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ON SUMMATION FORMULAS INDUCED 
BY FUNCTIONAL SHIFTS 

OF RIGHT INVERTIBLE OPERATORS 

0. Let X be a linear space over the field C of the complex numbers. 
Denote by L(X) the set of all linear operators with domains and ranges in 
X and by LQ(X) the set of those operators from L(X) which are defined 
on the whole space X. An operator D € L ( X ) is said to be right invertible 
if there exists an operator R G L(X) such that DR = I. The set of all 
right invertible operators belonging to L(X) will be denoted by R(X). For 
a given D G R(X) we denote by 7ZD, TD the set of all its right inverses , 
initial operators, respectively. The theory of right invertible operators and 
its applications is presented by D. Przeworska-Rolewicz in [14]. 

We admit here and in the sequel that 1ZD C LQ(X), dimkerZ? > 0, i.e. 
D is right invertible but not invertible and 0° := 1. We also write: N for the 
set of all positive integers and No := {0} U N. 

For a given operator D E R(X) we shall write (cf. [12], [15], [20]): 

(0.1) 
fceNo 

where D0 = X , D k = domDk (k <E N), 
oo 

(0.2) 

(0.3) 
Aec 
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Elements of the set D<» are said to be smooth elements. If R G then 
the set S is equal to the linear span P(R) of all .D-monomials , i.e. 

(0.4) S = P(R) := lin {Rkz :z€keiD, k£ N0}. 

Evidently, the set P(R) is independent of the choice of the right inverse R. 

1. The purpose of the present section is to give an analogue of the Euler-
Maclaurin Formmula (cf. [11], [18]) induced by functional shifts (cf. [4], [5]). 
We shall present some examples of applications of formulas obtained for 
some elementary functions. 

In this section, K will stand either for a disk Kp := {h G C : \h\ < p}, 
0 < p < oo, or for the complex plane C. Denote by H(K) the class of all 
functions analytic on the set K C C. Suppose that a function / G H(K) 
has the following expansion 

oo 
(1.1) f(h) = akhk for an h e K. 

k=0 
D E F I N I T I O N 1.1. Suppose that D e £ (X) . A family T/,k = {T/./J / ie / f C 

Lo(X) is said to be a family of functional shifts for the operator D induced 
by the function / if 

oo 
(1.2) Tfthx = [f(hD)]x := ^ akhkDkx for all h G A'; x G 5, 

k=0 
where S is defined by Formula (0.2). 

We should point out that by definition of the set 5, the last sum has 
only a finite number of members different than zero. 

It is well-known that the set H(K) is a commutative ring with the fol-
lowing algebraic operations: 

(/ + g)(h) = f(h) + g(h), (ag)(h) = ag(h), (fg)(h) = /(%(/*), 
where f,g G H(K)\a G C, h G K. 

Let T(K) be the set of all families of functional shifts for an operator 
D G R(X) induced by the members of H(K), i.e. 

(1.3) T(K):={TBtK:geH(K)}. 
Define the following operations 

(1-4) TftK + T9yK = Tf+g>1<, aTg>I< = Tag<K,TfgtK = TftKTgiK, 
where f,g G H(Q)\ a G C. 

A special role in our considerations in this section will be played by the 
following: 
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THEOREM 1.1 (cf. [5]). Suppose that D £ R(X) and T(K) is defined by 
Formula (1.3). Let Ts(Ii) := T(K)\s, where S is defined by Formula (0.2). 

Then 

(i) The set Ts(K) is a commutative ring with the operations defined by 
Formulas (1.4); 

(ii) The rings H(K) and Ts(K) are isomorphic. The mapping T : f =s> 
T/,K\S is a ring isomorphism from H(K) onto Ts(K). 

Suppose that D £ R(A") and TjtK = {T/,h}hei< is a family of functional 
shifts for D induced by the function / £ H(K). We consider the so-called 
Pommiez type operators P defined as follows: 

n 5) mr,h — J / l ~ 1 ( T M - r / , o ) for 0 ̂  /i 6 K 
(1.5; V1'*- \ DTfWfi for/l = 0 ° n A ' 

(I 6) (Pf)(h) - I h~W) ~ /(°)) for 0 * h 6 K 
(1.6) { P f m j / ( 1 ) ( Q ) iorh = 0 

where, as usual, fW = dnf/dhn, n £ N. 
Observe that the function P f £ I I (A) and has the following expansion 

oo 
(1.7) ( P f ) ( h ) = ^ak+lhk for all he K. 

fc=o 
This implies 

(1.8) PeL0(Il(IQ). 
Note, for the function g = exp the operator (Pg)(hD) is called the Berno-
ulli operator for D (cf. [18]). 

