

Zbigniew Binderman

ON SUMMATION FORMULAS INDUCED
BY FUNCTIONAL SHIFTS
OF RIGHT INVERTIBLE OPERATORS

0. Let X be a linear space over the field \mathbb{C} of the complex numbers. Denote by $L(X)$ the set of all linear operators with domains and ranges in X and by $L_0(X)$ the set of those operators from $L(X)$ which are defined on the whole space X . An operator $D \in L(X)$ is said to be *right invertible* if there exists an operator $R \in L(X)$ such that $DR = I$. The set of all right invertible operators belonging to $L(X)$ will be denoted by $R(X)$. For a given $D \in R(X)$ we denote by \mathcal{R}_D , \mathcal{F}_D the set of all its right inverses, initial operators, respectively. The theory of right invertible operators and its applications is presented by D. Przeworska-Rolewicz in [14].

We admit here and in the sequel that $\mathcal{R}_D \subset L_0(X)$, $\dim \ker D > 0$, i.e. D is right invertible but not invertible and $0^0 := 1$. We also write: \mathbb{N} for the set of all positive integers and $\mathbb{N}_0 := \{0\} \cup \mathbb{N}$.

For a given operator $D \in R(X)$ we shall write (cf. [12], [15], [20]):

$$(0.1) \quad D_\infty := \bigcap_{k \in \mathbb{N}_0} D_k,$$

where $D_0 = X$, $D_k = \text{dom } D^k$ ($k \in \mathbb{N}$),

$$(0.2) \quad S := \bigcup_{i=1}^{\infty} \ker D^i,$$

$$(0.3) \quad E := \bigcup_{\lambda \in \mathbb{C}} \ker(D - \lambda I).$$

1991 Mathematics Subject Classification: 47B99, 47E05, 47G99.

Key words and phrases: right invertible operators, functional shifts, Euler-Maclaurin formulas, Pommiez operator.

Elements of the set D_∞ are said to be *smooth elements*. If $R \in \mathcal{R}_D$ then the set S is equal to the linear span $P(R)$ of all D -monomials, i.e.

$$(0.4) \quad S = P(R) := \text{lin}\{R^k z : z \in \ker D, k \in \mathbb{N}_0\}.$$

Evidently, the set $P(R)$ is independent of the choice of the right inverse R .

1. The purpose of the present section is to give an analogue of the Euler–Maclaurin Formmula (cf. [11], [18]) induced by functional shifts (cf. [4], [5]). We shall present some examples of applications of formulas obtained for some elementary functions.

In this section, K will stand either for a disk $K_\rho := \{h \in \mathbb{C} : |h| < \rho\}$, $0 < \rho < \infty$, or for the complex plane \mathbb{C} . Denote by $H(K)$ the class of all functions analytic on the set $K \subseteq \mathbb{C}$. Suppose that a function $f \in H(K)$ has the following expansion

$$(1.1) \quad f(h) = \sum_{k=0}^{\infty} a_k h^k \quad \text{for all } h \in K.$$

DEFINITION 1.1. Suppose that $D \in R(X)$. A family $T_{f,K} = \{T_{f,h}\}_{h \in K} \subset L_0(X)$ is said to be a family of *functional shifts* for the operator D induced by the function f if

$$(1.2) \quad T_{f,h}x = [f(hD)]x := \sum_{k=0}^{\infty} a_k h^k D^k x \quad \text{for all } h \in K; x \in S,$$

where S is defined by Formula (0.2).

We should point out that by definition of the set S , the last sum has only a finite number of members different than zero.

It is well-known that the set $H(K)$ is a commutative ring with the following algebraic operations:

$$(f + g)(h) = f(h) + g(h), \quad (\alpha g)(h) = \alpha g(h), \quad (fg)(h) = f(h)g(h),$$

where $f, g \in H(K)$; $\alpha \in \mathbb{C}$, $h \in K$.

