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ON SUMMATION FORMULAS INDUCED
BY FUNCTIONAL SHIFTS
OF RIGHT INVERTIBLE OPERATORS

0. Let X be a linear space over the field C of the complex numbers.
Denote by L(X) the set of all linear operators with domains and ranges in
X and by Lo(X) the set of those operators from L(X) which are defined
on the whole space X. An operator D € L(X) is said to be right invertible
if there exists an operator R € L(X) such that DR = I. The set of all
right invertible operators belonging to L(X') will be denoted by R(X). For
a given D € R(X) we denote by Rp, Fp the set of all its right inverses ,
initial operators, respectively. The theory of right invertible operators and
its applications is presented by D. Przeworska-Rolewicz in [14].

We admit here and in the sequel that Rp C Lo(X), dimker D > 0, i.e.
D is right invertible but not invertible and 0° := 1. We also write: N for the
set of all positive integers and Ng := {0} UN.

For a given operator D € R(X) we shall write (cf. [12], [15], {20]):

(0.1) Do := [ Ds,
kENg

where Dy = X, Dy = dom D* (k € N),

(0.2) S = U ker D,
i=1

(0.3) E:= | ker(D - A).
AeC
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Elements of the set D, are said to be smooth elements. If R € Rp then
the set S is equal to the linear span P(R) of all D-monomials , i.e.

(0.4) § = P(R):=lin{R*z: 2 ¢ ker D, k € Ny}.
Evidently, the set P(R) is independent of the choice of the right inverse R.

1. The purpose of the present section is to give an analogue of the Euler—
Maclaurin Formmula (cf. [11], [18]) induced by functional shifts (cf. [4], [5]).
We shall present some examples of applications of formulas obtained for
some elementary functions. .

In this section, K will stand either for a disk K, := {h € C: |h]| < p},
0 < p < o0, or for the complex plane C. Denote by H(K) the class of all
functions analytic on the set i’ C C. Suppose that a function f € H(K)
has the following expansion

(1.1) f(h) = ach* forallhe K.
k=0
DEFINITION 1.1. Suppose that D € R(X). A family Ty x = {Tsn}rex C
Lo(X) is said to be a family of functional shifts for the operator D induced
by the function f if

(1.2) Ty nz = [f(hD))z := Zakthkz foral he K; z €S,
k=0
where .S is defined by Formula (0.2).
We should point out that by definition of the set 5, the last sum has
only a finite number of members different than zero.

It is well-known that the set /(A’) is a commutative ring with the fol-
lowing algebraic operations:

(f+9)h) = f(h)+ g(h), (ag)(h) = ag(h),(fg)(h) = f(h)g(h),
where f,g € H(K);a € C, he K.
Let T(K) be the set of all families of functional shifts for an operator
D € R(X) induced by the members of H(K), i.e.
(1.3) T(K):={T,k:9€ H(K)}.
Define the following operations
(14)  Trx+Tok =Trigx, 0Tok = TagksTrok = Tr,xTyx,

where f,g € H(£2); a € C.
A special role in our considerations in this section will be played by the
following:
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THEOREM 1.1 (cf. [5]). Suppose that D € R(X) and T(K') is defined by
Formula (1.3). Let Ts(K) := T(K)|s, where § is defined by Formula (0.2).
Then

(i) The set Ts(K) is a commutative ring with the operations defined by
Formulas (1.4);

(ii) The rings H(K') and Ts(K') are isomorphic. The mapping T : f =
Tt k|s is a ring isomorphism from H(K) onto Ts(K').

Suppose that D € R(X) and Ty i = {Ty,n}rek is a family of functional
shifts for D induced by the function f € H(K'). We consider the so-called
Pommiez type operators B, P defined as follows:

A Y (Typ—Tpo) for0#heK
(1.5) BT, p = { b= Tro) for 0 £ X
-1 _ .
(16)  (Pf)(h):= {?“’%)(h) J)) for0#he k.

where, as usual, f(") = d"f/dh", n € N.
Observe that the function Pf € H(K) and has the following expansion

o0

(1.7) (Pf)(R) =) arqih* forallhe K.

k=0
This implies
(1.8) P € Ly(H(K)).
Note, for the function g = exp the operator (Pg)(hD) is called the Berno-
ulli operator for D (cf. [18]).

