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SOME REMARKS ON THE DARBOUX PROPERTY
FOR MULTIVALUED FUNCTIONS

The present paper deals with certain properties of multivalued functions
which coincides with the Darboux property in the case of a single valued
function. The results contained here generalize that of Joanna Czarnowska
and Grazyna Kwiecifiska [1] which were established in the case of real mul-
tivalued functions.

Notations and definitions

Let X,Y be Hausdorff spaces, P(Y) be the family of the nonempty
subsets of Y and C(Y') the family of the nonempty and closed subsets of Y.
A function F : X — P(Y) is called a multivalued function and for such a
function and any set A C X and B C Y, we denote by

P(A) = | J{F(z)| = € 4},
F*Y(B)={z € X | F(z) C B},
F-(By={z € X | F(z)n B # §}.

If F: X - P(Y) is a multivalued function, £ C X is a subset of X
and z € E, we say that a point y € Y is a limit point of F with respect
to the set E and the point z € E if for every V € V(y) and U € V(z),
there exists ' # z, 2’ € UN E and y' € F(z') such that y' € V, and
we write y € Lp(FE,z). If X is locally arcwise connected, we denote by
Lp(z) = () Lr(E,z), where the intersection is taken over all arcs £ C X
such that z is an endpoint of E.

As in [2], we say that the multivalued function F': X — P(Y) has the
Darboux property (briefly has property D) if for every connected set £ C X,
it results that F(F) is connected in Y.

If X is a Hausdorff space, a continuous injective map v : (0,1) — X
is called an open arc. The points z;,z2 from X are the endpoints of v if
zy = lim;—0y(t) and z = lim,, ¥(t).
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If Ay, Ay, B are mutually disjoint subsets from X, we say that A; and
A, are separated in X by B if X\ B C @,JQ2, where @;,Q, are open
disjoint sets from X and A; C Q1, Ay C Q».

We introduce now the following definitions concerning various general-
izations of the Darboux property for multivalued functions:

A multivalued function F' : X — P(Y) has property Dy if we cannot
find E C X connected, 21,22 € E, 31 € F(z1), y2 € F(z3) and Ay, A; open
disjoint sets from Y such that F(E) C A;|J Az and 4 € Ay, y2 € As.

A multivalued function F' : X — P(Y') has property D; if we cannot find
E C X connected, z1,z3 € E and y; € F(z;) such that for every y € F(z,),
there exists A,, B, open disjoint sets from Y such that F(F) C A,U B,
and y; € Ay,y € By.

A multivalued function ¥ : X — P(Y) has property D, if we cannot
find an open arc 7 : (0,1) — X with endpoints z; and z; and y; € F(z)
such that for every y € F(z,), there exists A,, B, open disjoint sets from Y
such that F(F) C AyUBy and y; € Ay, y € By, where £ = Im~.

A multivalued function F' : X — P(Y) has property D3 if we cannot
find E C X connected, 21,72 € E, y1 € F(z1) and A;, A; open disjoint sets
from Y such that F(E) C A; U Az and y;, € Ay, F(zy) C A,.

A multivalued function F' : X — P(Y) has property D4 if we cannot
find an open arc v : (0,1) — X with endpoints z; and z3,y1 € F(z1) and
A, A; open disjoint sets from Y such that F(Im+y) C A; U A2 and 41 € Ay,
F((vg) C As.

A multivalued function F' : X — P(Y') has property Dy if we cannot find
E C X connected, z1,z, € E, y1 € F(z1),y2 € F(z2) and A;, A; open dis-
joint sets from Y such that F(E) C AjUAz,y; € A1, y2 € Az. In other words,
F has property D} if we cannot find E C X connected, 21,22 € E,y; € F(z1)
and y; € F(z;) such that y; and y, are separated by Y \ F(F)in Y.

A multivalued function F : X — P(Y') has property D] if we cannot find
E C X connected, z1,z2 € E and y; € F(x;) such that for every y € F(z3),
¥ and y are separated by Y \ F(E)in Y.

A multivalued function F' : X — P(Y) has property D} if we cannot
find an open arc 7 : (0,1) — X with endpoints z; and z; and y; € F(z;)
such that for every y € F(z;), 31 and y are separated by Y \ F(E) in Y,
where £ = Im ~.

A multivalued function F' : X — P(Y') has property Dj if we cannot
find £ C X connected, 21,2z, € E and y; € F(zy) such that y; and F(z3)
are separated by Y \ F(E)in Y.