Let $T(K)$ be the set of all families of functional shifts for an operator $D \in R(X)$ induced by the members of $H(K)$, i.e.

$$(1.3) \quad T(K) := \{T_{g,K} : g \in H(K)\}.$$

Define the following operations

$$(1.4) \quad T_{f,K} + T_{g,K} = T_{f+g,K}, \quad \alpha T_{g,K} = T_{\alpha g,K}, \quad T_{f,g,K} = T_{f,K} T_{g,K},$$

where $f, g \in H(\Omega)$; $\alpha \in \mathbb{C}$.

A special role in our considerations in this section will be played by the following:

THEOREM 1.1 (cf. [5]). *Suppose that $D \in R(X)$ and $T(K)$ is defined by Formula (1.3). Let $T_S(K) := T(K)|_S$, where S is defined by Formula (0.2). Then*

(i) *The set $T_S(K)$ is a commutative ring with the operations defined by Formulas (1.4);*

(ii) *The rings $H(K)$ and $T_S(K)$ are isomorphic. The mapping $T : f \Rightarrow T_{f,K}|_S$ is a ring isomorphism from $H(K)$ onto $T_S(K)$.*

Suppose that $D \in R(X)$ and $T_{f,K} = \{T_{f,h}\}_{h \in K}$ is a family of functional shifts for D induced by the function $f \in H(K)$. We consider the so-called **Pommiez** type operators \mathfrak{P}, P defined as follows:

$$(1.5) \quad \mathfrak{P}T_{f,h} := \begin{cases} h^{-1}(T_{f,h} - T_{f,0}) & \text{for } 0 \neq h \in K \\ DT_{f^{(1)},0} & \text{for } h = 0 \end{cases} \quad \text{on } X,$$

$$(1.6) \quad (Pf)(h) := \begin{cases} h^{-1}(f(h) - f(0)) & \text{for } 0 \neq h \in K \\ f^{(1)}(0) & \text{for } h = 0 \end{cases},$$

where, as usual, $f^{(n)} = d^n f / dh^n$, $n \in \mathbb{N}$.

Observe that the function $Pf \in H(K)$ and has the following expansion

$$(1.7) \quad (Pf)(h) = \sum_{k=0}^{\infty} a_{k+1} h^k \quad \text{for all } h \in K.$$

This implies

$$(1.8) \quad P \in L_0(H(K)).$$

Note, for the function $g = \exp$ the operator $(Pg)(hD)$ is called the **Bernoulli operator** for D (cf. [18]).

With a help of the author's result (see [4], Proposition 1.3.) it is easy to prove

PROPOSITION 1.1. *Suppose that $D \in R(X)$ and $T_{f,K} = \{T_{f,h}\}_{h \in K}$ is a family of functional shifts for D induced by the function $f \in H(K)$. Then on the set S we have*

$$(1.9) \quad \mathfrak{P}T_{f,h} = (Pf)(hD)D, \quad \text{for all } h \in K.$$

The fundamental result of this section is

THEOREM 1.2. *Suppose that all assumptions of Proposition 1.1 are satisfied, $f^{(1)}(0) \neq 0$ and $f(h) \neq f(0)$ for $0 \neq h \in K$. Then the operator $(Pf)(hD)$ is invertible on the set S for all $0 \neq h \in K$ and*

$$[(Pf)(hD)]^{-1} = g(hD),$$

where $g(h) = \sum_{k=0}^{\infty} b_k h^k \in H(K)$, the coefficients b_k ($k \in \mathbb{N}_0$) are determined by the following recursion relation

$$(1.10) \quad \begin{aligned} b_0 &= a_1^{-1}, \\ b_n &= -a_1^{-1} \sum_{k=0}^{n-1} b_k a_{n-k+1} \quad (n \in \mathbb{N}). \end{aligned}$$

