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ON THE EXISTENCE OF CONTINUOUS SOLUTIONS
OF URYSOHN AND VOLTERRA INTEGRAL EQUATIONS
IN BANACH SPACES

1. Introduction
In this paper using measure of weak noncompactness developed by de
Blasi [5] we prove some existence theorems for the Urysohn integral equation

(1) z(t) = p(t) + 4 [ f(t,5,2(5)) ds,
1
and for the Volterra integral equation
t

(2) z(t) =p(t)+ [ f(t,s,2(s))ds,
0

where I = [0,d] is a compact interval in R, f, p and z are functions with
values in a Banach space E and the integrals are Pettis integrals (for the
definitions see [8], [15], [1]).

There have appeared a lot of papers using the measure of weak noncom-
pactness in proving existence theorems for ordinary differential equations.

For the weak solutions if f is only assamed weakly-weakly continuous,
it has been shown that weak weak continuity of the right side is insufficient
for the existence of weak solutions [6].

DEFINITION. Let A be a bounded nonvoid subset of E. The measure of
weak noncompactness 3(A) is defined by

B(A) = inf{t > 0: there exists CeK™ such that A C C + tB,},

where K" is the set of weakly compact subset of E and By is the unit ball.
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The properties of measure of weak noncompactness § are analogous to
the properties of Kuratowski measure of noncompactness (see [5], [12]).

In this paper we will apply the following theorems.

THEOREM 1 [11]. Let E be a metrizable locally convez topological vektor
space and let D be a closed convez subset of E, and let F be a weakly sequen-
tially continuous map of D into itself. If for some ¢ € D the implication

(x) V =tonv({z} U F(V)) = V is relatively weakly compact, holds for
every subset V of D, then F has a fized point.

THEOREM 2 [12]. Let H be a bounded, equicontinuous subset of C(I, E).
Then B(H) = sup,c; B(H(t)) = B(H (1))

2. The Uryshon integral equation
Consider the integral equation (1) with the following assumptions:

(1°)  pis a continuous function from I into E;
(2°) (t,s,z) — f(t,s,7) is a function from I x E into E

which satisfies the following conditions:

(1) for each (t,s) € I%, f(t,s, ) is weakly-weakly sequentially continuous,

(ii)  for each strongly continuous function z : I — E, f(-,-,z(-)) is Pettis-
integrable on I,

(i) for any h > 0 there exists a mesaurable function my, : I? X R4, such
that || f(2,s,z)|| < mn(t,s) (t,s € 1, ||z]] < h) and [, mu(t,s)ds <
a(h) < oo,

(iv) for any h > 0 there is a function dj, : I®> — R, such that ||f(¢,s,z) -

f(ry8,2)|| < dn(ryt,8) (7,8, s € I, ||z]| < h) and limse, f; du(T,t,5)ds

THEOREM 3. Assume, in addition to 1° and 2°, that there ezists an
integrable function k : I?> x R, such that for every t € I, ¢ > 0 and for
every bounded subset X of E there exists a closed subset I, of I such that
mes(I\ 1) < € and

(3) B(t, T x X) < sup k(t, s)B(z)
seT

for any compact subset T of I..
Then there exists p > 0 such that for each A\, 0 < A < g there ezists at
least one continuous solution of (1).
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Proof. Denote by C the Banach space of continuous functionsu : I — E
with the usual supremum norm || |c. Let r(K) be the spectral radius of the
integral operator K defined by

Ku(t)= [ k(t,s)u(s)ds (v€C, tel).
I

Put

S h —lpll 1 1
¢ =mn (S“p a(h) < (K E)'

For fixed A € R, 0 < A < p, choose b > 0 in such a way that

(4) lellc + Aa(8) < b.
Put B = {z € C :||z|]jc < b}. Consider the operator G defined by

G) ) =p(t)+ A [ f(t,5,2(s))ds (z€B, tel)
Because for z* € E* with ||:1:"‘|I| < 1 and z € B by (4) we have
l2*(G(z)(t)| < le*(p(1))] + || }f |2 (f(2,5,2(s))|ds <
< llpllc + 1A ,f 17t s,2(s))ll ds <
< liplle + 1Al If my(t,s) ds < [lpllc + [ Mla(b) < b.

Consequently
6)  sup{lz"(G(z)()|: " € E*, ||2”]| < 1} = |G(z)(1)]] < b.
Also
|2*(G(2)(2) - G(z)(7))|
< [*(p(®) - p(7))| + A If |2*[/(t,8,2(s)) =~ f(7,5,3(s))]| ds <

< lp(®) = (M)l + A [ 1f (8 5,2(s)) = f(7,8,2(s))l| ds <
I

<Ip(t) = p(r)ll + A [ du(r,1,5)ds.
I
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This implies that

(6) IG(2)(8) = Ge)(T < lp(t) = p(T)I + A [ da(7,t,9) ds.
I

The assumptions 1°,2° and (5), (6) imply that G is a continuous mapping
from B into itself and G(B) is strongly equicontinuous subset of B.

Since F(t,s,-) is weakly-weakly sequentially continuous, by using the
Lebesgue dominated convergence theorem, for each z* € E™.

z*(G(z,)(t)) —» z*(G(z)(t)) whenever z,, — z in (C(I, E),w).

