

Mihai Cristea

SOME REMARKS ON THE DARBOUX PROPERTY
FOR MULTIVALUED FUNCTIONS

The present paper deals with certain properties of multivalued functions which coincides with the Darboux property in the case of a single valued function. The results contained here generalize that of Joanna Czarnowska and Grażyna Kwiecińska [1] which were established in the case of real multivalued functions.

Notations and definitions

Let X, Y be Hausdorff spaces, $P(Y)$ be the family of the nonempty subsets of Y and $C(Y)$ the family of the nonempty and closed subsets of Y . A function $F : X \rightarrow P(Y)$ is called a multivalued function and for such a function and any set $A \subset X$ and $B \subset Y$, we denote by

$$\begin{aligned} P(A) &= \bigcup\{F(x) \mid x \in A\}, \\ F^+(B) &= \{x \in X \mid F(x) \subset B\}, \\ F^-(B) &= \{x \in X \mid F(x) \cap B \neq \emptyset\}. \end{aligned}$$

If $F : X \rightarrow P(Y)$ is a multivalued function, $E \subset X$ is a subset of X and $x \in \overline{E}$, we say that a point $y \in Y$ is a limit point of F with respect to the set E and the point $x \in \overline{E}$ if for every $V \in V(y)$ and $U \in V(x)$, there exists $x' \neq x$, $x' \in U \cap E$ and $y' \in F(x')$ such that $y' \in V$, and we write $y \in L_F(E, x)$. If X is locally arcwise connected, we denote by $L_F(x) = \bigcap L_F(E, x)$, where the intersection is taken over all arcs $E \subset X$ such that x is an endpoint of E .

As in [2], we say that the multivalued function $F : X \rightarrow P(Y)$ has the Darboux property (briefly has property D) if for every connected set $E \subset X$, it results that $F(E)$ is connected in Y .

If X is a Hausdorff space, a continuous injective map $\gamma : (0, 1) \rightarrow X$ is called an open arc. The points x_1, x_2 from X are the endpoints of γ if $x_1 = \lim_{t \rightarrow 0} \gamma(t)$ and $x_2 = \lim_{t \rightarrow 1} \gamma(t)$.

If A_1, A_2, B are mutually disjoint subsets from X , we say that A_1 and A_2 are separated in X by B if $X \setminus B \subset Q_1 \cup Q_2$, where Q_1, Q_2 are open disjoint sets from X and $A_1 \subset Q_1, A_2 \subset Q_2$.

We introduce now the following definitions concerning various generalizations of the Darboux property for multivalued functions:

A multivalued function $F : X \rightarrow P(Y)$ has property D_0 if we cannot find $E \subset X$ connected, $x_1, x_2 \in \overline{E}$, $y_1 \in F(x_1)$, $y_2 \in F(x_2)$ and A_1, A_2 open disjoint sets from Y such that $F(E) \subset A_1 \cup A_2$ and $y_1 \in A_1, y_2 \in A_2$.

A multivalued function $F : X \rightarrow P(Y)$ has property D_1 if we cannot find $E \subset X$ connected, $x_1, x_2 \in \overline{E}$ and $y_1 \in F(x_1)$ such that for every $y \in F(x_2)$, there exists A_y, B_y open disjoint sets from Y such that $F(E) \subset A_y \cup B_y$ and $y_1 \in A_y, y \in B_y$.

A multivalued function $F : X \rightarrow P(Y)$ has property D_2 if we cannot find an open arc $\gamma : (0, 1) \rightarrow X$ with endpoints x_1 and x_2 and $y_1 \in F(x_1)$ such that for every $y \in F(x_2)$, there exists A_y, B_y open disjoint sets from Y such that $F(E) \subset A_y \cup B_y$ and $y_1 \in A_y, y \in B_y$, where $E = \text{Im } \gamma$.

A multivalued function $F : X \rightarrow P(Y)$ has property D_3 if we cannot find $E \subset X$ connected, $x_1, x_2 \in \overline{E}$, $y_1 \in F(x_1)$ and A_1, A_2 open disjoint sets from Y such that $F(E) \subset A_1 \cup A_2$ and $y_1 \in A_1, F(x_2) \subset A_2$.

A multivalued function $F : X \rightarrow P(Y)$ has property D_4 if we cannot find an open arc $\gamma : (0, 1) \rightarrow X$ with endpoints x_1 and $x_2, y_1 \in F(x_1)$ and A_1, A_2 open disjoint sets from Y such that $F(\text{Im } \gamma) \subset A_1 \cup A_2$ and $y_1 \in A_1, F(x_2) \subset A_2$.