P r o o f. Our assumptions imply that the function

$$(1.11) \quad g(h) = \begin{cases} h[f(h) - f(0)]^{-1} & \text{for } 0 \neq h \in K, \\ [f^{(1)}(0)]^{-1} & \text{for } h = 0 \end{cases}$$

is a member of $H(K)$ and

$$(1.12) \quad (Pf)(h)g(h) = 1 \quad \text{for all } h \in K.$$

Theorem 1.1 implies that the operator $(Pf)(hD)$, ($h \in K$) is invertible on S and $[(Pf)(hD)]^{-1} = g(hD)$. Suppose that the function $g(h) = \sum_{k=0}^{\infty} b_k h^k$ for $h \in K$. Formula (1.7) and Formula (1.12) together imply

$$1 = (Pf)(h)g(h) = \left(\sum_{k=0}^{\infty} a_{k+1} h^k \right) \left(\sum_{k=0}^{\infty} b_k h^k \right) = \sum_{k=0}^{\infty} c_k h^k \quad \text{for all } h \in K,$$

where $c_m = \sum_{k=0}^{\infty} b_k a_{m-k+1}$ for $m \in \mathbb{N}_0$. This implies Formula (1.10).

Theorem 1.2 and Formula (1.7) together imply

THEOREM 1.3. *Suppose that all assumptions of Theorem 1.2 are satisfied. Then $T_{Pf,K}$ is invertible in the ring $T_S(K)$ and its inverse $[T_{Pf,K}]^{-1} = T_{g,K} \in T_S(K)$, where the function g is defined by Formula (1.11).*

We are now ready to give the main theorem of this section.

THEOREM 1.4. *Suppose that all assumptions of Theorem 1.2. are satisfied. Then the following Euler–Maclaurin type formulas hold on the set S*

$$(1.13.a) \quad I = b_0(Pf)(hD) + \sum_{n=1}^{\infty} b_n h^n (Pf)(hD) D^n,$$

$$(1.13.b) \quad I = b_0(Pf)(hD) + \sum_{n=1}^{\infty} b_n h^n \mathfrak{P} T_{f,h} D^{n-1},$$

where $0 \neq h \in K$, b_k ($k \in \mathbb{N}_0$) are determined by Formula (1.10).

P r o o f. This follows directly from Theorem 1.3. and Formula (1.9).

EXAMPLE 1.1 (cf. [18]). Let $K = \mathbb{C}$ and $f = \exp$. Then Euler–Maclaurin Formula (1.13.b) has the following form

$$I = (P \exp)(hD) + \sum_{n=1}^{\infty} B_n h^{n-1} (n!)^{-1} (e^{hD} - I) D^{n-1} \quad \text{for } 0 \neq h \in K,$$

where B_n are Bernoulli numbers.

EXAMPLE 1.2. (The expansions of elementary functions which are used here can be found in [9].)

a) Let $K = K_{\Pi/2}$, f be the tangent function, \tan . Then for $0 \neq h \in K$

$$\tan(h) = \sum_{n=1}^{\infty} \frac{2^{2n}(2^{2n-1} - 1)}{(2n)!} |B_{2n}| h^{2n-1}, \quad (P \tan)(h) = h^{-1} \tan(h),$$

$$g(h) = 1/(P \tan)(h) = h[\tan(h)]^{-1} = 1 - \sum_{n=1}^{\infty} \frac{2^{2n}}{(2n)!} |B_{2n}| h^{2n},$$

where B_{2n} , as before, are Bernoulli numbers.

In this case Formula (1.13.b) has the form

$$I = \frac{\tan(hD)}{hD} - \sum_{n=1}^{\infty} \frac{2^{2n}}{(2n)!} |B_{2n}| h^{2n-1} \tan(hD) D^{2n-1}, \quad 0 \neq h \in K,$$

b) Let $K = K_{\Pi/2}$, f be the hyperbolic tangent function, \tanh . Then for $0 \neq s \in K$

$$\tanh(s) = \sum_{n=1}^{\infty} \frac{2^{2n}(2^{2n-1} - 1)}{(2n)!} B_{2n} s^{2n-1},$$

$$g(s) = 1/(P \tanh)(s) = \operatorname{scoth}(s) = 1 + \sum_{n=1}^{\infty} \frac{2^{2n}}{(2n)!} B_{2n} s^{2n},$$

where B_{2n} are Bernoulli numbers.