With a help of the author's result (see [4], Proposition 1.3.) it is easy to 
prove 

PROPOSITION 1.1. Suppose that D £ R(X) and TJJ< = {T;,h}hei< is a 
family of functional shifts for D induced by the function f £ II{K). Then 
on the set S we have 

(1.9) < p r M = (Pf)(hD)D, for all h £ K. 

The fundamental result of this section is 

THEOREM 1.2. Suppose that all assumptions of Proposition 1.1 are sat-
isfied, /(*)(0) ^ 0 and f(h) ^ /(0) for 0 / h £ A'. Then the operator 
(Pf)(hD) is invertible on the set S for all 0 ^ h £ A' and 

[(Pf)(hDJ]"1 = g(hD), 
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where g(h) = € the coefficients bk (k £ No) are deter-
mined by the following recursion relation 

b0 = aj"1, 
n — 1 

(L10) bn = -a ," 1 £ 6*an_*+1 (n € N). 
fc=0 

P r o o f . Our assumptions imply that the function 

(i i n o(h) - f WW ~ W ) ] " 1 for M a € k , 

(1.11) g(h) - j [ / ( i ) ( 0 ) ] - i for /i = 0 

is a member of H(K) and (1.12) ( P f ) { h ) g ( h ) = 1 for all h € A'. 
Theorem 1.1 implies that the operator ( P f ) ( h D ) , (h £ K) is invertible on 

S and [(P/)(/iZ))] -1 = g(hD). Suppose that the function g{h) = bkhk 

for h € K. Formula (1.7) and Formula (1.12) together imply 
oo oo oo 

1 = (Pf)(h)g(h) = ( ak+1hk) ( ^ = Ckhk for a11 h 6 

k=0 A:=0 Jfc=0 
where cm = X f̂cLo for m 6 No- This implies Formula (1.10). 

Theorem 1.2 and Formula (1.7) together imply 
THEOREM 1.3. Suppose that all assumptions of Theorem 1.2 are satisfied. 

Then T p i s invertible in the ring Ts(K) and its inverse [Jp/,/c]-1 = 
Tg,K £ Ts(K), where the function g is defined by Formula ( 1 . 1 1 ) . 

We are now ready to give the main theorem of this section. 

THEOREM 1.4. Suppose that all assumptions of Theorem 1 .2. are satis-
fied. Then the following Euler-Maclaurin type formulas hold on the set S 

oo 
(1.13.a) I = b0(Pf)(hD) + bnhn(Pf)(hD)Dn, 

n= 1 oo 
(1.13.b) I = b0(Pf)(hD) + J2bnhn^Tf,hDn~1, 

71=1 
where 0 ^ h € K, bk (k € No) are determined by Formula (1.10). 

P r o o f . This follows directly from Theorem 1.3. and Formula (1.9). 
EXAMPLE 1.1 (cf. [18]). Let K = C and / = exp. Then Euler-Maclaurin 

Formula (1.13.b) has the following form 
oo 

I = (PexpX/iD) + ^ Bnhn-1{n\)~l{ehD - I)Dn~x for 0 K, 
n=l 

where Bn are Bernoulli numbers. 
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E X A M P L E 1 .2. (The expansions of elementary functions which are used 
here can be found in [9].) 

a) Let K = Kn/2, f be the tangent function, tan. Then for 0 h 6 K 
0 0 o 2 n f o 2 n - l _ i X 

t a n ( h ) = ( 0 x, -\B2n\h2n~\ (Ptan)( / i ) = h~l t a n { h ) , 
n = l ' 2 l l > • 

°° 1 2 n 

g{h) = l / (P tan ) ( / i ) = h ^ h ) ] - 1 = 1 - £ — \B2n\h2n, 

where B2n, as before, are Bernoulli numbers. 
In this case Formula (1.13.b) has the form 

7 = ^ ^ - E { M h D ) D 2 n - \ 0 # fc € K, 

b) Let A' = K j j / 2 , f be the hyperbolic tangent function, tanh. Then for 
O j i s e K 

