

Jerzy Grochulski

SOME PROPERTIES OF TANGENCY RELATIONS

The relation $T_l(a, b, k, p)$ of the tangency of the sets in a metric space (E, ρ) is dependent on a real non-negative functions a and b . The paper gives a certain conditions towards to the real non-negative functions a and b if relation of the tangency of sets $T_l(a, b, k, p)$ is non-empty.

Let (E, ρ) be an arbitrary metric space. For any set $A \subset E$, we denote r -neighbourhood

$$(1.1) \quad A_r = \bigcup_{p \in A} K(p, r) \quad \text{for } r > 0,$$

or

$$(1.2) \quad A_r = A \quad \text{for } r = 0.$$

The $K(p, r)$ ($S(p, r)$) denotes the open ball (sphere) with the center at the point p and the radius r .

Let a and b be any non-negative real functions defined in a certain right-hand side neighbourhood of 0 such that

$$(2) \quad a(r) \rightarrow 0 \quad \text{and} \quad b(r) \rightarrow 0 \text{ for } r \rightarrow 0^+.$$

A pair (A, B) of subsets of E will be called (a, b) -clustered at the p if 0 is a cluster point of the set Q of all real numbers $r > 0$ such that the sets

$$A \cap S(p, r)_{a(r)} \quad \text{and} \quad B \cap S(p, r)_{b(r)}$$

are non-empty.

Here $S(p, r)_{a(r)}$ is an $a(r)$ -neighbourhood of the set $S(p, r)$, (1.1) and (1.2).

Let l be a real non-negative function defined on the Cartesian product $E_0 \times E_0$, where E_0 is a family of all non empty subsets of the set E , satisfying the condition

$$(3) \quad l(\{x\}, \{y\}) = \rho(x, y) \quad \text{for } x, y \in E.$$

The set A is (a, b) -tangent of order k at the point $p \in E$ to the set B if the pair (A, B) is (a, b) -clustered at the point p of the space (E, ρ) and

$$(4) \quad \frac{1}{r^k} l(A \cap S(p, r)_{a(r)}, B \cap S(p, r)_{b(r)}) \rightarrow 0 \quad \text{for } r \rightarrow 0^+,$$

where k is an arbitrary positive real number.

Let

$$(5) \quad T_l(a, b, k, p) = \left\{ (A, B) : A \cup B \subset E \text{ and } (A, B) \text{ is } (a, b)\text{-clustered at the point } p \text{ of the space } (E, \rho) \text{ and} \right. \\ \left. \frac{1}{r^k} l(A \cap S(p, r)_{a(r)}, B \cap S(p, r)_{b(r)}) \xrightarrow[r \rightarrow 0^+]{} 0 \right\}.$$

The relation (5) will be called the relation of the (a, b) -tangency of order k at the point p (or shortly relation of the tangency) of the sets in the metric space (E, ρ) .

The metric ρ induces some functions l_i ($i = 1, 2, \dots, 6$) defined by

$$(6.1) \quad l_1(A, B) = \inf \{ \inf \{ \rho(x, y) : y \in B \} : x \in A \},$$

$$(6.2) \quad l_2(A, B) = \sup \{ \inf \{ \rho(x, y) : y \in B \} : x \in A \},$$

$$(6.3) \quad l_3(A, B) = \inf \{ \sup \{ \rho(x, y) : y \in B \} : x \in A \},$$

$$(6.4) \quad l_4(A, B) = \sup \{ \sup \{ \rho(x, y) : y \in B \} : x \in A \},$$

$$(6.5) \quad l_5(A, B) = \max \{ l_2(A, B), l_2(B, A) \},$$

$$(6.6) \quad l_6(A, B) = \max \{ l_3(A, B), l_3(B, A) \},$$

for $A, B \in E_0$.

Let (E, ρ) be a metric space. We denote

$$(7) \quad Q_p(A) = \{ r > 0 : A \cap S(p, r) \neq \emptyset \},$$

where $\emptyset \neq A \subset E$ and $p \in E$.

LEMMA 1. *If the set $Q_p(A)$ is dense in the $(0, s)$, for some number $s > 0$, then*

$$\sup \{ \rho(p, x) : x \in A \cap S(p, r)_t \} = r + t$$

and

$$\inf \{ \rho(p, x) : x \in A \cap S(p, r)_t \} = \max \{ 0, r - t \},$$

for $r + t < s$.

