

Magdalena Chrapek, Wiesław Dziubdziela

ON THE LIMIT DISTRIBUTIONS OF ORDER STATISTICS
IN A SEQUENCE OF SOME 1-DEPENDENT
RANDOM VARIABLES

1. Introduction

We present necessary and sufficient conditions for the weak convergence of the distributions of the k th order statistics from some sequence of 1-dependent random variables. Limit laws are represented in terms of a compound Poisson distribution.

Let $\{\zeta_n; n \geq 0\}$ be a sequence of i.i.d. random variables with values in a measurable space (E, A) and with a common probability distribution π .

Let $\{\xi_n(x, y); n \geq 1\}$, $(x, y) \in E \times E$, be a sequence of i.i.d. $A \times A$ — measurable random functions.

Assume that the sequences $\{\zeta_n; n \geq 0\}$ and $\{\xi_n(x, y); n \geq 1\}$ are independent.

Consider the sequence of random variables:

$$(1) \quad X_1 = \xi_1(\zeta_0, \zeta_1), \quad X_2 = \xi_2(\zeta_1, \zeta_2), \quad \dots, \quad X_n = \xi_n(\zeta_{n-1}, \zeta_n), \dots$$

Denote by

$$\min(X_1, \dots, X_n) = M_n^{(n)} \leq M_n^{(n-1)} \leq \dots \leq M_n^{(1)} = \max(X_1, \dots, X_n)$$

the order statistics of the sequence X_1, \dots, X_n .

M. O. Djnайд in [1] has obtained limit laws for $M_n^{(1)}$. In this paper we shall be concerned with conditions under which, for suitable normalizing constants $\{a_n > 0, b_n; n \geq 1\}$,

Key words and phrases: weak convergence, 1-dependent random variables, compound Poisson distributions.

$$(2) \quad P\{M_n^{(k)} \leq a_n x + b_n\} \xrightarrow{w} G^{(k)}(x), \quad k = 1, 2, \dots,$$

where $G^{(k)}$ is the distribution function and the notation \xrightarrow{w} denotes the weak convergence of the distribution functions. We shall also be interested in forms of limit distribution $G^{(k)}$.

2. Main results

While obtaining the necessary and sufficient conditions for convergence (2) we use the results from the paper by W. N. Hudson et al. [3].

Let $I_{nj}(x) = I_{\{X_j > a_n x + b_n\}}$, $n = 1, 2, \dots$, $j = 1, 2, \dots, n$, where I_A denotes the indicator function of the set A and let

$$J_n(x) = \sum_{j=1}^n I_{nj}(x), \quad n = 1, 2, \dots$$

It is well known that, for $k = 1, 2, \dots$,

$$(3) \quad P\{M_n^{(k)} \leq a_n x + b_n\} = P\{J_n(x) < k\}, \quad -\infty < x < \infty.$$

Now, we shall prove the following results:

THEOREM 1. *The convergence (2) holds if and only if*

$$n \int \int \int \int_{E E E E} (1 - F(x_0, x_1; a_n x + b_n)) \pi(dx_0) \pi(dx_1) \text{ converges}$$

and

$$(4) \quad n \int \int \int \int_{E E E E} F(x_0, x_1; a_n x + b_n) (1 - F(x_1, x_2; a_n x + b_n)) \cdot \\ \cdot F(x_2, x_3; a_n x + b_n) \pi(dx_0) \pi(dx_1) \pi(dx_2) \pi(dx_3) \rightarrow \lambda_1(x),$$

$$(5) \quad n \int \int \int \int_{E E E E} F(x_0, x_1; a_n x + b_n) (1 - F(x_1, x_2; a_n x + b_n)) \cdot \\ \cdot (1 - F(x_2, x_3; a_n x + b_n)) \pi(dx_0) \pi(dx_1) \pi(dx_2) \pi(dx_3) \rightarrow \lambda_2(x),$$

where $F(x, y; u) = P\{\xi_n(x, y) \leq u\}$.

The limit distribution functions $G^{(k)}(x)$ are given by the formula:

$$G^{(k)}(x) = \sum_{s=0}^{k-1} P\{s, \lambda_1(x), \lambda_2(x)\},$$

for x such that $0 < G^{(k)}(x) < 1$, where

$$P\{s, \lambda_1, \lambda_2\} = \begin{cases} \exp(-(\lambda_1 + \lambda_2)), & \text{if } s = 0 \\ \exp(-(\lambda_1 + \lambda_2)) \sum_{\substack{k_1+2k_2=s \\ k_1, k_2 \geq 0}} \frac{\lambda_1^{k_1} \lambda_2^{k_2}}{k_1! k_2!}, & \text{if } s = 1, 2, \dots \end{cases}$$

(Here we take $0^0 = 1$).