A multivalued function $F : X \rightarrow P(Y)$ has property D'_0 if we cannot find $E \subset X$ connected, $x_1, x_2 \in E$, $y_1 \in F(x_1)$, $y_2 \in F(x_2)$ and A_1, A_2 open disjoint sets from Y such that $F(E) \subset A_1 \cup A_2$, $y_1 \in A_1, y_2 \in A_2$. In other words, F has property D'_0 if we cannot find $E \subset X$ connected, $x_1, x_2 \in E$, $y_1 \in F(x_1)$ and $y_2 \in F(x_2)$ such that y_1 and y_2 are separated by $Y \setminus F(E)$ in Y .

A multivalued function $F : X \rightarrow P(Y)$ has property D'_1 if we cannot find $E \subset X$ connected, $x_1, x_2 \in E$ and $y_1 \in F(x_1)$ such that for every $y \in F(x_2)$, y_1 and y are separated by $Y \setminus F(E)$ in Y .

A multivalued function $F : X \rightarrow P(Y)$ has property D'_2 if we cannot find an open arc $\gamma : (0, 1) \rightarrow X$ with endpoints x_1 and x_2 and $y_1 \in F(x_1)$ such that for every $y \in F(x_2)$, y_1 and y are separated by $Y \setminus F(E)$ in Y , where $E = \text{Im } \gamma$.

A multivalued function $F : X \rightarrow P(Y)$ has property D'_3 if we cannot find $E \subset X$ connected, $x_1, x_2 \in E$ and $y_1 \in F(x_1)$ such that y_1 and $F(x_2)$ are separated by $Y \setminus F(E)$ in Y .

A multivalued function $F : X \rightarrow P(Y)$ has property D'_4 if we cannot find an open arc $\gamma : (0, 1) \rightarrow X$ with endpoints x_1 and x_2 and $y_1 \in F(x_1)$ such that y_1 and $F(x_2)$ are separated by $Y \setminus F(E)$ in Y , where $E = \text{Im } \gamma$.

Remark 1. It is obvious that property D'_0 is equivalent with property D and also that properties D_0 implies properties D . We have the following implications:

$$\begin{aligned} D_i &\Rightarrow D'_i \quad \text{for } i = 0, 1, 2, 3, 4, \\ D_0 &\Rightarrow D_1 \Rightarrow D_3 \Rightarrow D_4, \\ D_0 &\Rightarrow D_1 \Rightarrow D_2 \Rightarrow D_4, \\ D'_0 &\Rightarrow D'_1 \Rightarrow D'_3 \Rightarrow D'_4, \\ D'_0 &\Rightarrow D'_1 \Rightarrow D'_2 \Rightarrow D'_4. \end{aligned}$$

EXAMPLE 1. Let $F : [0, 1] \rightarrow C(R)$, defined by $F(x) = x$ for $x \in (0, 1)$ and $F(0) = [-1, 0]$, $F(1) = [1, 2]$. Then F has property D'_i but not D_i for $i = 0, 1, 2, 3, 4$ and F is upper semicontinuous.

THEOREM 1. *Let $E \subset X$ be connected and $F : X \rightarrow P(Y)$ a continuous multivalued function and suppose that there exists $x \in E$ such that $F(x)$ is a connected set. Then $F(E)$ is connected.*

Proof. Suppose that $F(E)$ is not connected and let A_1, A_2 be open disjoint sets from Y such that $F(E) \subset A_1 \cup A_2$ and $F(E) \cap A_i \neq \emptyset$ for $i = 1, 2$. Suppose that $F(x) \cap A_2 \neq \emptyset$. Then, since $F(x)$ is connected, it means that $F(x) \cap A_1 = \emptyset$. Using the fact that $F(x) \subset F(E) \subset A_1 \cup A_2$, we deduce that $F(x) \subset A_2$, i.e. $F^+(A_2) \cap E \neq \emptyset$. Since $F(E) \cap A_1 \neq \emptyset$, this implies that $E \cap F^-(A_1) \neq \emptyset$. We will show that $E \subset F^-(A_1) \cap F^+(A_2)$. Indeed, if $z \in E$, then $F(z) \subset A_1 \cap A_2$. In the case $F(z) \cup A_1 \neq \emptyset$, we have $z \in E \cap F^-(A_1)$ and if $F(z) \cap A_1 = \emptyset$, we obtain that $F(z) \subset A_2$, hence $z \in E \cap F^+(A_2)$. Now we will show that $E \cap F^-(A_1) \cap F^+(A_2) = \emptyset$. Indeed, if there is $z \in E \cap F^-(A_1) \cap F^+(A_2)$, then $F(z) \cap A_1 \neq \emptyset$ and $F(z) \subset A_2$, which is a contradiction, since $A_1 \cap A_2 = \emptyset$. We showed that $E \subset F^-(A_1) \cup F^+(A_2)$, $F^-(A_1) \cap E \neq \emptyset$, $F^+(A_2) \cap E \neq \emptyset$, $E \cap F^-(A_1) \cap F^+(A_2) = \emptyset$ and $F^-(A_1)$, $F^+(A_2)$ are open in X , which gives a contradiction, since E is connected. This ends the proof.