0 0 o2n/o2n—1 i \ 
tanh(,) = ^ 2 ( 2

( 2 t | ) , " 1 ) ^ a " - 1 , 
n = l ' 

00 92" 
g(s) = l / ( P t a n h ) ( s ) = scoth(s) = 1 + T 7^T.B2ns2n, 

n = l v ' 

where B2n are Bernoulli numbers. 
In this case Formula (1.13.b) has the form 

I = ^ ^ + £ T & ^ n - 2 - 1 t a n h ^ ) / ? ' - 1 , 0 ^ 6 K. 

n = l ' 

c) Let K = Kjj, f be the sine function, sin. Then for 0 ^ h £ K 

(Psin)(/i) = h-lsin(h), 00 Q/Q2n-1 _ 1 \ 
ff(h) = h/ sin(/i) = hcosec(/i) = 1 + 5 " 1

 r o „ ,\B2n\h2n, 
t i (2n)! 

where as before B2n are Bernoulli numbers. 
In this case Formula (1.13.b) has the form 

s in (hD) ~ 2 ( 2 ^ - 1 ) (hmn**-i 

n = l v ' 
for all 0 h 6 K, 
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d) Let K = Kn, f be the hyperbolic sine function, sinh. Then for 0 ^ 
h £ K 

(Psinh)(i) = r 1 sinh(i), 
00 2 (2 2 n _ 1 - 11 

g(t) = t/ sinh(i) = tcosech(*) = 1 - T K ,, } B 2 n t 2 n , 

¿Ti (2n 

where Bin are Bernoulli numbers. 
In this case Formula (1.13.b) has the form 

n=l v ' 
for all 0 / i 6 K . 

Clearly, Theorem 1.1 implies 

R e m a r k 1.1. Suppose that all assumptions of Proposition 1.1. are sat-
isfied and f(h) 0 for h £ A'. Then the following formula holds 

00 

(1.14) I = Y , c k h k f ( h D ) D n on S, 

k=0 

where h £ A*\{0}, cjt are determined by the recursion relation 
7 1 - 1 

Co = a.Q1, cn = - a „ 1 ckQn-k, n £ N. 
k=o 

2. In the present section, Euler-Maclaurin type Formulas (1.13) for linear 
complete metric spaces, induced by functional shifts (cf. [7]) are established. 

In this section, we assume that X is a complete linear metric space. In 
the sequel, for reader's convenience only K will stand either for the unit disk 
K or for the complex plane C, the function / £ H(K) has the expansion 

00 

( 2 . 1 ) f { h ) = ^ akhk f o r a l l h £ K . 

k=0 

For an operator D £ R(A') we define the sets (n £ No), S j ( D ) , 

SF>(D), SK(D) as follows 
w 

( 2 . 2 ) S (
f

n ) ( D ) : = a k h k D k + n x 

k=0 

is convergent for all h £ K j , n £ N, 

( 2 . 3 ) S f ( D ) : = S ? \ D ) , 
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(2.4) S f { D ) := f | S(
f
n\D), 

n£N0 

(2.5) SX{D):= p ) S~(D), 
9€H(K) 

where D i s the set of smooth elements defined by Formula (0.1). 

P R O P O S I T I O N 2.1 (cf. [7]). Suppose that D e R(X). Then 

(i) S C S f ( D ) C Sj(D) C -Deo C dom D, 
(ii) E C S?(D), E C SK(D), for K = C, 

where the sets S and E are defined by Formulas (0.2), (0.3), respectively. 

As in Section 1, we take 

D E F I N I T I O N 2.1. A family T/j< = {Tfih}hei< C L0(X) is said to be a 
family of functional shifts for an operator D 6 R(X) induced by the function 

where the operator f(hD) is defined by Formula (1.2), the set S/(D) is 
defined by Formula (2.3). 

We need (cf. [7]) 

P R O P O S I T I O N 2 . 2 . Suppose that D e R(X) and Tjj< = {Tj,h}hei< IS 

a family of functional shifts for D induced by the function f e H(K). Let 
Ex = ker(D - XI) # {0} for a A 6 K. Then for all he K 

(2.7) Tfthx = f(\h)x for all x € Ex; 

T H E O R E M 2 .1 (cf. [7]). Let D e R{X) and T(K) be defined by Formula 
(1.3). Let TEx{K) := T{K)\Ex, where Ex = ker(£> - XI) / {0} and X € K. 
Then 

(i) The set Tgx(K) is a commutative ring with the operations defined 
by Formulas (1.4); 

(ii) If X / 0 then the rings H(K) and Tex (K) are isomorphic. The 
mapping T : f Tjj<\ex is an isomorphism of H(K) onto Tex{ Ii). 