A multivalued function F : X — P(Y) has property D} if we cannot
find an open arc v : (0,1) — X with endpoints z; and z, and y; € F(z;)
such that y; and F(z;) are separated by Y \ F(E)in Y, where £ = Im~.
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Remark 1. It is obvious that property Dj is equivalent with property
D and also that properties Dy implies properties D. We have the following
implications:
D; = D! fori=0,1,2,3,4,
Dy = Dy = D3 = Dy,
Dy = Dy, = Dy = Dy,
D} = D} = D; = Dy,
D{ = D} = D} = Dj.
ExaMmPLE 1. Let F : [0,1] — C(R), defined by F(z) = z for z € (0,1)
and F(0) = [-1,0], F(1) = [1,2]. Then F has property D} but not D; for
1=0,1,2,3,4 and F is upper semicontinuous.

THEOREM 1. Let E C X be connected and F : X — P(Y') a continuous
maultivalued function and suppose that there exists x € E such that F(z) is
a connected set. Then F(E) is connected.

Proof. Suppose that F(E) is not connected and let A;, A2 be open
disjoint sets from Y such that F(E) C A; U Ay and F(E)N A; # @ for
i = 1,2. Suppose that F(z) N Ay # 0. Then, since F(z) is connected, it
means that F(z) N A; = @. Using the fact that F(z) C F(E) C A; U A,,
we deduce that F(z) C As,i.e. FT(A)NE # 0. Since F(E)N A; # 0, this
implies that EN F~(4;) # 0. We will show that E C F~(A;) N F*(4,).
Indeed, if z € F, then F(z) C A; N A;. In the case F(z) U A; # 0, we have
z € ENF~(A;) and if F(z) N A; = 0, we obtain that F(z) C A, hence
z € ENF*(A;). Now we will show that ENF~(A;)NF+(Ay) = 0. Indeed, if
thereis z € ENF~(A;)NF+(Ay), then F(z)NA, # @ and F(z) C A,, which
is a contradiction, since A;jNA; = 0. We showed that E C F~(A;)UF*(4,),
F~(A)NE #0, Fr(4)NE £0, ENF~(A;)N F+(4;) = 0 and F~(A4,),
F*(A) are open in X, which gives a contradiction, since E is connected.
This ends the proof.

THEOREM 2. Let F : X — P(Y) be a continuous multivalued function.
Then F has property Ds.

Proof. Suppose that F' does not satisfy property D3. Therefore we can
find a connected set E C X, z1,22 C E, y; € F(zy) and A;, A, open
disjoint sets from Y such that F(E) C A; U Az, y1 € Ay and F(z3) C A;.
Now z; € F(A;) is an open set from X, hence, using the fact that z; € E,
we conclude that E N F*(A;) # 0. Also z; € F~(A;) and F~(4;) is an
open set, hence we deduce that EN F~(A;) # 0. As in Theorem 1, we see
that £ C F~(A4;) N F*(A;) and that En F~(A,) N Ft(A;) = 0. This
contradicts the assumption that F is connected and proves our claim.
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EXAMPLE 2. Let F:[0,1] —» P(R),

{l} for z € (0,1)

n neN

{-1—} u{0} forz=0,1.
) neN

Then F is continuous but F has not property Ds.

F(z) =

THEOREM 3. Let F : X — P(Y) be a lower semicontinuous multival-
ued function such that F(z) is connected for every z € X. Then F has
property Dy.

Proof. Suppose that F does not satisfy property Dgy. Then we can
find connected E C X, z1,22 € E, 31 € F(z1), y2 € F(z2) and A, A,
open disjoint sets from Y such that F(E) C Ay U Ay, y1 € A1, y2 € A;.
Since for every z € E F(z) C A; U A; and F(z) are connected, we have
F~(A;)NE = F*(A;))N E for i = 1,2. Since z; € F~(A;) N E, it results
that F~(A;)NE # 0 for i = 1,2. As before, we have £ C F~(A;)U FT(A;)
and ENF~(A;1)NF*(A;) = 0. Now, E = (F7(A1)NE)U(Ft(A2)NE) =
(F—(Al) N E) U (F—(Az) N E) and F—(Al) N F—(A2) nNE = F_(Al) n
F*(A;)n E = 0, which represents a contradiction, since E is connected.
This ends the proof.

Similarly we can prove:

THEOREM 4. Let F : X — P(Y) be an upper semicontinuous multi-
valued function such that F(z) is connected for every z € X. Then F has
property D.