With a help of the author’s result (see [4], Proposition 1.3.) it is easy to
prove

PRrorosITION 1.1. Suppose that D € R(X) and Ty x = {Tyn}ner s a
family of functional shifts for D induced by the function f € H(K). Then
on the set S we have

(1.9) PBTsn=(Pf)RD)D, forallhe K.
The fundamental result of this section is

THEOREM 1.2. Suppose that all assumptions of Proposition 1.1 are sat-
isfied, f1)(0) # 0 and f(h) # f(0) for 0 # h € K. Then the operator
(Pf)(hD) is invertible on the set S for all0 # h € K and

[(Pf)(hD)]™" = g(hD),
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" where g(h) = Y po, bkh* € H(K), the coefficients by (k € No) are deter-
mined by the following recursion relation

bo = al'l,

n-1
(1.10) b, = __ai-l z ben_ks1 (n€N).

k=0

Proof. Our assumptions imply that the function
_ [Af(R) = FO)] for 0#he K,

(L1D) g(k) = { [FV(0))L forh=0
is a member of H(K) and
(1.12) (Pf)(h)g(hy=1 forall he K.

Theorem 1.1 implies that the operator (P f)(hD), (h € K')is invertible on
$ and [(Pf)(hD)]~! = g(hD). Suppose that the function g(h) = 3 re, bxh*
for h € K. Formula (1.7) and Formula (1.12) together imply

= (Pf)(h)g(h) = (i ak+1hk) ( ibkh") = ickhk for all h € K,
k=0 k=0 k=0

where ¢,, = EZ?__O bk@m—-k+1 for m € Ng. This implies Formula (1.10).
Theorem 1.2 and Formula (1.7) together imply
THEOREM 1.3. Suppose that all assumptions of Theorem 1.2 are satisfied.
Then Tpy  is invertible in the ring Ts(K) and its inverse [Tpy ]™! =
Ty x € Ts(K), where the function g is defined by Formula (1.11).

We are now ready to give the main theorem of this section.

THEOREM 1.4. Suppose that all assumptions of Theorem 1.2. are satis-
fied. Then the following Euler-Maclaurin type formulas hold on the set S

(1.13.a) I = bo(Pf)(hD) + i boh™(Pf)(RD)D™,
n=1

(1.13.b) I=bo(Pf)(hD)+ > b h™PBTy D",
n=1

where 0 # h € K, b, (k € Ng) are determined by Formula (1.10).
Proof. This follows directly from Theorem 1.3. and Formula (1.9).

ExXAMPLE 1.1 (cf. [18]). Let K = C and f = exp. Then Euler-Maclaurin
Formula (1.13.b) has the following form

I=(Pexp)(hD)+ ) _ B '(n!)™}(e"P - I)D™™'  for 0 # h € K,
n=1
where B,, are Bernoulli numbers.
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ExAMPLE 1.2. (The expansions of elementary functions which are used
here can be found in [9].)
a) Let K = K3, f be the tangent function, tan. Then for 0 # h € K

tan(h) = Z %_—}—)wgnmz"'l, (Ptan)(h) = h™! tan(h),
22n

g(h) = 1/(Ptan)(h) = hltan(h)] ' =1 - Gyt Banlh™

n=1
[o o]

where B,,,, as before, are Bernoulli numbers.
In this case Formula (1.13.b) has the form

oo

_ tan(hD) 2% 2n-1 2n-1 -,
I=—5 -; (2n)!|32,,|h tan(hD)D**" 1, 0#he€K,

b) Let K = Kp/3, f be the hyperbolic tangent function, tanh. Then for
0#s€K

e 92n(92n-1 _ | _
tanh(s) = Z ——(—(EW—)anShl 1,

g(s) = 1/(Ptanh)(s) = scoth(s) =1+ Z 2 anS

where B,, are Bernoulli numbers.
In this case Formula (1.13.b) has the form

tanh(sD) m
=22 (s Z (2 Byns*™ ' tanh(sD)D*""!,  0#£se K.