Proof. It is clear that the sequence $\{X_n; n \geq 1\}$ defined by (1) is strictly stationary and 1-dependent. Hence, the random variables $\{I_{nj}(x); n \geq 1\}$ are strictly stationary and 1-dependent in each row. It follows from Theorem 2 in [3] that the sequence $\{J_n(x); n \geq 1\}$ weakly converges (as $n \rightarrow \infty$) if and only if

$$nP\{I_{n1} = 1\} = n \iint_{E E} (1 - F(x_0, x_1; a_n x + b_n)) \pi(dx_0) \pi(dx_1)$$

converges and the conditions (4) and (5) hold. Moreover, the limit distribution of $I_n(x)$ has a characteristic function given by the formula

$$\phi(t) = \exp \left(\sum_{n=1}^2 \lambda_n(x) (e^{itn} - 1) \right).$$

Note that it is the characteristic function of the compound Poisson distribution (see eg. [2]). Using (3) we complete the proof.

Now, we give two examples illustrating the main result.

EXAMPLE 1. Let $\{\zeta_n; n \geq 0\}$ be a sequence of i.i.d. random variables with the exponential distribution with the parameter 1. Let $\xi_n(x, y) = \max(x, y)$, $x, y \in R$, $n \geq 1$.

It is easy to compute that for $a_n = 1$, $b_n = \ln(n)$, $n = 1, 2, \dots$, we have $\lambda_1(x) = 0$, $\lambda_2(x) = e^{-x}$.

EXAMPLE 2. Let $\{\zeta_n; n \geq 0\}$ and $\{a_n, b_n; n \geq 1\}$ be the same as in Example 1. Let $\{N_n; n \geq 1\}$ be a sequence of i.i.d. Bernoulli random variables with a parameter $a = P\{N_1 = 1\} = 1 - P\{N_1 = 0\}$, $0 < a < 1$. Assume that $\{\zeta_n; n \geq 0\}$ and $\{N_n; n \geq 1\}$ are independent.

Define

$$X_n = \begin{cases} \zeta_{n-1}, & \text{if } N_n = 1 \\ \zeta_n, & \text{if } N_n = 0. \end{cases}$$

By Theorem 1 we obtain $\lambda_1(x) = 2e^{-x}(2a^2 - 2a + 1)$, $\lambda_2(x) = 2e^{-x}(a - a^2)$.

As an easy consequence of Theorem 1 we have the following corollary:

COROLLARY 1. Let $\{X_n; n \geq 1\}$ defined by (1) satisfy the following assumption:

Assumption A. There exist normalizing constants $\{a_n > 0, b_n; n \geq 1\}$ and a nondegenerate distribution function G such that

$$\lim_{n \rightarrow \infty} n \int_E \int_E (1 - F(x_0, x_1; a_n x + b_n)) \pi(dx_0) \pi(dx_1) =$$

$$= \begin{cases} \infty, & \text{if } G(x) = 0 \\ -\log G(x), & \text{if } G(x) > 0. \end{cases}$$

Moreover, assume that

$$\lim_{n \rightarrow \infty} \sup_x \left(1 - \int_E F(x, y; a_n x + b_n) \pi(dy) \right) = 0.$$

Then,

$$P\{M_n^{(k)} \leq a_n x + b_n\} \xrightarrow{w} \begin{cases} 0, & \text{if } G(x) = 0 \\ \sum_{s=0}^{k-1} \frac{1}{s!} (-\log G(x))^s, & \text{if } 0 < G(x) < 1 \\ 1, & \text{if } G(x) = 1, \end{cases}$$

for $k = 1, 2, \dots$

Proof. By Theorem 1 it is sufficient to show that $\lambda_1(x) = -\log G(x)$, $\lambda_2(x) = 0$, where $\lambda_1(x)$ and $\lambda_2(x)$ are given by the formulas (4) and (5). By stationarity we have

$$\begin{aligned} & \int_E \int_E \int_E \int_E F(x_0, x_1; a_n x + b_n) (1 - F(x_1, x_2; a_n x + b_n)) (1 - F(x_2, x_3; a_n x + b_n)) \cdot \\ & \quad \cdot \pi(dx_0) \pi(dx_1) \pi(dx_2) \pi(dx_3) \leq \\ & \leq \int_E \int_E \int_E (1 - F(x_0, x_1; a_n x + b_n)) (1 - F(x_1, x_2; a_n x + b_n)) \pi(dx_0) \pi(dx_1) \pi(dx_2). \end{aligned}$$

