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REFINEMENTS OF JESSEN'S INEQUALITY 

1. Jessen's inequality 
Let / be a real convex function defined on [a, 6]. The classical Ilermite-

Hadamard's inequality (see [9]) asserts that: 

(1) f i ° - ± i H ^ J f ( x ) d x i m ± m . 
a 

This inequality was generalized (see [1], [7] and [10]) for an arbitrary 
isotonic linear functional, i.e., a functional A : C[a,b] —> R with the pro-
perties: 

(i) A(tf + sg) = t A ( f ) + sA(g) for t,seR,f,g€ C[a, 6]; 
(ii) A ( f ) > 0 if f ( x ) > 0 for all x € [a, b]. 

The result from [7] is: if / is convex and A is an isotonic linear functional 
with A( l ) = 1, then 

(2) f(A(e)) < A(f(e)) < [(b - A(e))/(a) + (A(e) - a)/(b)]/(b - a) 

where e(x) = x for x £ [a, b]. 
Note that taking in (2) 

(3) ¿ ( / ) : = _ i _ j f ( x ) d x , 
a 

we get (1), so the inequality (2) generalizes, for isotonic linear functionals, 
the well known Jessen's inequality. 

In turn, the inequality (2) was generalized in [1] where the function e 
was replaced by an arbitrary one. 
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2. Some ref inements 
The following lemma is proved in [10]: 

LEMMA 1. Let X be a real linear space and C C X be a convex subset. 
If f : C —• R is convex then for all x,y £ C the mapping gx,y(t) := f(tx + 
(1 — t)y) is convex on [0,1]. 

Using this result, the authors proved a generalization of (2) for functions 
defined on an arbitrary linear space. 

Another result of this type was established in [6]. 
Analogously we can prove the following lemma: 

LEMMA 2. If f : [a, b] —R is convex, then for every t € [ 0 , 1 ] and every 
y € [a, 6], the function gtiV : [a, 6] —> R given by gttV(x) := f{tx + (1 — t)y) is 
convex. 

Further on we will use the following convention: 
if the functional A acts on the function 

ff(xi) = f(xi,...,Xi,...,xn), 

where all the variables except for x, are fixed, then we denote 

A ( f f ) = a X i ( f ( x 1 , . . . , x i , . . . , x n ) ) . 

Applying the inequality (2) to the convex function gt<y from Lemma 2, 
we get: 

THEOREM 1. Let f : [A, 6] —* R be a continuous convex function and A 
be an isotonic linear functional with -A(l) = 1. Then for every t € [0,1] and 
for every y 6 [a, b] the inequalities 

(4) f(tA(e) + (1 - t)y) < Ax(f(tx + (1 - t)y)) < 
< [(b - A(e))f(ta + (1 - t)y) + (A(e) - a)f(tb + (1 - t)y)]/(b - a) 

hold. 

We can obtain another variant of (4) generalizing the method used in [3] 
(see also [5]). 

LEMMA 3. Assume that the function f : [A, i>] —> R is continuous convex 
and the functional A is linear and isotonic. Then the function Hy : [0,1] —> R 
defined by 

Hy(t) := Ax[f(tx + (1 - t)y)], y <E [a, b] 
is convex on [0,1]. 

P r o o f . Let x, y G [a, b] and t, s,u,v € [0,1] and u + v = 1, then we have 

f{{ut + + (1 - ut - vs)y) = f(u(tx + (1 - t)y) + v(sx + (1 - s)y)) < 
< uf(tx + (1 - t)y) + vf(sx + (1 - s)y), 
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because / is convex. Because the functional A is linear and isotonic it is 
increasing and so 

Hy(ut + VS) < UHy(t) + VHy(s). 

Now we prove 

THEOREM 2. If the function f : [a, 6] R is continuous convex and 
the functional A is linear, isotonic with >1(1) = 1, then the function Ho : 
[0,1] -»• R defined by 

H0(t) := Ax(f(^ + (l-t)A(e)) 

has the following properties: 

(i) Ho is convex on [0,1]; 
(ii) it has the bounds 

sup H0(t) = H0(l) = A(f(e)) 
¿€[0,1] 

and 

inf / /„ (* ) = / /o (0 ) - / ( /1 (e) ) ; j 

(iii) Ho is nondecreasing on [0,1]. 