Using now Theorem 3, Theorem 4 and Remark 1, we obtain:

THEOREM 5. Let F : X — P(Y) be an upper (lower) semiconlinuous
multivalued function such that F(z) is connected for every x € X. Then F
has property D.

THEOREM 6. Let F : X — P(Y) be a multivalued function such that'Y
ts a regular topological space. Then, if X is arcwise connected and F has
property Dy, then we have F(z) C Lrp(z) for every x € X. If F has property
D3, then F(E) C F(E) for every connected E C X, and for every closed set
B CY, the connected components of F*(B) are closed.

Proof. Suppose that F has property Ds;. We shall prove first that for
every connected set E C X, we have F(E) C F(E). It is obvious, if E
reduces to a point, in the other case, let z € E. If there exists y € F(z)
such that y ¢ F(E), let V € V(y) be such that V n F(E) = §. Taking
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Al =V, Ay = CV we see that z € E, y € F(z) N Ay, so for every z' # z,
z' € E, we have F(z') C F(F) C A;. Since F has property D3, we obtained
a contradiction. We finally proved that F(E) C F(E) if F has as property D
and it is obvious that if F° has property Dy, then F(E) C F(E) for every
arc F C X.

Now, if B C Y is closed and E is a component of F*(B), it results that
F(E) C B, hence F(E) C F(E) C B = B, which implies that E C F*(B)
and hence that E = E, q.e.d.

Suppose now that F has property D, and let £ € X. Let v be an arcin X
such that z is an endpoint of 4 and let E be a subarc of 4y with an endpoint
z as well. Then F(z) ¢ F(E) C F(E) and since E may be arbitrarily chosen,
it follows that F(z) C Lgr(y,z) for every arc 4 such that z is an endpoint
of v. We finally obtained that if F has property D4 then F(z) C Lp(z),
g.e.d.

Remark 2. Let F :[0,1] —» C(R) be as in Exa.mple 1. We see that
F is upper semicontinuous and has property Di for 7 = 0,1,2,3,4, but
F*([=1,3]) = (0,1) which is not closed in [0, 1] Also, Lp(1) = {1} and
F(1) =[1,2)], hence F(1) ¢ Lr(1).

THEOREM 7. Let F : X — P(Y') be lower and upper first class mapping
such that for every closed set B C Y and every closed arc v : [0,1] — X,
both the sets F*(B)NIm+y and F~(B)NIm« have closed components. Then
F has property Dy.

Proof. Suppose that F does not satisfy property D4. Then we can find
an open arc 7 : (0,1) —» X with endpoints z; and z3, y1 € F(z;) and
Aj, Az open disjoint sets from Y such that F(Imy) C A; U A;, y1 € A;
and F(z;) C A;. Now, 2y € F~(A;) nImy and z; ¢ F+(A4;) nIm+,
z3 € (FY(A2)NnIm7y) \ (F~ (A1) nIm¥y), Imy C F~(A;) U Ft(A;) and
F=(A))NF*(A;) = 0. Since Fr A; N A; = 0, Fr AN A; = 0, we obtain that
F~(A;)NImy = F~(A;)NImy and F*(4;)nImy = F+(A4;)NIm y. We also
see that (F~(A;)NIm y)U{z1} = F~(A;)NImy, F*(4;)NImy = (F*(4z)N
Im y)U{z,}, hence we obtain that F~(A;)NImy = (F~(A)NIm y)u{z,} =
(F~(A1)NIm y)u{e:1} = F~(A;)NImy and that F*+(4;)NImy = (F*(4;)n
Imy) U {z2} = (F*(4;) NImy) U {z;} = F*(4;) N Im~7. If we denote by
B; = F-(A))nImy and B; = F*(A;) N Im~, then Imy = B; U B,,
B; N B; =0, B, and B, are F,-sets and all their components are compact,
which contradicts with Lemma 2 from [1].

Remark 3. If I C R is an interval and F : I —» P(R) is a real
multivalued function, we see that F has property D; or D, if and only
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if the following condition holds: “For every z;,z; € I and y; € F(zy),
there exists yo € F(z2) such that (y1,y2) C F((z1,22))”. We also have that
F : I — P(R) has property D} or Dj if and only if the following condition
holds: “For every z1,z2 € I and y; € F(z;), there exists y» € F(z2) such
that [y1,32] C F([z1,22])".

THEOREM 8. Let F' : X — P(Y) be a multivalued function. Then if F(z)
are compact for every ¢ € X property of Ds implies Dy and property Dy
implies Ds.