Since

$$\begin{aligned} & \int_E \int_E \left[(1 - F(x_0, x_1; a_n x + b_n)) \cdot \right. \\ & \quad \left. \cdot \left(1 - \int_E F(x_1, x_2; a_n x + b_n) \pi(dx_2) \right) \right] \pi(dx_0) \pi(dx_1) \leq \\ & \leq \left(\int_E \int_E \pi(dx_0) \pi(dx_1) - \int_E \int_E F(x_0, x_1; a_n x + b_n) \pi(dx_0) \pi(dx_1) \right) \cdot \\ & \quad \cdot \sup_{x_1} \left(1 - \int_E F(x_1, x_2; a_n x + b_n) \pi(dx_2) \right) \end{aligned}$$

so, by the assumptions of Corollary 1, we obtain that $\lambda_2(x) = 0$.

Furthermore, we have:

$$\begin{aligned}
 & n \iint \int \int \int_{E E E E} F(x_0, x_1; a_n x + b_n) (1 - F(x_1, x_2; a_n x + b_n)) \cdot F(x_2, x_3; a_n x + b_n) \cdot \\
 & \quad \cdot \pi(dx_0) \pi(dx_1) \pi(dx_2) \pi(dx_3) = \\
 & = n \iint_{E E} (1 - F(x_0, x_1; a_n x + b_n)) \pi(dx_0) \pi(dx_1) - \\
 & - n \iint \int \int_{E E E} (1 - F(x_0, x_1; a_n x + b_n)) (1 - F(x_1, x_2; a_n x + b_n)) \pi(dx_0) \pi(dx_1) \pi(dx_2) - \\
 & - n \iint \int \int_{E E E E} F(x_0, x_1; a_n x + b_n) (1 - F(x_1, x_2; a_n x + b_n)) \cdot \\
 & \quad \cdot (1 - F(x_2, x_3; a_n x + b_n)) \pi(dx_0) \pi(dx_1) \pi(dx_2) \pi(dx_3).
 \end{aligned}$$

Thus, by the assumptions, the minuend tends to $-\log G(x)$ and the subtrahends tend to 0, so that $\lambda_1(x) = -\log G(x)$.

Remark 1. For $k = 1$ from Corollary 1 we obtain the result of [1].

Remark 2. There is another way to obtain some results which are contained in Theorem 1. Namely, the following theorem may be obtained as a consequence of Theorem 4 of [2].

THEOREM 2. Let $\{X_n; n \geq 1\}$ defined by (1) satisfy Assumption A and let

$$G^{(k)}(x) = \begin{cases} 0, & \text{if } G(x) = 0 \\ \sum_{s=0}^{k-1} H(s; G(x), d), & \text{if } 0 < G(x) < 1 \\ 1, & \text{if } G(x) = 1, k = 1, 2, \dots, \end{cases}$$

where

$$H(s; G(x), d) = \begin{cases} (G(x))^d, & \text{if } s = 0 \\ (G(x))^d \sum_{\substack{k_1+2k_2=s \\ k_1, k_2 \geq 0}} \frac{(-\log G(x))^{k_1+k_2} (2d-1)^{k_1} (1-d)^{k_2}}{k_1! k_2!} & \text{if } s = 1, 2, \dots \end{cases}$$

and $0.5 \leq d \leq 1$.

The convergence (2) holds if and only if

$$\begin{aligned}
 & \lim_{n \rightarrow \infty} n \iint \int \int_{E E E} (1 - F(x_0, x_1; a_n x + b_n)) \cdot \\
 & \quad \cdot (1 - F(x_1, x_2; a_n x + b_n)) \pi(dx_0) \pi(dx_1) \pi(dx_2) = -(1 - d) \log G(x),
 \end{aligned}$$

for all x such that $0 < G(x) < 1$.

References

- [1] М. О. Джнейд, *О предельном распределении максимума некоторых случайных величин*, Theor. Verojatnost. i Mat. Statist. 37 (1987), 36–39.
- [2] W. Dziubdziela, *Limit laws for k th order statistics from strong-mixing processes*, J. Appl. Probability 21 (1984), 720–729.
- [3] W. N. Hudson, H. G. Tucker, J. A. Veeh, *Limit distributions of sums of m -dependent Bernoulli variables*, Probab. Th. Rel. Fields 82 (1989), 9–17.

Magdalena Chrapek
INSTITUTE OF MATHEMATICS
PEDAGOGICAL UNIVERSITY
M. Konopnickiej 21
25-406 KIELCE, POLAND

Wiesław Dziubdziela
INSTITUTE OF MATHEMATICS AND INFORMATICS
TECHNICAL UNIVERSITY
Dąbrowskiego 73
42-201 CZESTOCHOWA, POLAND

Received April 6, 1993.