¢) Let K = Kz, f be the sine function, sin. Then for 0 # h € K
(Psin)(h) = A7} sin(h)

g(h) = h/sin(h) = hcosec(h) = 1 + Z (—22%—132n|h2",

where as before By, are Bernoulli numbers.
In this case Formula (1.13.b) has the form

_sin(hD) = 2(2"t-1) 2n-1 2n—-1
I=—> +y @) | Byn|h*™ 1 sin(hD)D

n=1

for all 0 # h € K,
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d) Let K = Ky, f be the hyperbolic sine function, sinh. Then for 0 #
he K

(Psinh)(t) = t~! sinh(¢),

g(t) = t/ sinh(t) = tcosech(t) =1 - Y %anﬁm
n=1 )

where Bj, are Bernoulli numbers.
In this case Formula (1.13.b) has the form

o0

_ sinh(¢D) 22" 1) 0 on 2n-1
I= D - Z _(W_ant smh(tD)D

n=1

forall 0 #¢t € K.
Clearly, Theorem 1.1 implies

Remark 1.1. Suppose that all assumptions of Proposition 1.1. are sat-
isfied and f(h) # 0 for h € K. Then the following formula holds

[o o]
(1.14) I= chhkf(hD)D" on S,
k=0
where h € K\{0}, ¢, are determined by the recursion relation

n—1
-1 -1
Q=0 , Cp=—0g chan_k, n € N.
k=0

2. In the present section, Euler-Maclaurin type Formulas (1.13) for linear
complete metric spaces, induced by functional shifts (cf. [7]) are established.
In this section, we assume that X is a complete linear metric space. In
the sequel, for reader’s convenience only K will stand either for the unit disk
K or for the complex plane C, the function f € H(K) has the expansion
x
(2.1) f(h)=>"ach* forall h € K.

k=0
For an operator D € R(X) we define the sets S.(fn)(D) (n € No), S¢(D),
S (D), Sk(D) as follows
o0
22) SW(D):= {a: € Do : Y agh*D**"e
k=0
is convergent for all h € K}, n €N,

(2.3)  $;(D):=SV(D),
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(24) SE(D):= [ SV (w),
n€ENg

M s2(D),

9EH(K)

(2.5)  Sk(D):

where D, is the set of smooth elements defined by Formula (0.1).
ProrosiTioN 2.1 (cf. [7]). Suppose that D € R(X). Then

(i) § C (D) C S¢(D) C Do C dom D,
(ii) E C SP(D), E C Sk(D), for K =C,
where the sets § and E are defined by Formulas (0.2), (0.3), respectively.

As in Section 1, we take

DEerFINITION 2.1. A family Ty g = {Tyn}rex C Lo(X) is said to be a
family of functional shifts for an operator D € R(X )induced by the function
fif
(2.6) Tynz =[f(hD)]lx forall h € K; z € S¢(D),
where the operator f(hD) is defined by Formula (1.2), the set S¢(D) is

defined by Formula (2.3).
We need (cf. [7])

ProposiTION 2.2. Suppose that D € R(X) and Ty = {Tsn}nek is
a family of functional shifts for D induced by the function f € H(K). Let
E) =ker(D — AI) # {0} fora A € K. Then for allh € K

(2.7) Trrx = f(AR)z  for allz € Ejy;

THEOREM 2.1 (cf. [7]). Let D € R(X) and T(K') be defined by Formula
(1.3). Let Tg,(K) := T(K)|g,, where Ex = ket(D — AI) # {0} and A € K.
Then

(i) The set Tg,(K) is a commutative ring with the operations defined
by Formulas (1.4);

(ii) If A # 0 then the rings H(K) and Tg,(K) are isomorphic. The
mapping T : f = Ty k|Eg, is an isomorphism of H(K) onto Tk, (K).

