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SOME REMARKS ON THE DARBOUX PROPERTY 
FOR MULTIVALUED FUNCTIONS 

The present paper deals with certain properties of multivalued functions 
which coincides with the Darboux property in the case of a single valued 
function. The results contained here generalize that of Joanna Czarnowska 
and Grazyna Kwiecinska [1] which were established in the case of real mul-
tivalued functions. 

Notations and definitions 
Let A, Y be Hausdorff spaces, P(Y) be the family of the nonempty 

subsets of Y and C(Y) the family of the nonempty and closed subsets of Y. 
A function F : X —> P(Y) is called a multivalued function and for such a 
function and any set A C X and B C Y, we denote by 

P(A) = (J{F(x) | x G A}, 
F+(B) = {x e X | F(x) C B}, 
F~{B) = {x £ X | F(x)n B + 0} . 

If F : X -* P(Y) is a multivalued function, £ C A' is a subset of A' 
and x E E, we say that a point y £ Y is a limit point of F with respect 
to the set E and the point x 6 E if for every V G V(y) and U 6 ^(z), 
there exists x' ̂  x, x' G U D E and y' 6 F(x') such that y' £ V, and 
we write y G Lj?(E,x). If A' is locally arcwise connected, we denote by 
Lp(x) = p| Lp(E,x), where the intersection is taken over all arcs E C X 
such that x is an endpoint of E. 

As in [2], we say that the multivalued function F : A' —• P(Y) has the 
Darboux property (briefly has property D) if for every connected set E C A , 
it results that F(E) is connected in Y. 

If A is a Hausdorff space, a continuous injective map 7 : (0,1) —• A 
is called an open arc. The points 2:1,2:2 from A are the endpoints of 7 if 
xi = limt-^o 7 ( 0 and £2 = l i m ^ i 7(t). 
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If Ai,A2,B are mutually disjoint subsets from X, we say that A\ and 
Ai are separated in X by B if X \ B C Qi (JQ2> where Qi,Q2 are open 
disjoint sets from X and Ai C Qi, A2 C Qi. 

We introduce now the following definitions concerning various general-
izations of the Darboux property for multivalued functions: 

A multivalued function F : X —> P(Y) has property Do if we cannot 
find E C X connected, Xi,£2 G E, yi G F(x 1), 2/2 £ F(x2) and A\,A2 open 
disjoint sets from Y such that F(E) C A\ (J and y\ G A\, 2/2 € A2. 

A multivalued function F : X —> P(l^) has property D1 if we cannot find 
E C X connected, xj,x2 € i? and 2/1 G ̂ "(^l) such that for every y G ir(x2), 
there exists Ay,By open disjoint sets from V such that C Ay\JBy 
and yi G Ay,y G 

A multivalued function F : A' —»• has property £>2 if we cannot 
find an open arc 7 : (0,1) —• A with endpoints and X2 and yi G 
such that for every y G F(x2), there exists Ay,By open disjoint sets from V 
such that F(E) C Ay |J By and y 1 G Ay, y G By, where £ = Im7. 

A multivalued function F : X P(Y) has property D3 if we cannot 
find E C X connected, Xi,X2 G E, yi G and A\,A2 open disjoint sets 
from Y such that F{E) C Ai U A2 and yi G Ai,F(x2) C A2. 

A multivalued function F : X —> P(Y) has property D4 if we cannot 
find an open arc 7 : (0,1) —• X with endpoints x\ and £2,2/1 £ a n d 
Ai,A2 open disjoint sets from Y such that ,F(Im7) C Ai UA2 and y\ G Ai, 
F(X2) C A2. 

A multivalued function F : X —> P(Y) has property D'0 if we cannot find 
E C X connected, xy,x2 G E, yi G F(xi),y2 G F(x2) and A\,A2 open dis-
joint sets from Y such that F(E) C A\\jA2,yi 6 Ai,j/2 G A^. In other words, 
F has property D§ if we cannot find E C A' connected, x 2 G E,yi G F(x i)J 

and j/2 G F(x2) such that 3/x and j/2 are separated by Y \ F(E) in Y. 
A multivalued function F : X —> P(Y) has property D[ if we cannot find 

E C X connected, xi,x2 G E and y\ G F{x 1) such that for every y G F(x2), 
2/i and y are separated by F \ F(E) in Y. 