So by Lemma 1.9 [12] G is weakly-weakly sequentially continuous.
Let V = conv (G(V) U {0}). Obviously

V(t) conv(G(V)(t)u {0}) forte D.

Since V is equicontinuous, the function t — V(t) = G(V (¢)) is continuous
on I.

Fix t € D and ¢ > 0. By (3) and the Lusin theorem there exists a
compact subset I, of I such that mes(/ \ I;) < € and B(f(¢,T x X) <
sup,er k(t,8)B(X) for any compact subset T' of D,, while the function
s — k(t, s) is continuous and

£

A [ m,,(t,s).ds< 5

NI,

We devide the interval [ = [0,d]intonparts0 =dy < d; < ...<d, =d
in such a way that

|k(t,s)V(r) - k(t,u)V(2)|<e fors,ru,z€T;=D;nD,,
where D; = [d;-1,d;] (i=1,...,n).
Set V; = {u(s) :u €V, s € D;}, then
(7) B(p®)+ ) [ £(t,5,V(s))ds)
I
<B(p®+X [ 1t,s,V(s)ds+ X [ f(t,5,V(s))ds) <
I, NI,

< ﬂ(A [ f(t,s,V(s))ds) te.
I,
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Let us observe that

M [ fts,V(s))dsC YA [ f(t,s,V(s))ds C
I, i

i=1 T
- /\ZmesTin(t,Ti x Vi).
i=1

By the properties of measure of weak noncompactness we have

ﬁ(,\ i f(t,s,V(s))) ds < ﬂ(/\imes T; eonv f(t, T; x v,-)) <
I, i=1
< /\imes TiB(f(t,T; x Vi)) <
i=1

<A mes T; sup k(t,s)3(V;) =
<Y mesT: sup k{1, 5)A(V:)

=1

= A mesTik(t, :)V(si),

=1

where ¢; € T}, s; € D;. Moreover, as

|k(t,s)V(s) — k(t,q:)V(si)| <€
for s € T;, we have
mes T;k(t, ¢:)V (si) < f k(t,s)V(s)ds + c mes T;.

T;

Thus

,B(/\ f f(t,s,V(s)) ds) <A f k(t,s)ds + Ae mesT,.
I, I,

As ¢ is arbitrarily small, from this and (7) we deduce that

B(p®)+ A [ f(t,s,V(s)ds) <A [ k(t, )V (s)ds
I I

and therefore

BV() <X [ k(t,s)V(s)ds.
I

Because this inequality holds for every t € I and Ar(K) < 1, by applying
the theorem on integral inequalities, we conclude that #(V(t)) =0fort € I.
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By Theorem 2, V is relatively weakly compact in C(I, F). Applying now
Theorem 1 we conclude that G has a fixed point, which is a solution of the
equation (1).

3. The Volterra integral equation

Consider now the integral equation (2) assuming that p and f satisfy 1°
and 2°. Choose b > 0 in such a way that b > 2sup,¢; ||p(¢)|]. From 2°(iii) it
follows that there is number a, 0 < a < d such that

t

[ mu(t,s)ds <
0

Let J = [0,a]. Put B={u € C(J,E):||ullc < b} and

for0<t<a.

| o

F(z)(t)=p(t) + f f(t,s,z(s))ds forz € B, teJ

Similarly to the Urysohn integral equation, we can show that F is a
weakly-weakly sequentially continuous mapping and the set F(B) is equiu-
niformly continuous.

Further, let P = {(t,5,2) € R®*:0< s <t <, |z] < C}, where | > a,
¢ > 2b. Assume that a nonnegative real-valued function (t, s, z) — h(t,s, 2)
defined on P is a Kamke function, i.e. h satisfies the Caratheodory conditions
and 2°(iii)-(iv), and
(v)  for each fixed (¢, s) the function z — h(t, s, 2) is nondecreasing,

(vi) for each ¢, 0 < ¢ < [, the zero function is the unique continuous
solution of the equation

zZ(t) = f h(t,s,z(s))ds defined on {0, ¢].

THEOREM 3. Assme that for any € > 0, bounded X C E andt € J there
ezxists a closed subset I, of [0,1] such that mes([0,%]\ I.) < £ and

(8) AUI(t, T2 X)) < sup h(t, s, A(X))

for each closed subset T of I.. Then the equation (2) has at least one con-
tinuous solution on J.

Proof. Let V C B be such that V = tonv (F(V)uU{0}). Let as fix t € J,
e >0.

By the Scorza Dragoni theorem there exists a closed subset D, of J
such that mes(J \ D,) < ¢ and the function k is uniformly continuous on
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D, x [0,b;1], where by = bB(K'(B(J))). Analogously as in [7] we prove that

B(V(t)) < f h(t,s,V(s))ds forte J.

From the property of Kamke functions and the theorem on integral in-

equalities, we conclude that

B(V(t))=0 forteJ.

Now as in the proof of Theorem 2 we conclude that F has a fixed point.

Remark. An analogous theorem can be proved for axiomatic measures

of weak noncompactness (see [2], [7]).
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