We note that by our assumptions there always exists a number X € Ii 
such that E \ / {0}, for example 0 = A G K . 

Let D G R(X) and E\ / {0} for 0 ^ A € K. We introduce, in a similar 
way as in Section 1 (cf.Formula ( 1 . 5 ) ) the Pommiez type operator defined 
as follows 

/ i f 

(2.6) Tfthx = [f(hD)]x for all h e Ii ; x Ç Sj(D), 

(2.8) for 0 jé h € K 
for h = 0. 
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The equality Dx = \x for x G and Formula (2.7) together imply that 
on the set E\ we have 

r }(\H)-}( 0) , , 0 , . JR (2-9> ^ H ^ V Zlio 
Clearly, Formula (2.9) implies that the operator D commutes with on 

the set TEx(K)-
We have a similar result to Proposition 1.1. 
PROPOSITION 2 .3 . Suppose that all assumptions of Proposition 2 .2 are 

satisfied. Then on the set E\ we have the formula 
(2.10) <#Tf,h = (Pf){hD)D = (DPf)(hD) for all h G K, 
where the Pommiez operator P G Lq(H(K)) is defined by Formula (1.6). 

P r o o f . From the beginning, note that Formula (1.8) and Proposition 
2.1(ii) together imply that E\ C Spj(K). By definition, and Formula (1.7) 
we get on E\ 

oo oo 
(DPf)(hD) = (Pf)(hD)D = ( an/in_1 Dn~lSjD = /i"1 ^ anhnDn 

n= 1 n— 1 
= h~1(f(hD) - f(0)I) = h~1(f(\h)I - f(0)I) = %Tfth for aU 0 ^ h e K. 

By definition, Formula (2.10) holds on E\ for h — 0, also. 
LEMMA 2 .1 . Suppose that D 6 R(X), R € 7 I d and Tj,k = {Tj,h}h£K is 

a family of functional shifts for D induced by the function f 6 Il(K). Then 
on the set Spj(D) the equality 
(2.11) (Pf)(hD) = Wf,kR 
holds for all h £ K, where Spf(D) is determined by Formula (2.3). 

P r o o f . Let x G Spj(D) and 0 / /i £ A' be arbitrarily fixed. Definition 
and Formula (1.7.) together imply 

oo oo 
(Pf)(hD)x = ^2ak+ihkDkx = ^2ak+1hkDkDRx 

fc=0 fc=0 
oo 

= h-1'£iak+1hk+1Dk+1Rx = h~l(f(hD)Rx - a0Rx) 
fc=o 

= h~\f(hD) - f(0)I)Rx = Wi,hBx. 
Evidently, Formula (2.11) holds for h = 0, also. 

Note, the last equality implies that if x G Spj(D) then Rx G Sf(D). 
Clearly and conversly, if Rx G Sj(D) then x G Spj(D). 

Lemma 2.1. implies 
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PROPOSITION 2 .4 . Suppose that all assumptions of Lemma 2 . 1 are sat-
isfied. Then Formula ( 2 . 1 1 ) holds on the set SK(D), where SK(D) is deter-
mined by Formula ( 2 . 5 ) . 

Obviously, Proposition 2.1(H) and the definition together imply 

Ex C Sk(D) C SPJ(D). 

Using Theorem 2.1, in a similar way as Theorem 1.2. (cf. Theorem 1.3) 
we prove 

THEOREM 2 .2 . Suppose that all assumptions of Proposition 2 .2 are sat-
isfied, / ( 1 ) ( 0 ) ^ 0 and f(h) ± f( 0 ) forO^he K. Then TPftK is invertible 
in the ring TEX{K) = T(K)\EX and its inverse \TPJ}K]~1 = T 9 >K G TEX(K), 
where the function g is defined by Formula (1.11). 

Theorem 2.2, Proposition 2.3 together imply 

THEOREM 2 .3 . Suppose that all assumptions of Theorem 2 .2 are satisfied. 
Then Formulas (1.13.a), (1.13.b) hold on the set E\. 