A multivalued function F : X P(Y) has property D'2 if we cannot 
find an open arc 7 : (0,1) —• A' with endpoints xj and X2 and y\ G F(x 1) 
such that for every y G F(x2), yi and y are separated by Y \ F(E) in Y, 
where £ = Im 7. 

A multivalued function F : X P(Y) has property D'z if we cannot 
find E C X connected, Xi,X2 G E and yi G F(x 1) such that j/i and F(x2) 
are separated by Y \ F(E) in Y. 

A multivalued function F : X —> P(Y) has property D[ if we cannot 
find an open arc 7 : (0,1) —»• X with endpoints x\ and X2 and y\ G F(x 1) 
such that j/i and F(x2) are separated by Y \ F(E) in Y, where E = I1117. 
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R e m a r k 1. It is obvious that property D'0 is equivalent with property 
D and also that properties Do implies properties D. We have the following 
implications: 

Di => D\ for i = 0 ,1,2,3,4, 
Do => Dx => D3 D^ 
Do => Di =>• £>2 => 
D'0 => D[ =>D'3=> D'i, 
D'0 => D[ => D'2 => D'4. 

E X A M P L E 1. Let F : [ 0 , 1 ] C(R), defined by F(x) = x for x € ( 0 , 1 ) 

and F(0) = [ - 1 , 0 ] , F(l) = [ 1 , 2 ] . Then F has property D\ but not D{ for 
i = 0 , 1 , 2 , 3 , 4 and F is upper semicontinuous. 

T H E O R E M 1. Let E C X be connected and F : X P(Y) a continuous 
multivalued function and suppose that there exists x G E such that F(x) is 
a connected set. Then F(E) is connected. 

P r o o f . Suppose that F(E) is not connected and let AI,A2 be open 
disjoint sets from Y such that F{E) C Ai U A2 and F(E) n A{ / 0 for 
1 = 1,2. Suppose that F(x) fl A2 0. Then, since F(x) is connected, it 
means that F(x) n Ai = 0. Using the fact that F(x) C F(E) C U A2, 
we deduce that F(x) C A2, i.e. F+(A2)(~\E ± 0. Since F(E)C\A1 ± 0, this 
implies that E n F~(AX) / 0. We will show that E C F~{Ai) n F+{A2). 
Indeed, if 2 e E, then F(z) C Ai n A2. In the case F(z) U A\ ± 0, we have 
2 € EC\ F~(Ai) and if F(z) D Ax = 0, we obtain that F{z) C A2, hence 
2 e EDF+(A2). Now we will show that Er)F~(Ai)nF+(A2) = 0. Indeed, if 
there is 2 € ^ n F - ( A i ) n F + ( y l 2 ) , then F(z)C\Al ± 0 and F(z) C A2, which 
is a contradiction, since A\C\A2 = 0. We showed that E C F _ ( /1 i )U/ 1 + ( j 4 2 ) , 
F~(A1)C\E i 0, F+(A2)nE ± 0, EnF~{Al)DF^{A2) = 0 and F~(Ai), 
F+(A2) are open in X, which gives a contradiction, since E is connected. 
This ends the proof. 

T H E O R E M 2 . Let F : X —• P(Y) be a continuous multivalued function. 
Then F has property D3. 