Proof. Let $x \in A \cap S(p, r)_t$. Then there exists $q \in S(p, r)$ such that $x \in K(q, t)$. From the triangle inequality we obtain

$$r - t < \rho(p, x) < r + t.$$

Consequently

$$\sup \{ \rho(p, x) : x \in A \cap S(p, r)_t \} \leq r + t$$

and

$$\inf\{\rho(p, x) : x \in A \cap S(p, r)_t\} \geq \max\{0, r - t\}$$

The set $Q_p(A)$ is dense in the $(0, s)$ and

$$(\max\{0, r - t\}, r + t) \subset (0, s).$$

Hence

$$\sup\{\rho(p, x) : x \in A \cap S(p, r)_t\} = r + t$$

and

$$\inf\{\rho(p, x) : x \in A \cap S(p, r)_t\} = \max\{0, r - t\}.$$

We suppose that

$$\sup\{\rho(p, x) : x \in A \cap S(p, r)_t\} = u < t + r.$$

Then for an arbitrary $x \in A \cap S(p, r)_t$ we obtain $\rho(p, x) \leq u < r + t$, hence it follows that there exists a number $v \in (u, r + t)$ and certain a neighbourhood U such that $Q_p(A) \cap U = \emptyset$. That is contradictory. This ends the proof.

THEOREM 1. *If sets $Q_p(A)$, $Q_p(B)$ are dense in the $(0, s)$ for some number s and non-negative real functions a and b defined in the $(0, s)$ satisfying the conditions (2) and*

$$(*) \quad \lim_{r \rightarrow 0^+} \sup \frac{r - a(r)}{r^k} = 0 \quad \text{and} \quad \lim_{r \rightarrow 0^+} \sup \frac{r - b(r)}{r^k} = 0,$$

the pair (A, B) is (a, b) -clustered at the point p , then $(A, B) \in T_{l_1}(a, b, k, p)$ and $(A, B) \notin T_{l_4}(a, b, k, p)$, for arbitrary number $k > 0$.

P r o o f. Let $\varepsilon > 0$. From $(*)$ and from 2 it follows that there exists a real number $\delta > 0$ such that

$$r - a(r) < \frac{1}{2}\varepsilon r^k \quad \text{and} \quad r - b(r) < \frac{1}{2}\varepsilon r^k$$

for $r \in (0, \min\{\delta, s\})$. There exists points $x \in A \cap S(p, r)_{a(r)}$ and $y \in B \cap S(p, r)_{b(r)}$ such that

$$r - a(r) < \rho(p, x) < \frac{1}{2}\varepsilon r^k \quad \text{and} \quad r - b(r) < \rho(p, y) < \frac{1}{2}\varepsilon r^k.$$

Hence and from the triangle inequality we have

$$\rho(x, y) < \rho(p, x) + \rho(p, y) < \varepsilon r^k.$$

Therefore

$$\inf\{\inf\{\rho(x, y) : y \in B \cap S(p, r)_{b(r)}\} : x \in A \cap S(p, r)_{a(r)}\} < \varepsilon r^k,$$

then $(A, B) \in T_{l_1}(a, b, k, p)$.

Let $\varepsilon \in (0, s)$ and $\varepsilon < 1$. There exists number $0 < \delta < \varepsilon$ such that $r - a(r) < \frac{1}{2}\varepsilon r^k$, $r - b(r) < \frac{1}{2}\varepsilon r^k$, $r + a(r) < \varepsilon$ and $r + b(r) < \varepsilon$ for $r \in (0, \delta)$. From the triangle inequality, we obtain

$$|\rho(p, x) - \rho(p, y)| \leq \rho(x, y),$$

for $x \in A \cap S(p, r)_{a(r)}$, $y \in B \cap S(p, r)_{b(r)}$. Hence

$$\begin{aligned} \sup\{\rho(p, x) : x \in A \cap S(p, r)_{a(r)}\} - \inf\{\rho(p, y) : y \in B \cap S(p, r)_{b(r)}\} &\leq \\ \leq \sup\{\sup\{\rho(x, y) : y \in B \cap S(p, r)_{b(r)}\} : x \in A \cap S(p, r)_{a(r)}\}. \end{aligned}$$

Hence and from Lemma 1 and (6.6) we obtain

$$a(r) + b(r) \leq l_4(A \cap S(p, r)_{a(r)}, B \cap S(p, r)_{b(r)})$$

or else

$$r + a(r) \leq l_4(A \cap S(p, r)_{a(r)}, B \cap S(p, r)_{b(r)}).$$

Therefore

$$\frac{2}{r^{k-1}} - \varepsilon \leq \frac{1}{r^k} l_4(A \cap S(p, r)_{a(r)}, B \cap S(p, r)_{b(r)}).$$

Because $\frac{2}{r^{k-1}} - \varepsilon > \frac{2}{r^{k-1}} - 1 > 1$, then

$$\frac{1}{r^k} l_4(A \cap S(p, r)_{a(r)}, B \cap S(p, r)_{b(r)}) > 1.$$

Consequently $(A, B) \notin T_{l_4}(a, b, k, p)$. This ends the proof.