We note that by our assumptions there always exists a number A € K
such that E # {0}, for example 0 = X € K.

Let D € R(X) and E) # {0} for 0 # A € K. We introduce, in a similar
way as in Section 1 (cf.Formula (1.5)) the Pommiez type operator defined
as follows

29) 1y e { 2SO 0k

fOW0)D for h = 0.
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The equality Dz = Az for ¢ € E) and Formula (2.7) together imply that

on the set F) we have
J(AR)—-1(0) -
(2.9) BTy 1 = { 7 I for0#heK
AfOO)  forh=0.
Clearly, Formula (2.9) implies that the operator D commutes with P on

the set Tg, (K).
We have a similar result to Proposition 1.1.

PROPOSITION 2.3. Suppose that all assumptions of Proposition 2.2 are
satisfied. Then on the set E) we have the formula

(2.10) PBTsn=(Pf)hD)D =(DPfYhD) forallhek,
where the Pommiez operator P € Lo(H(K)) is defined by Formula (1.6).

Proof. From the beginning, note that Formula (1.8) and Proposition
2.1(ii) together imply that Ey C Sps(K). By definition, and Formula (1.7)
we get on F)

(DPf)(hD) = (Pf)(hD)D = (i anh"'lD”“l)D = -1 i a,h" D"
n=1

n=1

= K™Y (f(hD) — f(O)) = A~ (F(AR) — F(O)) = BTy for all 0 # h € K.

By definition, Formula (2.10) holds on E) for k = 0, also.
LEMMA 2.1. Suppose that D € R(X), R € Rp and Tk = {Tj,h}heK 18

a family of functional shifts for D induced by the function f € H(K). Then
on the set Spy(D) the equality
(2.11) (P)(hD) = BT R
holds for all h € K, where Sp¢(D) is determined by Formula (2.3).

Proof. Let € Spy(D) and 0 # h € K be arbitrarily fixed. Definition
and Formula (1.7.) together imply

o0 (o o]

(Pf)(hD)z = ar41h*D¥z =) ar41h*D*DRa
k=0 k=0
=h7' Y app 1 A DM R = h7Y(f(RD) Rz — ag Ra)
k=0

= h~Y(f(hD) - f(0)I)Rz = PTy 1 Rz.
Evidently, Formula (2.11) holds for A = 0, also.
Note, the last equality implies that if z € Sps(D) then Rz € S;(D).
Clearly and conversly, if Rz € Sg(D) then z € Spy(D).
Lemma 2.1. implies
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ProroSITION 2.4. Suppose that all assumptions of Lemma 2.1 are sat-
isfied. Then Formula (2.11) holds on the set Sk (D), where Sx(D) is deter-
mined by Formula (2.5).

Obviously, Proposition 2.1(ii) and the definition together imply

E, C SK(D) C Spj(D).

Using Theorem 2.1, in a similar way as Theorem 1.2. (cf. Theorem 1.3)
we prove

THEOREM 2.2. Suppose that all assumptions of Proposition 2.2 are sat-
isfied, f(1)(0) # 0 and f(h) # f(0) for 0 # h € K. Then Tpy i is invertible
in the ring TE,\ (I() = T(I()IE,\ and ils inverse [TPf,K]_l =1y K € TE,\(IX’),
where the function g is defined by Formula (1.11).

Theorem 2.2, Proposition 2.3 together imply

THEOREM 2.3. Suppose that all assumptions of Theorem 2.2 are satisfied.
Then Formulas (1.13.a), (1.13.b) hold on the set E).
Evidently, Theorem 2.1. implies

Remark 2.1. Suppose that all assumptions of Proposition 2.2. are sat-
isfied and f(h) # 0 for h € K. Then Formula (1.14) holds on E).