P r o o f . Suppose that F does not satisfy property D3. Therefore we can 
find a connected set E C X, x\,x2 C E, y\ £ F(x 1) and A\,A2 open 
disjoint sets from Y such that F(E) C Ai U A2, y\ £ A\ and F(x2) C A2. 
Now x2 E F+(A2) is an open set from A', hence, using the fact that x2 € E, 
we conclude that E n F+{A2) ^ 0. Also xi e F~(Ai) and F~(Ai) is an 
open set, hence we deduce that E fl F~(Ai) ^ 0. As in Theorem 1, we see 
that E C F " ( A i ) n F+{A2) and that E n F~{A\) n F+{A2) = 0. This 
contradicts the assumption that E is connected and proves our claim. 
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E X A M P L E 2 . L e t F : [ 0 , 1 ] P(R), 

f { i | f o r , € (0,1) 

\ < - > U{0 } for a: = 0,1. 
{ UJngJV 

Then F is continuous but F has not property D2. 

T H E O R E M 3 . Let F : X —• P(Y) be a lower semicontinuous multival-
ued function such that F(x) is connected, for every x € A'. Then F has 
property DQ. 

P r o o f . Suppose that F does not satisfy property DQ. Then we can 
find connected E C A, x\,X2 G E, yi € -F(zi), yi € F(x2) and Ai,A2 
open disjoint sets from Y such that F(E) C Ai U A2, yi G Ai, yi € A2. 
Since for every x E E F(x) C Ai U A2 and F(x) are connected, we have 
F~(Ai) n E = F+(Ai) n E for i = 1,2. Since x{ € F~(Ai) n E, it results 
that F~(Ai)r\E^ 0 for i = 1,2. As before, we have E C F'iA^U F+(A2) 
and E D f - ( A i ) fl ^+(^2) = 0. Now, E = n E) U (F+(A2) fi E) = 
(F~(Ai) CiE) U (F-(A2) n E) and n F~(A2) n E = F-(Ai) n 
F+(A2) fl E = 0, which represents a contradiction, since E is connected. 
This ends the proof. 

Similarly we can prove: 

T H E O R E M 4 . Let F : X P(Y) be an upper semicontinuous multi-
valued function such that F(x) is connected for every x £ A". Then F has 
property D. 

Using now Theorem 3, Theorem 4 and Remark 1, we obtain: 

T H E O R E M 5 . Let F : X —• P ( Y ) be an upper (lower) semicontinuous 
multivalued function such that F(x) is connected for every x 6 A". Then F 
has property D. 

T H E O R E M 6 . Let F : X —> P(Y) be a multivalued function such that Y 
is a regular topological space. Then, if X is arcwise connected and F has 
property D4, then we have F(x) C LF(X) for every x £ X. If F has property 
D3, then F(E) C F(E) for every connected E C A, and for every closed set 
B C Y, the connected components of F+(B) are closed. 

P r o o f . Suppose that F has property D3. We shall prove first that for 
every connected set E C A, we have F(E) C F(E). It is obvious, if E 
reduces to a point, in the other case, let x € E. If there exists y 6 F(x) 
such that y £ F(E), let V € V{y) be such that V D F(E) = 0. Taking 
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Ai = V, A2 = CV we see that x G E, y G F ( x ) D >lx, so for every x' / x, 
a;' G E, we have F ( x ' ) C F ( F ) C A 2 . Since F has property D3, we obtained 
a contradiction. We finally proved that F(E) C F(E) if F has property 
and it is obvious that if F has property £>4, then F(E) C F(E) for every 
arc E C X. 

Now, if B C Y is closed and E is a component of F+(B), it results that 
F(E) C B, hence F{E) C F(E) C B = B, which implies that E C F+(B) 
and hence that E = E, q.e.d. 

Suppose now that F has property D4 and let a; G X. Let 7 be an arc in X 
such that x is an endpoint of 7 and let E be a subarc of 7 with an endpoint 
x as well. Then F(x) C F(E) C F(E) and since E may be arbitrarily chosen, 
it follows tha t F(x) C Lf(y,x) for every arc 7 such that x is an endpoint 
of 7 . We finally obtained that if F has property £>4 then F(x) C Lp(x), 
q.e.d. 

R e m a r k 2. Let F : [0,1] —> C(R) be as in Example 1. We see that 
F is upper semicontinuous and has property D[ for i = 0 , 1 ,2 ,3 ,4 , but 

= (0,1) which is not closed in [0,1]. Also, LF( 1) = {1} and 
F ( l ) = [1,2], hence F ( l ) £ LF(l). 