LEMMA 2. If set $Q_p(A)$ is dense in the $(0, s)$ for some real number $s > 0$ and

$$\frac{1}{r^k} l_4(A \cap S(p, r)_{a(r)}, A \cap S(p, r)_{a(r)}) \rightarrow 0 \text{ and}$$

$$a(r) \rightarrow 0 \quad \text{for } r \rightarrow 0^+, \text{ then}$$

$$\frac{a(r)}{r^k} \rightarrow 0 \quad \text{for } r \rightarrow 0^+.$$

Proof. There exists $\delta \in (0, \frac{1}{2}s)$ such that $a(r) < \frac{1}{2}s$ for $r \in (0, \delta)$ and $r + a(r) < s$. Hence and from Lemma 1

$$\sup\{\rho(p, x) : x \in A \cap S(p, r)_{a(r)}\} = r + a(r)$$

and

$$\inf\{\rho(p, x) : x \in A \cap S(p, r)_{a(r)}\} = \max\{0, r - a(r)\}$$

for $r \in (0, \delta)$.

Let $x, y \in A \cap S(p, r)_{a(r)}$, from the triangle inequality we obtain

$$|\rho(p, x) - \rho(p, y)| \leq \rho(x, y).$$

Therefore

$$\sup\{\rho(p, x) : x \in A \cap S(p, r)_{a(r)}\} - \inf\{\rho(p, y) : y \in A \cap S(p, r)_{a(r)}\} \leq l_4(A \cap S(p, r)_{a(r)}, A \cap S(p, r)_{b(r)}).$$

Hence and from Lemma 1 we obtain

$$2a(r) \leq l_4(A \cap S(p, r)_{a(r)}, A \cap S(p, r)_{a(r)}) \quad \text{for } r - a(r) \geq 0.$$

Consequently

$$0 \leq \frac{a(r)}{r^k} \leq \frac{1}{r^k} l_4(A \cap S(p, r)_{a(r)}, A \cap S(p, r)_{a(r)}).$$

Hence $\frac{a(r)}{r^k} \rightarrow 0$ for $r \rightarrow 0^+$. This end the proof.

If the set $Q_p(A)$ is not dense set in any right-hand side neighbourhood of 0 then Lemma 2 may be not true.

Example. Let A be a subset of E and let p be a cluster point in a metric space (E, ρ) . The point $p \in A$ is not a cluster point of set A . There exists number $t > 0$ such that $A \cap K(p, t) = \{p\}$. Let $a(r) \geq r$ in a certain right-hand side neighbourhood of 0 and $a(r) \rightarrow 0$ for $r \rightarrow 0^+$. There exists the number $\delta \in (0, \frac{1}{2}t)$ such that $r + a(r) < t$ for $r \in (0, \delta)$. Therefore $S(p, r)_{a(r)} \subset K(p, t)$. Hence $A \cap S(p, r)_{a(r)} = \{p\}$ for $r \in (0\delta)$, then

$$l_4(A \cap S(p, r)_{a(r)}, A \cap S(p, r)_{a(r)}) = 0$$

and

$$\lim_{r \rightarrow 0^+} \sup \frac{a(r)}{r^k} \geq 1 \quad \text{for } k \geq 1.$$

THEOREM 2. If there exists two dense sets $Q_p(A), Q_p(B)$ in a interval $(0, s)$ for some real number $s > 0$ and $(A, B) \in T_{l_4}(a, b, k, p)$, then

$$\frac{a(r)}{r^k} \rightarrow 0 \quad \text{and} \quad \frac{b(r)}{r^k} \rightarrow 0 \quad \text{for } r \rightarrow 0^+.$$

Proof. From the triangle inequality and from properties of supremum and infimum we obtain

$$\begin{aligned} l_4(A \cap S(p, r)_{a(r)}, A \cap S(p, r)_{a(r)}) &\leq 2l_4(A \cap S(p, r)_{a(r)}, B \cap S(p, r)_{b(r)}), \\ l_4(B \cap S(p, r)_{b(r)}, B \cap S(p, r)_{b(r)}) &\leq 2l_4(A \cap S(p, r)_{a(r)}, B \cap S(p, r)_{b(r)}). \end{aligned}$$

Hence and from Lemma 2 we obtain

$$\frac{a(r)}{r^k} \rightarrow 0 \quad \text{and} \quad \frac{b(r)}{r^k} \rightarrow 0 \quad \text{for } r \rightarrow 0^+.$$

This ends the proof.