THEOREM 2. *Let $F : X \rightarrow P(Y)$ be a continuous multivalued function. Then F has property D_3 .*

Proof. Suppose that F does not satisfy property D_3 . Therefore we can find a connected set $E \subset X$, $x_1, x_2 \subset \overline{E}$, $y_1 \in F(x_1)$ and A_1, A_2 open disjoint sets from Y such that $F(E) \subset A_1 \cup A_2$, $y_1 \in A_1$ and $F(x_2) \subset A_2$. Now $x_2 \in F^+(A_2)$ is an open set from X , hence, using the fact that $x_2 \in \overline{E}$, we conclude that $E \cap F^+(A_2) \neq \emptyset$. Also $x_1 \in F^-(A_1)$ and $F^-(A_1)$ is an open set, hence we deduce that $E \cap F^-(A_1) \neq \emptyset$. As in Theorem 1, we see that $E \subset F^-(A_1) \cap F^+(A_2)$ and that $E \cap F^-(A_1) \cap F^+(A_2) = \emptyset$. This contradicts the assumption that E is connected and proves our claim.

EXAMPLE 2. Let $F : [0, 1] \rightarrow P(R)$,

$$F(x) = \begin{cases} \left\{ \frac{1}{n} \right\}_{n \in \mathbb{N}} & \text{for } x \in (0, 1) \\ \left\{ \frac{1}{n} \right\}_{n \in \mathbb{N}} \cup \{0\} & \text{for } x = 0, 1. \end{cases}$$

Then F is continuous but F has not property D_2 .

THEOREM 3. Let $F : X \rightarrow P(Y)$ be a lower semicontinuous multivalued function such that $F(x)$ is connected for every $x \in X$. Then F has property D_0 .

Proof. Suppose that F does not satisfy property D_0 . Then we can find connected $E \subset X$, $x_1, x_2 \in \overline{E}$, $y_1 \in F(x_1)$, $y_2 \in F(x_2)$ and A_1, A_2 open disjoint sets from Y such that $F(E) \subset A_1 \cup A_2$, $y_1 \in A_1$, $y_2 \in A_2$. Since for every $x \in E$ $F(x) \subset A_1 \cup A_2$ and $F(x)$ are connected, we have $F^-(A_i) \cap E = F^+(A_i) \cap E$ for $i = 1, 2$. Since $x_i \in F^-(A_i) \cap \overline{E}$, it results that $F^-(A_i) \cap E \neq \emptyset$ for $i = 1, 2$. As before, we have $E \subset F^-(A_1) \cup F^+(A_2)$ and $E \cap F^-(A_1) \cap F^+(A_2) = \emptyset$. Now, $E = (F^-(A_1) \cap E) \cup (F^+(A_2) \cap E) = (F^-(A_1) \cap E) \cup (F^-(A_2) \cap E)$ and $F^-(A_1) \cap F^-(A_2) \cap E = F^-(A_1) \cap F^+(A_2) \cap E = \emptyset$, which represents a contradiction, since E is connected. This ends the proof.

Similarly we can prove:

THEOREM 4. Let $F : X \rightarrow P(Y)$ be an upper semicontinuous multivalued function such that $F(x)$ is connected for every $x \in X$. Then F has property D .

Using now Theorem 3, Theorem 4 and Remark 1, we obtain:

THEOREM 5. Let $F : X \rightarrow P(Y)$ be an upper (lower) semicontinuous multivalued function such that $F(x)$ is connected for every $x \in X$. Then F has property D .