T H E O R E M 7. Let F : X —> P(Y) be lower and upper first class mapping 
such that for every closed set B C Y and every closed arc 7 : [0,1] —»• X , 
both the sets F+ (B)film7 and F~(B)C\lm7 have closed components. Then 
F has property D4. 

P r o o f . Suppose that F does not satisfy property D4. Then we can find 
an open arc 7 : (0,1) —• X with endpoints xi and X2, yi G F(x 1) and 
A-i, .A2 open disjoint sets from Y such that F ( I m 7 ) C A\ U A2, 3/1 G Ai 
and F(x2) C A2. Now, xi G F~(Ai) n l m 7 and Xi £ F+(A2) f l l m 7 , 
i 2 G ( F + { A 2 ) n I m 7 ) \ ( f _ ( i 4 i ) n InPy), I1117 C F~(Ai) U F+{A2) and 
F-(Ai)r\F+(A2) = 0. Since F r ^ i n A 2 = 0, Fr A 2 n A i = 0, we obtain that 
,F - ( .Ai )nIm7_= F ~ ( y l i ) n l m 7 and f + ( A 2 ) n I m 7 = J F + ( ^ 2 ) n I m 7 . Wealso 
see that (F-( i4 i )DLn7-)U{xi} = F ~ ( A i ) r i I m 7 , F + ( A 2 ) n I m 7 = (F+(A2)C) 
I m 7 ) u { x 2 } ) hence we obtain t h a t / 1 - ( j 4 i ) n l m 7 = (F~(Ai )Dlm7)U{a ; i} = 
( F " ( A 1 ) n I m 7 ) U { x i } = F - ( A i ) n ! m 7 a n d that F + ( l 2 ) n I m 7 = (F+(A 2 )D 
I m 7 ) U { x 2 } = (F+(A2) n I m 7 ) U {X2} = F+(A2) n I m 7 . If we denote by 
Bx = F-(Ax) n I m 7 and B2 = F+(A2) n I m 7 , then I m 7 = Bi U B2, 
Bi fl B2 = 0, B\ and B2 are F^-sets and all their components are compact, 
which contradicts with Lemma 2 from [1]. 

R e m a r k 3. If I C R is an interval and F : I —• P(R) is a real 
multivalued function, we see that F has property D1 or D2 if and only 
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if the following condition holds: "For every X\,X2 £ I and yi £ F(xi), 
there exists yi £ F(x2) such that (3/1,^2) C F((x!,x2))". We also have that 
F : I —• P(R) has property D[ or D2 if and only if the following condition 
holds: "For every xi ,£2 £ I and j/i £ F(x 1), there exists y2 £ F(x2) such 
that [2/1,2/2] C F ( [ z i , z 2 ] ) " . 

THEOREM 8. L e i F : X P(Y) be a multivalued function. Then if F(x) 
are compact for every x £ X property of D3 implies and property D4 
implies D2. 

If F(x) are compact or they have finitely many connected components 
for every x £ X , then property D'3 implies D[ and property D\ implies 
property D2. 

P r o o f . Suppose that F(x) are compact for every x £ X and that F 
has property D3 but no property D\. Then we can find E C A' connected, 
xi,x2 £ E and yi £ such that for every y £ F(x2), we can find 
Ay, By open disjoint sets from Y such that F(E) C Ay U By, y\ £ Ay and 
y € By. Since F(x2) is compact and F(x2) C U j / e F ^ ) w e c a n 

zi,z2,... ,Zj £ F(x 2) such that F(x2) C Ufc=i &zk • Taking 

A1=f)ASk1 A2=(jB,k 

k=1 fc=l 

we see that A\, A2 are open and disjoint sets, F{E) C Ai U A2 and 2/1 £ j4 i , 
F(x2) C A2, which gives a contradiction, since F has property D3. 

