=o0z. m

It is also possible to give an example of an oriented congruence not sat-
isfying Cc such that = ==1, |k for every line K’; the construction however
is rather artificial.

ProrosITION 22. No azial symmetry of E(€) belongs to CIs(9M)uSIs(9M).

Proof. If f is an axial symmetry, then there are points a, b, p, ¢ with
a # band p # q such that ab = f(a)f(b) = ab and pg = f(p)f(q) =
qp. m

As a consequence we get.
ProrosITION 23. If an oriented congruence satisﬁes. Cc, then
CIs(9m) U SIs(IM) = Ist*(¢).
Clearly, since ab = ba, the condition SH implies CH. In the presence of
Sc we have even more.

PRrROPOSITION 24. Let = be an oriented congruence satisfying Sc.
Then the following conditions are equivalent: CH, SH, Dyg+(¢)-
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Proof. The equivalence CH«SH is evident. The remaining equivalences
follow from Proposition 22 and 2-rigidity of the group Ist*(¢). m

PROPOSITION 25. Let = be an oriented congruence such that CIs(9) U
SIs(9M) C Ist*(€) and let = satisfy Disi+(¢)- Then = satisfies Cc.

Proof. If f € Tr(¢), then f = g% for some g € Tr(C). Clearly g €
CIs(9) U SIs(90) implies g% € CIs(9M), which proves the thesis. =

We write for short D instead of Dy +(c)-
The structure 9 = (P; =) will be called a homogeneous oriented con-
gruence plane iff = is an oriented congruence satisfying Cc and CH.

PRrOPOSITION 26. If M is a homogeneous oriented congruence plane,
then [Ist*(€) : CIs(9M)] = 2 and Ist*(€) \ Cls(9M) = SIs(IM).

Proof. We immediately prove that f € Cls(9) and g¢;,92 € SIs(9N)
implies gi'*, fg1,91f € SIs(M) & g1g2 € Cls(9M). m

Let € = Ist*(€) and let & be a subgroup of € with [€ : &] = 2 and
S NII(C) = P. Let =4 be defined by

ab=gcd:& (3f € 6)[f(a)=cA f(b)=d].

ProposITION 27. The structure M = (P;=g) is a homogeneous ori-
ented congruence plane and Cls(fM) = &.

Proof. By [€: 8] = 2 we get Tr C &. Since 1N S = ), the relation
=g satisfies OC1. The condition OCO and OC2 are evident, so =g is an
oriented congruence. The equality CIs(?1) = & follows from 2-rigidity of
the group Ist*(¢) and therefore 9t is homogeneous. m

Thus one can see that homogeneous oriented congruences in E(€) are in
a one to one correspondence with sets U C F' x F such that

(i) -1 ¢ U, and

(ii) U is a subgroup of index 2 in the multiplicative group {a € F x F':
v(a) =1}.
For a given homogeneous congruence we have U = {z : 0z = 01}; and given
a set U with (i) and (ii) we define

& ={f:F’ > F:(Yz)[f(z)=az +b], a € U, be F}

and we put ===g.
If § is ordered and € > 0, then =, corresponds to the group

U={(a,B):a®-¢f*=1, a>0}.
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