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ON THE EXISTENCE OF CONTINUOUS SOLUTIONS 
OF URYSOHN A N D VOLTERRA INTEGRAL EQUATIONS 

IN BANACH SPACES 

1. Introduction 
In this paper using measure of weak noncompactness developed by de 

Blasi [5] we prove some existence theorems for the Urysohn integral equation 

(1) x(i) = p(0 + A J f(t,s,x(s))ds, 

I 

and for the Volterra integral equation 

t 
(2) x(t) = p(t) + J f(t,s,x(s))ds, 

0 

where I = [0, d\ is a compact interval in R, / , p and x are functions with 
values in a Banach space E and the integrals are Pettis integrals (for the 
definitions see [8], [15], [1]). 

There have appeared a lot of papers using the measure of weak noncom-
pactness in proving existence theorems for ordinary differential equations. 

For the weak solutions if / is only assamed weakly-weakly continuous, 
it has been shown that weak weak continuity of the right side is insufficient 
for the existence of weak solutions [6]. 

DEFINITION . Let A be a bounded nonvoid subset of E. The measure of 
weak noncompactness /3(A) is defined by 

/3(A) = inf{i > 0 : there exists CeKw such that A C C + tB0), 

where KW is the set of weakly compact subset of E and Bq is the unit ball. 
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The properties of measure of weak noncompactness j3 are analogous to 
the properties of Kuratowski measure of noncompactness (see [5], [12]). 

In this paper we will apply the following theorems. 

T H E O R E M 1 [ 1 1 ] . Let E be a metrizable locally convex topological vektor 
space and let D be a closed convex subset of E, and let F be a weakly sequen-
tially continuous map of D into itself. If for some x € D the implication 

(*) V = conv({a;} U F(V)) => V is relatively weakly compact, holds for 
every subset V of D, then F has a fixed point. 

T H E O R E M 2 [ 1 2 ] . Let H be a bounded, equicontinuous subset of C(I,E). 
Then /3(H) = sup i € l (3(H(t)) = /?(//(/)). 

2. The Uryshon integral equation 
Consider the integral equation (1) with the following assumptions: 

(10) p is a continuous function from I into E\ 

(2°) (t, s, x) —» f(t, s, x) is a function from I2 x E into E 

which satisfies the following conditions: 

(i) for each (t , s) 6 I2, f(t, s, •) is weakly-weakly sequentially continuous, 
(11) for each strongly continuous function x : I E, f(-, •, £(•)) is Pettis-

integrable on /, 
(iii) for any h, > 0 there exists a mesaurable function m/, : I2 x R+, such 

that ||/(i,s,«)|| < mh(t,s) ( t , s € I, ||x|| < h) and J jTnh ( t , s )ds < 
a(h) < oo, 

(iv) for any h > 0 there is a function dh. : I3 —*• R+ such that \\f(t, s, x) — 
/(r, s, z)|| < dh(r, t, s) (r, t,s € I, ||®|| < h) and l im i e r Jj dh(r, t, s) ds 
= 0. 

THEOREM 3. Assume, in addition to Io and 2°, that there exists an 
integrable function k : I2 X R+ such that for every t € I, e > 0 and for 
every bounded subset X of E there exists a closed subset Ic of I such that 
mes (I \Ie) < e and 

(3) /?(*, TxX)< sup k(t, s)/3(x) 
»GT 

for any compact subset T of Ic. 
Then there exists g > 0 such that for each X, 0 < A < g there exists at 

least one continuous solution of (1). 
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P r o o f . Denote by C the Banach space of continuous functions u : I —> E 
with the usual supremum norm || ||c- Let r(K) be the spectral radius of the 
integral operator K defined by 

Ku{i) = J k(t, s)u(s) ds (ueC, t £ I). 
I 

Put 
h-\\p\\c 1 1 

g = m m ^ s u p ^ , r { K y d J -

For fixed A € R, 0 < A < g, choose b > 0 in such a way that 

(4) \\p\\c + Aa(6) < b. 

Put B = {x £ C : | |z | |c < Consider the operator G defined by 

G(x)(t) = p(t) + A f f(t,s,x(s))ds (xeB,teI). 
i 

Because for x* € E* with ||x*|| < 1 and x £ B by (4) we have 

|x*(G(x)(*))| < |**(p(i))l + IA| / a, x(*))| ds < 
i 

< I I P I | C + |A| / | | / ( M , * ( * ) ) | | < F A < 
/ 

< IWIc + |A| f mb(t,s)ds<Hpl\c + lMa(b)<b. 
I 

Consequently 

(5) su P { |x*(G(x)(0) | : e E', | |x ' | | < 1} = | |G(x)(i)| | < b. 

Also 

|x*(G(x)(i) - G(x)( r ) ) | 

<|X*(KO"KO)I + A f \x*[f(t,s,x(s))-f(T,s,x(s))]\ds< 
i 

< | | p ( í ) - p ( r ) | | + A / | | / ( i , 5, x(s)) — / ( r , s, x(.s))|| ds < 
I 

< | | p ( i ) - p ( r ) | | + A f dh(T,t,s)ds. 
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This implies that 

(6) ||G(s)(f) - G(x)(r)|| < |b(i) - p(r)|| + A f dh(r, t, s) ds. 
I 

The assumptions 1°, 2° and (5), (6) imply that G is a continuous mapping 
from B into itself and G(B) is strongly equicontinuous subset of B. 