COROLLARY 2.1. Suppose that all assumptions of Proposition 2.2 are
satisfied and A € K. Let an operator R € Rp be such that the operator
I — AR is invertible. Then the set

Ex(R) := (I = AR)}(ker D) C Ej,

(¢f. [14]). This implies that Theorem 2.2, Theorem 2.3, Remark 2.1 also
hold for Ex(R). If K = C then these same hold for the set E defined by
Formula (0.3).

Evidently, the above corollary holds in the case when the operator D has
a Volterra right inverse R, (cf. [14]). -

Here, we shall show that Euler—Maclaurin type formulas hold on the set
Sk(D).

In [7] was proved the following

PROPOSITION 2.5. Suppose that all assumptions of Lemma 2.1 are satis-
fied and D is closed. Then for all h € K Ty commute on the set Sy(D)N

S(l)(D) with the operator D, where Sy(D), S( )(D) are determined by For-
mulas (2.3), (2.2), respectively.

THEOREM 2.4. Suppose that all assumptions of Proposition 2.5 are satis-
fied. Let Ts, (py = T(K)|sy (D), where T(K) is determined by Formula (1.3).
Then
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(i) the set Ts,.(p) is a commutative ring with the operations defined by
Formulas (1.4);
(ii) the rings H(K) and T, (py are isomorphic. The mapping T : f =
Tt k|sx(p) is a ring isomorphism from H(K) onto Ts, (p).
Definition of the set Sk (D), Formula (1.8) and Proposition 2.5. imply

PROPOSITION 2.6. Suppose that all assumplions of Proposition 2.5 are
satisfied. Then Formula (2.10) holds on the set Sk (D).

Using Theorem 2.4, in a similar way as Theorem 1.2 (cf. Theorem 1.3)
we prove

THEOREM 2.5. Suppose that all assumptions of Proposition 2.5 are sat-
isfied, f1(0) # 0 and f(h) # f(0) for 0 # h € K. Then Tp; i is invertible
in the ring Ts, (p) and its inverse [Tps k]™' = Ty i € Ts,(p), where the
function g is defined by Formula (1.11).

Theorem 2.5. and Proposition 2.6. together imply

THEOREM 2.6. Suppose that all assumptions of Theorem 2.5 are satisfied.
Then Formulas (1.13.a), (1.13.b) hold on the set Sk(D).
Clearly, Theorem 2.4 implies

Remark 2.1. Suppose that all assumptions of Proposition 2.5. are sat-
isfied and f(h) # 0 for h € K. Then Formula (1.14) holds on Sk (D).

3. In the present section, an isomorphism of a ring of analytic functions
onto a ring of continuous shifts is established. As conseqeunces, Formulas
(1.13) for a subset of the space of D-analytic elements (cf. [14], [15]) are
given.

In this section we still assume that X is a complete linear metric space.
As before,the function f € H(K') has expansion (2.1), where K = K,, 0 <
p < 4+o0. Let D € R(X) and F be an initial operator for D corresponding
to an R € Rp. Write

Agr(D) := {:L‘ €EDy:z= iR“FD"x},

n=0
AD):= | Ar(D).
RERDp
The set A(D) is said to be the space of D-analytic elements (cf. [15]).
It is obvious that
S C A(D) C D
Denote by T¢(K) C T(K') the set of all continuous functional shifts for
D € R(X) induced by the set H(K).
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THEOREM 3.1 (cf. [7]). Suppose that an operator D € R(X) and Ty i =
{Tyr}nex C TC(K) is a family of functional shifts for D induced by the
function f € H(K). If an operator R € Rp is continuous then Ar(D) C
S¢(D).