THEOREM 6. Let $F : X \rightarrow P(Y)$ be a multivalued function such that Y is a regular topological space. Then, if X is arcwise connected and F has property D_4 , then we have $F(x) \subset L_F(x)$ for every $x \in X$. If F has property D_3 , then $F(\overline{E}) \subset \overline{F(E)}$ for every connected $E \subset X$, and for every closed set $B \subset Y$, the connected components of $F^+(B)$ are closed.

Proof. Suppose that F has property D_3 . We shall prove first that for every connected set $E \subset X$, we have $F(\overline{E}) \subset \overline{F(E)}$. It is obvious, if E reduces to a point, in the other case, let $x \in \overline{E}$. If there exists $y \in F(x)$ such that $y \notin \overline{F(E)}$, let $V \in V(y)$ be such that $\overline{V} \cap \overline{F(E)} = \emptyset$. Taking

$A_1 = V, A_2 = C\bar{V}$ we see that $x \in \bar{E}, y \in F(x) \cap A_1$, so for every $x' \neq x, x' \in E$, we have $F(x') \subset F(E) \subset A_2$. Since F has property D_3 , we obtained a contradiction. We finally proved that $F(\bar{E}) \subset \bar{F(E)}$ if F has property D_3 and it is obvious that if F has property D_4 , then $F(\bar{E}) \subset \bar{F(E)}$ for every arc $E \subset X$.

Now, if $B \subset Y$ is closed and E is a component of $F^+(B)$, it results that $F(E) \subset B$, hence $F(\bar{E}) \subset \bar{F(E)} \subset \bar{B} = B$, which implies that $\bar{E} \subset F^+(B)$ and hence that $E = \bar{E}$, q.e.d.

Suppose now that F has property D_4 and let $x \in X$. Let γ be an arc in X such that x is an endpoint of γ and let E be a subarc of γ with an endpoint x as well. Then $F(x) \subset F(\bar{E}) \subset \bar{F(E)}$ and since E may be arbitrarily chosen, it follows that $F(x) \subset L_F(\gamma, x)$ for every arc γ such that x is an endpoint of γ . We finally obtained that if F has property D_4 then $F(x) \subset L_F(x)$, q.e.d.

Remark 2. Let $F : [0, 1] \rightarrow C(R)$ be as in Example 1. We see that F is upper semicontinuous and has property D'_i for $i = 0, 1, 2, 3, 4$, but $F^+([\frac{-1}{2}, \frac{3}{2}]) = (0, 1)$ which is not closed in $[0, 1]$. Also, $L_F(1) = \{1\}$ and $F(1) = [1, 2]$, hence $F(1) \not\subset L_F(1)$.

THEOREM 7. Let $F : X \rightarrow P(Y)$ be lower and upper first class mapping such that for every closed set $B \subset Y$ and every closed arc $\gamma : [0, 1] \rightarrow X$, both the sets $F^+(B) \cap \text{Im } \gamma$ and $F^-(B) \cap \text{Im } \gamma$ have closed components. Then F has property D_4 .

Proof. Suppose that F does not satisfy property D_4 . Then we can find an open arc $\gamma : (0, 1) \rightarrow X$ with endpoints x_1 and $x_2, y_1 \in F(x_1)$ and A_1, A_2 open disjoint sets from Y such that $F(\text{Im } \gamma) \subset A_1 \cup A_2, y_1 \in A_1$ and $F(x_2) \subset A_2$. Now, $x_1 \in F^-(A_1) \cap \bar{\text{Im } \gamma}$ and $x_1 \notin F^+(A_2) \cap \bar{\text{Im } \gamma}$, $x_2 \in (F^+(A_2) \cap \bar{\text{Im } \gamma}) \setminus (F^-(A_1) \cap \bar{\text{Im } \gamma})$, $\text{Im } \gamma \subset F^-(A_1) \cup F^+(A_2)$ and $F^-(A_1) \cap F^+(A_2) = \emptyset$. Since $\text{Fr } A_1 \cap A_2 = \emptyset, \text{Fr } A_2 \cap A_1 = \emptyset$, we obtain that $F^-(\bar{A}_1) \cap \text{Im } \gamma = F^-(A_1) \cap \text{Im } \gamma$ and $F^+(\bar{A}_2) \cap \text{Im } \gamma = F^+(A_2) \cap \text{Im } \gamma$. We also see that $(F^-(\bar{A}_1) \cap \text{Im } \gamma) \cup \{x_1\} = F^-(\bar{A}_1) \cap \bar{\text{Im } \gamma}, F^+(\bar{A}_2) \cap \text{Im } \gamma = (F^+(\bar{A}_2) \cap \text{Im } \gamma) \cup \{x_2\}$, hence we obtain that $F^-(\bar{A}_1) \cap \bar{\text{Im } \gamma} = (F^-(\bar{A}_1) \cap \text{Im } \gamma) \cup \{x_1\} = (F^-(A_1) \cap \text{Im } \gamma) \cup \{x_1\} = F^-(A_1) \cap \bar{\text{Im } \gamma}$ and that $F^+(\bar{A}_2) \cap \bar{\text{Im } \gamma} = (F^+(\bar{A}_2) \cap \text{Im } \gamma) \cup \{x_2\} = (F^+(A_2) \cap \text{Im } \gamma) \cup \{x_2\} = F^+(A_2) \cap \bar{\text{Im } \gamma}$. If we denote by $B_1 = F^-(A_1) \cap \bar{\text{Im } \gamma}$ and $B_2 = F^+(A_2) \cap \bar{\text{Im } \gamma}$, then $\bar{\text{Im } \gamma} = B_1 \cup B_2, B_1 \cap B_2 = \emptyset, B_1$ and B_2 are F_σ -sets and all their components are compact, which contradicts with Lemma 2 from [1].