If F(z) are compact or they have finilely many connected components
for every ¢ € X, then property D} implies D] and property D} implies
property Dj.

Proof. Suppose that F(z) are compact for every ¢ € X and that F
has property D3 but no property D;. Then we can find £ C X connected,
z1,z2 € E and y; € F(z;) such that for every y € F(z,;), we can find
Ay, By open disjoint sets from Y such that F(E) C A, U By, y1 € A, and
y € By. Since F(z3) is compact and F(z2) C Uyep(s,) By, we can find

21,22, ...,%; € F(zy) such that F(z;) C Uj_, B, . Taking

7 J
A= ()4, A ={]B,
k=1 k=1

we see that A;, A; are open and disjoint sets, F(E) C A; UA; and y; € 44,
F(zy) C Ay, which gives a contradiction, since F has property Dj.

In the same way we prove that if F(z) is compact for every ¢ € X and
F has property D4 then F has property D,.

Suppose now that F(z) are compact or they have finitely many con-
nected components for every ¢ € X. If F' has property D} but no property
D}, then we can find £ C X connected, z,,z2 € E and y, € F(z;)
such that for every y € F(zy) there are Ay, B, open disjoint sets such
that F(E) C Ay U By,y1 € A, and y € B,. Now, if F(z2) is compact,
we obtain as before a contradiction. If F(z;) has finitely many compo-
nents, say C,Cs,...,C;, we choose zx € Cy for £k = 1,2,...,5. Since
Cr C F(z9) C F(F) C A, UB,,, Ck is connected and z, € Cx N B,, for
k=1,2,...,5, it follows that Cx C B,, for k = 1,2,...,j. Taking again
A1 = Ny Az s A2 = UL, B., we see that A, A; are open and disjoint
sets with F(F) C A; UA;, 11 € Ay and F(z;) C Az, what contradicts with
property D} on F.

In the same way we prove that if Fi(z) are compact or they have finitely
many components for every z € X then if F has property Dj it has property
Dj as well.
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Using now Theorem 2 and Theorem 8, we obtain:

THEOREM 9. Let F : X — P(Y) be a continuous multivalued function.
Then, if F(z) are compact for every ¢ € X, F has property Dy and if
F(z) is compact or it has finitely many components for every z € X, F has
property Dj.

Remark 4. If F: X — C(R) is such that F has property D3 then it
posesses property Dj.

Indeed, suppose that F' does not posess property D;. Then we can
find connected E C X, z;,2, € E and y; € F(z;) such that for every
y € F(zy), there exists ¢y, € (y1,y) \ F(E). We see that y, ¢ F(z,) so
we may suppose that F(z3) N (y1,00) # 0. Since F(z3) is closed, we can
find a point y» € F(z3) such that y; < y; and (y1,92) N F(z2) = 0, hence
we can pick a point b € (y1,y2) \ F(E). Now, if F(z3) N (—o0,41) = 0,
we take A; = (—00,b),As = (b,00) and we see that F(F) C A; U Ay,
Y1 € A1, F(z2) C Ay, which is a contradiction, since F' has property Ds.
If F(z2) N (—00,y;) # B, then using again the fact that F(z;) is closed,
we can find y3 € F(zy) such that y3 < y and (y3,y) N F(z2) = .
Hence we can pick a € (ys,y1) \ F(F). Taking A; = (a,b) and A; =
(—00,a) N (b,00) we see that F(E) C Ay U Ay, ;1 € Ay and F(z2) C
Ay, which is a contradiction, since F' has property Dj3. Now, if F(z;) N
(y1,00) = 0, it results that F(z;) N (—00,y1) # 0. Using again the fact
that F(z2) is a closed set, we can find y4 € F(z;) such that y; < y; and
(y4,91) N F(z2) = 0, hence we can pick ¢ € (ys,91) \ F(E). We can now
take A; = (c,00) and Ay = (—o00,c) and we see that F(E) C Ay U A,
1 € Ay and F(zp) C Az, which is a contradiction, since F' has pro-
perty Ds.

In the same way we prove that if /: X — C(R) is a multivalued function
with property Dy, then F' has property D,.

Using Theorem 2, we obtain:

THEOREM 10. Let F : X — C(R) be a continuous multivalued function.
Then F has property Di.

Remark 5. Using Remark 3, we see that a continuous real multivalued
function F : I — C(R), where I C R is an interval, satisfies the following
condition:

“For every z1,z, € I and y, € F(z,), there exists y, € F(z3) such that
(31, 92) C F((22,22))”.

I wish to thank the referee for his remarks.
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