Analogously we prove the following theorems:

THEOREM 3. *If there exists the pair $(A, B) \in T_{l_2}(a, b, k, p)$ and two sets $Q_p(A)$ and $Q_p(B)$ are dense in the interval $(0, s)$, for some $s > 0$, and $\frac{b(r)}{r^k} \xrightarrow[r \rightarrow 0^+]{} 0$, then $\frac{a(r)}{r^k} \rightarrow 0$ for $r \rightarrow 0^+$.*

THEOREM 4. *If there exists the pair $(A, B) \in T_{l_3}(a, b, k, p)$ and the set $Q_p(A)$ is dense in the interval $(0, s)$, for some real number $s > 0$, then*

$$\frac{b(r)}{r^k} \rightarrow 0 \quad \text{for } r \rightarrow 0^+.$$

THEOREM 5. *If there exists the pair $(A, B) \in T_{l_6}(a, b, k, p)$ and sets $Q_p(A)$ and $Q_p(B)$ are dense sets in the interval $(0, s)$, for some $s > 0$, then*

$$\frac{a(r)}{r^k} \rightarrow 0 \quad \text{and} \quad \frac{b(r)}{r^k} \rightarrow 0 \quad \text{for } r \rightarrow 0^+$$

THEOREM 6. *If there exists the pair $(A, B) \in T_{l_5}(a, b, k, p)$ and sets $Q_p(A)$ and $Q_p(B)$ are dense in the interval $(0, s)$ for some $s > 0$, then*

$$\frac{|a(r) - b(r)|}{r^k} \rightarrow 0 \quad \text{for } r \rightarrow 0^+.$$

Proof. Let $\varepsilon \in (0, \frac{1}{2}s)$. Then there exists a number $\delta > 0$ such that

$$l_5(A \cap S(p, r)_{a(r)}, B \cap S(p, r)_{b(r)}) < \frac{1}{2}\varepsilon r^k,$$

$$b(r) < \frac{1}{2}\varepsilon r^k < \frac{1}{2}s \quad \text{and} \quad a(r) < \frac{1}{2}\varepsilon r^k < \frac{1}{2}s$$

for $r \in (0, \min\{\delta, \frac{1}{2}s\})$.

From definitions (6.2) and (6.5) we obtain $l_2(A, B) \leq l_5(A, B)$ for $A, B \in E_0$.

Hence and from inequality

$$\begin{aligned} \sup\{\rho(p, x) : x \in A \cap S(p, r)_{a(r)}\} &\leq \sup\{\rho(p, y) : y \in B \cap S(p, r)_{b(r)}\} + \\ &\quad + l_2(A \cap S(p, r)_{a(r)}, B \cap S(p, r)_{b(r)}) \end{aligned}$$

and symmetry of function l_5 we obtain

$$\begin{aligned} |\sup\{\rho(p, x) : x \in A \cap S(p, r)_{a(r)}\} - \sup\{\rho(p, y) : y \in B \cap S(p, r)_{b(r)}\}| &\leq \\ &\leq l_5(A \cap S(p, r)_{a(r)}, B \cap S(p, r)_{b(r)}) < \varepsilon r^k. \end{aligned}$$

From Lemma 1 we have $|a(r) - b(r)| < \varepsilon r^k$. Therefore

$$\frac{|a(r) - b(r)|}{r^k} \rightarrow 0 \quad \text{for } r \rightarrow 0^+.$$

This ends the proof.

References

- [1] A. Chądzyńska, *On some classes of sets related to the tangency relation in a metric space*, Ann. Soc. Math. Polon. Comm. Math. 16 (1972), 219–228.
- [2] S. Gołęb, Z. Moszner, *Sur le contact des courbes dans les espaces métriques généraux*, Colloq. Math. 10 (1963), 305–311.
- [3] J. Grochulski, T. Konik, M. Tkacz, *On the equivalence of certain relations of tangency of arcs in metric spaces*, Demonstratio Math. 11 (1978), 261–271.
- [4] J. Grochulski, T. Konik, M. Tkacz, *On some relations of tangency of arcs in metric spaces*, ibidem 11 (1978), 567–581.
- [5] J. Grochulski, T. Konik, M. Tkacz, *On the tangency of sets in metric spaces*, Ann. Polon. Math. 38 (1980), 121–131.
- [6] J. Grochulski, *O zgodności relacji styczności zbiorów w uogólnionych przestrzeniach metrycznych*, Doctoral Thesis (in Polish), Institute of Mathematics, Warsaw University of Technology.
- [7] T. Konik, *On the symmetry and transitivity of tangency relation in a metric spaces*, Bull. Soc. Sci. Lettres Łódź 27 (4)(1977).
- [8] W. Waliszewski, *On the tangency of sets in generalized metric spaces*, Ann. Polon. Math. 28 (1973), 275–284.

INSTITUTE OF MATHEMATICS
TECHNICAL UNIVERSITY OF CZĘSTOCHOWA
A. Dęglera 35
42-200 CZĘSTOCHOWA, POLAND

Received May 13, 1993.