Remark 3. If $I \subset R$ is an interval and $F : I \rightarrow P(R)$ is a real multivalued function, we see that F has property D_1 or D_2 if and only

if the following condition holds: "For every $x_1, x_2 \in I$ and $y_1 \in F(x_1)$, there exists $y_2 \in F(x_2)$ such that $(y_1, y_2) \subset F((x_1, x_2))$ ". We also have that $F : I \rightarrow P(R)$ has property D'_1 or D'_2 if and only if the following condition holds: "For every $x_1, x_2 \in I$ and $y_1 \in F(x_1)$, there exists $y_2 \in F(x_2)$ such that $[y_1, y_2] \subset F([x_1, x_2])$ ".

THEOREM 8. *Let $F : X \rightarrow P(Y)$ be a multivalued function. Then if $F(x)$ are compact for every $x \in X$ property of D_3 implies D_1 and property D_4 implies D_2 .*

If $F(x)$ are compact or they have finitely many connected components for every $x \in X$, then property D'_3 implies D'_1 and property D'_4 implies property D'_2 .

Proof. Suppose that $F(x)$ are compact for every $x \in X$ and that F has property D_3 but no property D_1 . Then we can find $E \subset X$ connected, $x_1, x_2 \in \bar{E}$ and $y_1 \in F(x_1)$ such that for every $y \in F(x_2)$, we can find A_y, B_y open disjoint sets from Y such that $F(E) \subset A_y \cup B_y$, $y_1 \in A_y$ and $y \in B_y$. Since $F(x_2)$ is compact and $F(x_2) \subset \bigcup_{y \in F(x_2)} B_y$, we can find $z_1, z_2, \dots, z_j \in F(x_2)$ such that $F(x_2) \subset \bigcup_{k=1}^j B_{z_k}$. Taking

$$A_1 = \bigcap_{k=1}^j A_{z_k}, \quad A_2 = \bigcup_{k=1}^j B_{z_k}$$

we see that A_1, A_2 are open and disjoint sets, $F(E) \subset A_1 \cup A_2$ and $y_1 \in A_1$, $F(x_2) \subset A_2$, which gives a contradiction, since F has property D_3 .

In the same way we prove that if $F(x)$ is compact for every $x \in X$ and F has property D_4 then F has property D_2 .

Suppose now that $F(x)$ are compact or they have finitely many connected components for every $x \in X$. If F has property D'_3 but no property D'_1 , then we can find $E \subset X$ connected, $x_1, x_2 \in E$ and $y_1 \in F(x_1)$ such that for every $y \in F(x_2)$ there are A_y, B_y open disjoint sets such that $F(E) \subset A_y \cup B_y$, $y_1 \in A_y$ and $y \in B_y$. Now, if $F(x_2)$ is compact, we obtain as before a contradiction. If $F(x_2)$ has finitely many components, say C_1, C_2, \dots, C_j , we choose $z_k \in C_k$ for $k = 1, 2, \dots, j$. Since $C_k \subset F(x_2) \subset F(E) \subset A_{z_k} \cup B_{z_k}$, C_k is connected and $z_k \in C_k \cap B_{z_k}$ for $k = 1, 2, \dots, j$, it follows that $C_k \subset B_{z_k}$ for $k = 1, 2, \dots, j$. Taking again $A_1 = \bigcap_{k=1}^j A_{z_k}$, $A_2 = \bigcup_{k=1}^j B_{z_k}$ we see that A_1, A_2 are open and disjoint sets with $F(E) \subset A_1 \cup A_2$, $y_1 \in A_1$ and $F(x_2) \subset A_2$, what contradicts with property D'_3 on F .