Since F(t,s, •) is weakly-weakly sequentially continuous, by using the 
Lebesgue dominated convergence theorem, for each x* 6 E*. 

x*(G(xn)(t)) x*(G(x)(t)) whenever xn x in ( C ( I , E),u). 

So by Lemma 1.9 [12] G is weakly-weakly sequentially continuous. 
Let V = conv (G(F) U {0} ) . Obviously 

V(t) C conv(G(K)(<) U { 0 } ) ioiteD. 

Since V is equicontinuous, the function t V(t) = P(V(t)) is continuous 
on I. 

Fix t € D and e > 0. By (3) and the Lusin theorem there exists a 
compact subset Ie of I such that mes(/ \ I e ) < e and /? ( / ( i ,T x A') < 
sup s € T k ( t , s ) j3 (X) for any compact subset T of De, while the function 
s — k(t, s) is continuous and 

/
£ 

mb(t,s)ds < 

We devide the interval I = [0, d] into n parts 0 = do < d\ < ... < dn = d 
in such a way that 

.s)V(r) - k(t, u)V(z)| < e for 5, r,u,zeT{ = D{ D De, 

where D{ = [dj-i, d{] (i = 1 , . . . , n). 
Set Vi = :u£V, s £ Di}, then 

(7)/j(j>(i) + A f f(t,s,V(s))ds) 
I 

+ A J f(t,s,V(s))ds + \ J f(t,s,V(s)) dsj < 
I, 

</3(A J f(t,s,V(s))ds)+£. 
Ic 
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Let us observe that 
n 

A J f(t,s,V(s))ds C J > f f(t,s,V(s))ds C 
h «=1 Ti 

n 

c A ^ m e s T , conv/(i,Ti x VJ). 
t=i 

By the properties of measure of weak noncompactness we have 
n 

f f ( t , s , V ( s ) ) ) ds < ¡3^A ^ mesT, conv f(t,T{ x V,)) < 
I. '=i 

n 

< A n n i e s T i / 3 ( f ( t , T i x V*)) < 
t=i 

n 

< A mes Ti sup ¿(i, s)/3(V,) = 
fr{ seTi 

n 

= A ^ m e s Tik{t,qi)V(si), 
i=1 

where qi € T{, Si € D{. Moreover, as 

\ k ( t , s ) v ( s ) - k ( t , q i ) v ( s i ) \ < £ 

for s G Ti, we have 

mes Tjfc(f, g O ^ 5 ; ) ^ / d s + £ m e s Ti• 
Ti 

Thus 

fl(\J f ( t , s , V ( s ) ) d s j < A J + Af:mesTc. 

As e is arbitrarily small, from this and (7) we deduce that 

p(p(t) + A f f(t,s,V(s)dsJ < A J k(t, s)V(s) ds 

I I 

and therefore 

/J(F(0)<A J k(t,s)V(s)ds. 
i 

Because this inequality holds for every t € I and Ar(A") < 1, by applying 
the theorem on integral inequalities, we conclude that (3(V(t)) = 0 for t € I-
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By Theorem 2, V is relatively weakly compact in C(I, E). Applying now 
Theorem 1 we conclude that G has a fixed point, which is a solution of the 
equation (1). 

3. The Volterra integral equation 
Consider now the integral equation (2) assuming that p and / satisfy 1° 

and 2°. Choose b > 0 in such a way that b > 2 sup i 6 i ||p(i)||. From 2°(iii) it 
follows that there is number a, 0 < a < d such that 

r b I mdt, s)ds < — for 0 < t < a. J 2 o 
Let J = [0,a]. Put B = {u € C(J,E) : |M|C < and 

t 
F(x)(t) = p(t) + f f(t,s,x(s))ds for x € B, t £ J. 

0 
Similarly to the Urysohn integral equation, we can show that F is a 

weakly-weakly sequentially continuous mapping and the set F(B) is equiu-
niformly continuous. 

Further, let P = {(t,s,z) € R3 : 0 < s < t < /, \z\<C), where / > a, 
c > 2b. Assume that a nonnegative real-valued function (i, s, z) —• h(t, s, z) 
defined on P is a Kamke function, i.e. h satisfies the Caratheodory conditions 
and 2°(iii)-(iv), and 
(v) for each fixed (t, s) the function z —> h(t,s,z) is nondecreasing, 
(vi) for each q, 0 < q < /, the zero function is the unique continuous 

solution of the equation 
1 

z(t) = J h(t, s, z(s)) ds defined on [0, q]. 
o 

T H E O R E M 3 . Assrne that for any e > 0 , bounded X C E and t € </ there 
exists a closed subset Ie of [0, i] such that mes([0, <] \ Ic) < £ and 

(8) /?(/(*, TxX)) < sup h(t, s, /3(X)) 
s£T 

for each closed subset T of Ic. Then the equation (2) has at least one con-
tinuous solution on J. 

P r o o f . Let V C B be such that V = conv(F(V r)u{0}). Let as fix* € J, 
£ > 0. 

By the Scorza Dragoni theorem there exists a closed subset De of J 
such that mes(«7 \ De) < £ and the function h is uniformly continuous on 
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De x [0,6i], where f>i = b(3(K(B(J))). Analogously as in [7] we prove that 

t 

P(V(t)) < f h(t, s, V(s)) ds for / <E J. 
0 

From the property of Kamke functions and the theorem 011 integral in-
equalities, we conclude that 

/3(V{t)) = 0 for t £ J. 
Now as in the proof of Theorem 2 we conclude that F has a fixed point. 

R e m a r k . An analogous theorem can be proved for axiomatic measures 
of weak noncompactness (see [2], [7]). 
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