P r o o f , (i) It follows from Lemma 3 by taking y = A(e). 
In order to get (ii) let us notice that 

f(tx + (1 - t)A(e)) < tf(x) + (1 - t)f(A(e)), t 6 [0,1] 

and so 

Ho(t) < tA(f) + (1 - t)f(A(e)) < A(f) = II0( 1) 
because from (2) we have f(A(e)) < A(f). On the other hand the function 
h : [a, b] —* R, given by h{x) := f(tx + (1 — t)A{e)), is convex for every fixed 
t 6 [0,1] and so, again by (2) 

H0(t) = A{h) > h(A(e)) = f(A(e)) = H0(0) 

what gives (ii). 
(iii) Let 0 < ¿i < ¿2 < Then by the convexity argument for Ho and 

by (ii) one has: 

[Ho{h) - Ho{h)]l{t2 - h) > [Hoih) - Ho(0)]/h > 0 

what shows that Ho is increasing on (0 ,1 ) and by (ii) also in [0,1]. 

R e m a r k 1. Obviously the above theorem gives a generalization of the 
result from [3] (see also [5]). On the other hand the statement (ii) can be 
written as: 
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(5) f(A(e)) < Ax[f(tx + (1 - t)A(e))] < A ( f ) 

which represent a refinement of Jessen's inequality. 

APPLICATION. If the function / : [a, 6] -* R is convex, xi,...,xn £ [a, 6] 
and p i , . . . , p n are strictly positive weights, then denoting 

fc=l 1 

we have the inequality 

n n 

k=1 k=1 n 71 
Indeed, it follows from (5) for A ( f ) Pkf(^k)/ Y1 Pk a n d t = 1/2. 

fc=i fc=i 

R e m a r k 2. Notice tha t , this inequality follows also from an inequality 
of Fuchs (see also [8]), so we get another proof of it. 

3. Iteration of Jessen's inequality 
We will start with the following lemma: 

LEMMA 4. If the function f : [a,b] R is continuous convex and the 
functional A is linear and isotonic, then the function Gt [A, b] —> R given 
by 

Gt(x) Ay[f(tx + (1 - t)y)] 

is convex for all t £ [0,1]. 

The proof is similar to that one of Lemma 3 and we will omit the details. 

T H E O R E M 3 . Let f : [a, 6] —»• R be a continuous convex functions and 
A,B are two isotonic linear functionals with A(l) = 1 and B( 1) = 1. Then 
one has the inequalities 

(6) f(tA(e) + (1 - t)B(e)) < By(f(tA(e) + (1 - t)y)) < 
< By(Ax(f(tx + (1 - t)y)) < t A ( f ) + (1 - t ) B ( f ) < 

< [(b - B(e))f(a) + (B(e) - a)f(b)]/(b - a)+ 
+t(B(e)-A(e))(f(a)-f(b))/(b-a). 

P r o o f . Applying the inequality (2) to the convex functions given by the 
previous lemmas we have: 

Ax(f(tx + (1 - t)y)) > f(tA(e) + (1 - t)y) 
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and then 

B y ( A x ( f ( t x + ( l - t ) y ) ) ) > B y ( f ( t A ( e ) + ( l - t ) y ) ) > f(tA(e) + ( l - t ) B ( e ) ) . 

Thus, we get the first and the second inequality in (6). 
Further on, from 

f ( t x + ( 1 - t ) y ) < t f { x ) + ( 1 - t ) f ( y ) 

we deduce succesively that 

A x ( f ( t x + ( 1 " O f ) ) < * M f ) + ( 1 - 0 / ( 2 / ) 

and 

By(Ax{f(tx + ( 1 - 0 2 / ) ) ) < t A { f ) + ( 1 - t ) B ( f ) 

getting so the second inequality from (2). 

C O R O L L A R Y . If f : [a,b] —> R is a continuous convex function and A an 
isotonic linear functional with ;4(1) = 1, then 

f(A(e)) < Ay(f(tA(e) + (1 - t)y)) < Ay(Ax(f(tx + (1 - t)y)) < 

< A ( f ) < [(b - A(e))f(a) + (A(e) - a)f(b)]/(b - a) 

for all t e [ 0 , 1 ] . 

R e m a r k 3. These inequalities also give a refinement of Jessen's in-
equality. They generalize some results from [1-5], given for the mapping 
from (3). 
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