The following theorem (similar to Theorems 1.1, 2.1, 2.6) for the set
T¢(K)| ax(D), where R € Rp is continuous holds

THEOREM 3.2. Let D € R(X) and T} p, := T¢(K)|ag(p), where R €
Rp is continuous. Then

(i) the set TﬁR(D) is a commutative ring with the operations defined by
Formulas (1.4);

(ii) the rings H(K) and TﬁH(D) are isomorphic. The mapping T : f =
T x|l ar(D) is @ ring isomorphism from H(K') onto T4 .(p)

Proof. (i) Evidently,it is enough to show that the multiplication of two
continuous families of functional shifts for I which are restricted to the
set Ar(D) is well defined. Suppose that we are given families Ty x, Ty x €
T(K), where f,g € H(K) are arbitrarily fixed and

o0 oo
f(hY=_ach*, g(h)=) bih* forall he K.
k=0 k=0
Theorem 3.1 implies that Ar(D) C S7(D),S4(D),Ssg(D). Let F be an
initial operator for D corresponding to the continuous operator R € Rp.
Let 0 # z € Ar(D) and h € I\ be arbitrarily fixed. Our assumptions and
Proposition 1.1 imply

[T1nTynle = TyalTypal = Ty [Ton > R*FD"]
n=0
= T,,h[iTg,hR"FD"z] - Tf,h[i ; bn_kh""‘R"FD"z]
n=0 n=0 k=0
n

= i Y bu_kh"*TyR¥FDz
0

3
I
=]
£
Il

k
bn_khn—k E ak_jhk—jRjFDn.’L‘

0 7=0

M
NE

3
I}
)
x
1l

k
) ak_jbokh™ I RIFD"z

i=0

M
M=

3
I
=]
x
]
=]
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o0 n

= (Zak _ibne k)h""RJFD"
n=0j=0 k=j

= f: Y en—jh™~ IRIFD™z, where Cq = Zap q—p (¢ € Np).
n=0 j=0 p=0

Clearly, ifa = {a,}, b = {b,} then the sequence c = {c,} is a convolution
ofaand b,i.e.c=a*b=(37_;apb;—p) .
Take w(h) = f(h)g(h) then w € H(K) and w(h) = Yoo jenh™ h € K.
This follows from the Cauchy theorem about multiplication of two series.
Hence,

(oo} (o ¢]
[Ty Tople = 3 TupR*FD"s = Typ( 3 R"FD"2) = Typz
n=0 n=0
ﬁHfRMK:=1}mK(51w(K)
(ii) The proofis along going the same lines as the proofs of the mentioned
theorems which concern the sets ., Ey and Sk (K) (cf. [5], [7]).

ProposITION 3.1. Suppose that all assumptions of Theorem 3.1 are sat-
isfied and R € Rp is continuous. Then following formula

(3.1) PTsn = (Pf)(RD)D
holds on the set Ar(D) for allh € K.
Proof. Fix z € Ar(D) and take y = Dz. The continuity of R € Rp
implies that
Ar(D) C Spys(D), D(Agr(D))C Agr(D).

First inclusion follows from Theorem 3.1. and Formula (1.8) , second from
[15] (Theorem 3.2 p. 22). This and Formula (1.7) together imply

o0 oo
[(Pf)(hD)D)z = (Pf)(hD)y = D azh™ "D "'y =Y a,h"'D" ' Dz
n=1 n=1
o0
=h™' Y aph™D e = 7 (f(hD) - f(0)I) = PTs,, forall 0 # h€ K.
n=1
For h = 0 Formula (3.1) follows from definition.

THEOREM 3.3. Suppose that all assumptions of Proposition 3.1 are sat-
isfied, f(1(0) # 0 and f(h) # f(0) for0 # h € K. Then T§;  is invertible
in the ring TjR(D) and its inverse [Tpy g]™! = T; g € TXR(D), where the
function g is defined by Formula (1.11).

Theorem 3.3.and Proposition 3.1. together imply



Summation formulas 313

THEOREM 3.4. Suppose that all assumptions of Theorem 3.3 are satisfied.

Then Formulas (1.13.a), (1.13.b) hold on the set Ar(D).

Clearly, Theorem 3.3 implies

Remark 3.1. Suppose that all assumptions of Proposition 3.1. are sat-

isfied and f(h) # 0 for h € K. Then Formula (1.14) holds on Ag(D).
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