In the same way we prove that if $F(x)$ are compact or they have finitely many components for every $x \in X$ then if F has property D'_4 it has property D'_2 as well.

Using now Theorem 2 and Theorem 8, we obtain:

THEOREM 9. *Let $F : X \rightarrow P(Y)$ be a continuous multivalued function. Then, if $F(x)$ are compact for every $x \in X$, F has property D_1 and if $F(x)$ is compact or it has finitely many components for every $x \in X$, F has property D'_1 .*

Remark 4. If $F : X \rightarrow C(R)$ is such that F has property D_3 then it possesses property D_1 .

Indeed, suppose that F does not possess property D_1 . Then we can find connected $E \subset X$, $x_1, x_2 \in \overline{E}$ and $y_1 \in F(x_1)$ such that for every $y \in F(x_2)$, there exists $c_y \in (y_1, y) \setminus F(E)$. We see that $y_1 \notin F(x_2)$ so we may suppose that $F(x_2) \cap (y_1, \infty) \neq \emptyset$. Since $F(x_2)$ is closed, we can find a point $y_2 \in F(x_2)$ such that $y_1 < y_2$ and $(y_1, y_2) \cap F(x_2) = \emptyset$, hence we can pick a point $b \in (y_1, y_2) \setminus F(E)$. Now, if $F(x_2) \cap (-\infty, y_1) = \emptyset$, we take $A_1 = (-\infty, b)$, $A_2 = (b, \infty)$ and we see that $F(E) \subset A_1 \cup A_2$, $y_1 \in A_1$, $F(x_2) \subset A_2$, which is a contradiction, since F has property D_3 . If $F(x_2) \cap (-\infty, y_1) \neq \emptyset$, then using again the fact that $F(x_2)$ is closed, we can find $y_3 \in F(x_2)$ such that $y_3 < y_1$ and $(y_3, y_1) \cap F(x_2) = \emptyset$. Hence we can pick $a \in (y_3, y_1) \setminus F(E)$. Taking $A_1 = (a, b)$ and $A_2 = (-\infty, a) \cap (b, \infty)$ we see that $F(E) \subset A_1 \cup A_2$, $y_1 \in A_1$ and $F(x_2) \subset A_2$, which is a contradiction, since F has property D_3 . Now, if $F(x_2) \cap (y_1, \infty) = \emptyset$, it results that $F(x_2) \cap (-\infty, y_1) \neq \emptyset$. Using again the fact that $F(x_2)$ is a closed set, we can find $y_4 \in F(x_2)$ such that $y_4 < y_1$ and $(y_4, y_1) \cap F(x_2) = \emptyset$, hence we can pick $c \in (y_4, y_1) \setminus F(E)$. We can now take $A_1 = (c, \infty)$ and $A_2 = (-\infty, c)$ and we see that $F(E) \subset A_1 \cup A_2$, $y_1 \in A_1$ and $F(x_2) \subset A_2$, which is a contradiction, since F has property D_3 .

In the same way we prove that if $F : X \rightarrow C(R)$ is a multivalued function with property D_4 , then F has property D_2 .

Using Theorem 2, we obtain:

THEOREM 10. *Let $F : X \rightarrow C(R)$ be a continuous multivalued function. Then F has property D_1 .*

Remark 5. Using Remark 3, we see that a continuous real multivalued function $F : I \rightarrow C(R)$, where $I \subset R$ is an interval, satisfies the following condition:

“For every $x_1, x_2 \in I$ and $y_1 \in F(x_1)$, there exists $y_2 \in F(x_2)$ such that $(y_1, y_2) \subset F((x_2, x_2))$ ”.

I wish to thank the referee for his remarks.

References

- [1] J. Czarnowska, G. Kwiecińska, *On the Darboux property of multivalued functions*, Demonstratio Math. 25 (1992), 193–199.
- [2] J. Ewert, J. Lipinski, *On the continuity of Darboux multifunctions*, Real Anal. Ex. No 1 (1987–1988), 122–125.

UNIVERSITY OF BUCHAREST
FACULTY OF MATHEMATICS
Str. Academiei nr. 14
R-70109, BUCHAREST, ROMANIA

Received May 7, 1993.