In the same way we prove that if F(x) is compact for every a; £ A' and 
F has property D4 then F has property _D2-

Suppose now that F(x) are compact or they have finitely many con-
nected components for every a: £ A'. If F has property D'3 but 110 property 

then we can find E C X connected, X\,x2 £ E and y\ £ F(xi) 
such that for every y £ F(x2) there are Ay,By open disjoint sets such 
that F(E) C Ay U By,y\ £ Ay and y £ By. Now, if F(x2) is compact, 
we obtain as before a contradiction. If F(x2) has finitely many compo-
nents, say Ci , C 2 , . . . , Cj, we choose zk £ Ck for k = 1,2 Since 
Ck C F(x2) C F(E) C AZk U BZk, Ck is connected and zk £ Ck fl BZk for 
k = 1 , 2 , . . . it follows that Ck C BZk for k = 1,2, Taking again 
A\ = flfc=i AZk, A2 = U i= i Bzk w e s e e that AI,A2 are open and disjoint 
sets with F(E) C Ai U A2, 3/1 £ A\ and ir'(a:2) C A2, what contradicts with 
property D'3 on F. 

In the same way we prove that if F(x) are compact or they have finitely 
many components for every x £ X then if F has property D'4 it has property 
D'2 as well. 
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Using now Theorem 2 and Theorem 8, we obtain: 

T H E O R E M 9 . Let F : X P(Y) be a continuous multivalued function. 
Then, if F(x) are compact for every x G X, F has property Di and if 
F(x) is compact or it has finitely many components for every x G X, F has 
property DJ. 

R e m a r k 4. If F : X C(R) is such that F has property D3 then it 
posesses property D\. 

Indeed, suppose that F does not posess property D\. Then we can 
find connected E C X, x\,x2 G E and 2/1 G F(x 1) such that for every 
y G F(x2), there exists cy G (2/1,2/) \ F(E). We see that 2/1 ^ F(x2) so 
we may suppose that F(x2) 0 (2/1,00) 0. Since F{x2) is closed, we can 
find a point y2 G F{x2) such that 2/1 < 2/2 and (1/1,2/2) H 2) = 0, hence 
we can pick a point b G (2/1,2/2) \ F(E). Now, if F (x2) H (—00,1/1) = 05 

we take Ai = (—00,6), ^2 = (6,00) and we see that C A\ U A2, 
yi G A\, F(x2) C A2, which is a contradiction, since F has property D3. 
If F(x2) l~l (—00,2/1) 0, then using again the fact that F(x2) is closed, 
we can find 2/3 G F(x2) such that 2/3 < 2/1 (2/3,2/1) H F(x2) = 0. 
Hence we can pick a G (2/3,2/1) \ F{E). Taking A\ — (a, 6) and A2 = 
( — 00,a) fl (6,00) we see that F ( j 5) C A\ U A2, yi G Ai and 2) C 
^ 2 , which is a contradiction, since F has property D 3 . Now, if F(a;2) 0 
(2/1,00) = 0, it results that F(x2) fl (-00,2/1) 0. Using again the fact 
that F (z2 ) is a closed set, we can find 2/4 G F ( x 2 ) such that 2/4 < 2/1 a n d 
(2/4,2/1) fl i?(a;2) = 0, hence we can pick c G (2/4,2/1) \ E(E). We can now 
take Ai = (c, 00) and A2 = ( - 0 0 , c) and we see that F(E) C Ai U A2, 
2/i G Ai and F(x2) C A2, which is a contradiction, since F has pro-
perty D3. 

In the same way we prove that if F : X —> C(R) is a multivalued function 
with property Z?4, then F has property D2. 

Using Theorem 2, we obtain: 

T H E O R E M 1 0 . Let F : X —> C ( I 2 ) be a continuous multivalued function. 
Then F has property D\. 

R e m a r k 5. Using Remark 3, we see that a continuous real multivalued 
function F : I —> C(R), where I C R is an interval, satisfies the following 
condition: 

"For every £1,2:2 £ I and 2/1 G F ( x i ) , there exists y2 G F(x2) such that 
(yi,V2) c F((x2,x2)y\ 

I wish to thank the referee for his remarks. 
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