Evidently, Theorem 2.1. implies 

R e m a r k 2.1. Suppose that all assumptions of Proposition 2.2. are sat-
isfied and f(h) ^ 0 for h € K. Then Formula (1.14) holds on E\. 

COROLLARY 2 .1 . Suppose that all assumptions of Proposition 2 . 2 are 
satisfied and A € K. Let an operator R E IZD be such that the operator 
I — XR is invertible. Then the set 

E\{R) := (I - AJR)"1(ker D) C Ex, 

(cf. [14]). This implies that Theorem 2.2, Theorem 2.3, Remark 2.1 also 
hold for E\(R). If K = C then these same hold for the set E defined by 
Formula (0.3). 

Evidently, the above corollary holds in the case when the operator D has 
a Volterra right inverse R, (cf. [14]). < 

Here, we shall show that Euler-Maclaurin type formulas hold on the set 
SK(D). 

In [7] was proved the following 

PROPOSITION 2.5. Suppose that all assumptions of Lemma 2.1 are satis-
fied and D is closed. Then for all h £ K TjTH commute on the set SJ(D) ("I 
S^\D) with the operator D, where SF(D), S^(D) are determined by For-
mulas (2.3), (2.2), respectively. 

THEOREM 2 .4 . Suppose that all assumptions of Proposition 2 . 5 are satis-
fied. LetT$K(D) = T(K)\sK(d)i where T(K) is determined by Formula ( 1 . 3 ) . 
Then 
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(i) the set Tsk(d) ls a commutative ring with the operations defined by 
Formulas (1.4); 

(ii) the rings H(K) and Tsk(d) are isomorphic. The mapping T : f 
Tj,k\Sk(D) l s a rin9 isomorphism from H(K) onto Tsk(d)• 

Definition of the set Sk(D), Formula (1.8) and Proposition 2.5. imply 

PROPOSITION 2 . 6 . Suppose that all assumptions of Proposition 2 . 5 are 
satisfied. Then Formula ( 2 . 1 0 ) holds on the set Sk(D). 

Using Theorem 2.4, in a similar way as Theorem 1.2 (cf. Theorem 1.3) 
we prove 

T H E O R E M 2 . 5 . Suppose that all assumptions of Proposition 2 . 5 are sat-
isfied, / ( ! ) (0) # 0 and f(h) / / ( 0 ) for 0 ^ h e K. Then TPfiI< is invertible 
in the ring Tsk(d) and its inverse [Tpf,i<}~1 = T3iK (E T$k(d), where the 
function g is defined by Formula (1.11). 

Theorem 2.5. and Proposition 2.6. together imply 

T H E O R E M 2 . 6 . Suppose that all assumptions of Theorem 2 . 5 are satisfied. 
Then Formulas (1.13.a), (1.13.b) hold on the set Sk(D). 

Clearly, Theorem 2.4 implies 

R e m a r k 2.1. Suppose that all assumptions of Proposition 2.5. are sat-
isfied and f(h) £ 0 for h e K. Then Formula (1.14) holds on SK(D). 

3. In the present section, an isomorphism of a ring of analytic functions 
onto a ring of continuous shifts is established. As conseqeunces, Formulas 
(1.13) for a subset of the space of _D-analytic elements (cf. [14], [15]) are 
given. 

In this section we still assume that A' is a complete linear metric space. 
As before,the function / 6 II(K) has expansion (2.1), where K = Kp, 0 < 
p < +oo. Let D £ R(X) and F be an initial operator for D corresponding 
to an R £ %d- Write 

oo 
Ar{D) := {* € 0«, : x = £ 

71=0 

A(D):= (J AR{D). 
B€7Jd 

The set A(D) is said to be the space of .D-analytic elements (cf. [15]). 
It is obvious that 

5 C A(D) C Doo. 
Denote by T°(K) C T(K) the set of all continuous functional shifts for 

D € R(X) induced by the set H(K). 
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TH E O R E M 3.1 (cf. [7]). Suppose that an operator D £ R{A") and TJJ< = 
{Tf,h}hel< C T°(K) is a family of functional shifts for D induced by the 
function f £ H(K). If an operator R £ TZD continuous then AR(D) C 
Sf{D). 

The following theorem (similar to Theorems 1.1, 2.1, 2.6) for the set 
Tc(K)\Ar(D)> where R £ 1ZD is continuous holds 

TH E O R E M 3.2. Let D £ R ( X ) and TC
AR(D) := TC(K)\Ar(D), where R £ 

TlD is continuous. Then 

(i) the set is a commutative ring with the operations defined by 
Formulas (1.4); 

(ii) the rings H(K) and are isomorphic. The mapping T : f => 
TIk\Ar{D) is a ring isomorphism from II (K) onto 

P r o o f , (i) Evidently,it is enough to show that the multiplication of two 
continuous families of functional shifts for D which are restricted to the 
set AR(D) is well defined. Suppose that we are given families TJTK,T9IK £ 
TC(II), where f,g £ H(K) are arbitrarily fixed and 

oo oo 
f{h) = Y^ akhk, g(h) = Y , hhk for all h £ K. 

k=0 k=0 

Theorem 3.1 implies that AR{D) C Sj(D),Sg(D),SJg(D). Let F be an 
initial operator for D corresponding to the continuous operator R £ TZD-
Let 0 / i G AR(D) and h £ K be arbitrarily fixed. Our assumptions and 
Proposition 1.1 imply 

[Tj,hTg,h]x = Tfth[Tgihx] = Tj,h [T'g,h £ RnFDnx 
n-0 

oo oo 

= Tfth [ Y Tg,hRnFDnx] = Tuh [ Y X ) K-khn~kRkFDnx 
n = 0 n=0 k=0 

oo n 

n = 0 fc=0 
oo n 

n = 0 k=0 j=0 

oo n k 

= E X X ak-jbn-khn-jRjFDnx 
n=0k=0j=0 
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= Y,Y,(Y,ak-ibn-k)hn~jRjFDnx 
N = 0 j=0 k=j 
oo n q 

= J2^2cn.jhn~jRjFDnx, where cq = ^apbq-p (q e N0). 
n=0 j=0 p=0 

Clearly, if a = {a9}, b = {¿>g} then the sequence c = {cg} is a convolution 
of a and b, i.e. c = a * b = apbq_p). 

Take w{h) = f(h)g(h) then w e H(K) and w(h) = 0
 cnhn, h € K. 

This follows from the Cauchy theorem about multiplication of two series. 
Hence, 

oo oo 
[Tf,hTg,h]x = J^Tw,hRnFDnx = Tw,h( £ RnFDnx) = TWyhx 

n—0 N = 0 

fo r Tw,K = TFG,K € TC(K). 
(ii) The proof is along going the same lines as the proofs of the mentioned 

theorems which concern the sets S, E\ and SK{K) (cf. [5], [7]). 

P R O P O S I T I O N 3 . 1 . Suppose that all assumptions of Theorem 3 . 1 are sat-
isfied and R 6 71 d is continuous. Then following formula 

(3.1) Ws,h = ( P f ) { h D ) D 
holds on the set Ar(D) for all h € K. 

P r o o f . Fix x 6 Ar(D) and take y = Dx. The continuity of R € TZo 
implies that 

AR{D) C SPF(D), D(AR(D)) C AR(D). 

First inclusion follows from Theorem 3.1. and Formula (1.8) , second from 
[15] (Theorem 3.2 p. 22). This and Formula (1.7) together imply 

[{Pf){hD)D]x = {Pf){hD)y=Y^anhn-lDn-ly=Y/anhn-1Dn-1Dx 
n=l n=1 

OO 

= h-1 Y^ anhnDnx = h~1(f(hD) - / (0)J) = Wf,h for all 0 ¿he IC. 
n=l 

For h = 0 Formula (3.1) follows from definition. 

T H E O R E M 3.3. Suppose that all assumptions of Proposition 3.1 are sat-
isfied, / ( 1 ) ( 0 ) / 0 and f(h) / / ( 0 ) for 0 / h G K. Then Tf,}K is invertible 
in the ring and its inverse [Tpj,K]-1 = Tg K € where the 
function g is defined by Formula (1.11). 

Theorem 3.3.and Proposition 3.1. together imply 



Summation formulas 313 

T H E O R E M 3.4. Suppose that all assumptions of Theorem 3.3 are satisfied. 
Then Formulas (1.13.a), (1.13.b) hold on the set AR(D). 

Clearly, Theorem 3.3 implies 

R e m a r k 3.1. Suppose that all assumptions of Proposition 3.1. are sat-
isfied and f{h) ^ 0 for h e K. Then Formula (1.14) holds on AR(D). 
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