In this case Formula (1.13.b) has the form

$$I = \frac{\tanh(sD)}{sD} + \sum_{n=1}^{\infty} \frac{2^{2n}}{(2n)!} B_{2n} s^{2n-1} \tanh(sD) D^{2n-1}, \quad 0 \neq s \in K.$$

c) Let $K = K_{\Pi}$, f be the sine function, \sin . Then for $0 \neq h \in K$

$$(P \sin)(h) = h^{-1} \sin(h),$$

$$g(h) = h/\sin(h) = \operatorname{hcosec}(h) = 1 + \sum_{n=1}^{\infty} \frac{2(2^{2n-1} - 1)}{(2n)!} |B_{2n}| h^{2n},$$

where as before B_{2n} are Bernoulli numbers.

In this case Formula (1.13.b) has the form

$$I = \frac{\sin(hD)}{hD} + \sum_{n=1}^{\infty} \frac{2(2^{2n-1} - 1)}{(2n)!} |B_{2n}| h^{2n-1} \sin(hD) D^{2n-1}$$

for all $0 \neq h \in K$,

d) Let $K = K_{II}$, f be the hyperbolic sine function, \sinh . Then for $0 \neq h \in K$

$$(P \sinh)(t) = t^{-1} \sinh(t),$$

$$g(t) = t/\sinh(t) = \text{tcosech}(t) = 1 - \sum_{n=1}^{\infty} \frac{2(2^{2n-1} - 1)}{(2n)!} B_{2n} t^{2n},$$

where B_{2n} are Bernoulli numbers.

In this case Formula (1.13.b) has the form

$$I = \frac{\sinh(tD)}{tD} - \sum_{n=1}^{\infty} \frac{2(2^{2n-1} - 1)}{(2n)!} B_{2n} t^{2n-1} \sinh(tD) D^{2n-1}$$

for all $0 \neq t \in K$.

Clearly, Theorem 1.1 implies

Remark 1.1. Suppose that all assumptions of Proposition 1.1. are satisfied and $f(h) \neq 0$ for $h \in K$. Then the following formula holds

$$(1.14) \quad I = \sum_{k=0}^{\infty} c_k h^k f(hD) D^n \quad \text{on } S,$$

where $h \in K \setminus \{0\}$, c_k are determined by the recursion relation

$$c_0 = a_0^{-1}, \quad c_n = -a_0^{-1} \sum_{k=0}^{n-1} c_k a_{n-k}, \quad n \in \mathbb{N}.$$

2. In the present section, Euler–Maclaurin type Formulas (1.13) for linear complete metric spaces, induced by functional shifts (cf. [7]) are established.

In this section, we assume that X is a complete linear metric space. In the sequel, for reader's convenience only K will stand either for the unit disk K or for the complex plane \mathbb{C} , the function $f \in H(K)$ has the expansion

$$(2.1) \quad f(h) = \sum_{k=0}^{\infty} a_k h^k \quad \text{for all } h \in K.$$

For an operator $D \in R(X)$ we define the sets $S_f^{(n)}(D)$ ($n \in \mathbb{N}_0$), $S_f(D)$, $S_f^{\infty}(D)$, $S_K(D)$ as follows

$$(2.2) \quad S_f^{(n)}(D) := \left\{ x \in D_{\infty} : \sum_{k=0}^{\infty} a_k h^k D^{k+n} x \right. \\ \left. \text{is convergent for all } h \in K \right\}, \quad n \in \mathbb{N},$$

$$(2.3) \quad S_f(D) := S_f^{(0)}(D),$$

$$(2.4) \quad S_f^\infty(D) := \bigcap_{n \in \mathbb{N}_0} S_f^{(n)}(D),$$

$$(2.5) \quad S_K(D) := \bigcap_{g \in H(K)} S_g^\infty(D),$$

where D_∞ is the set of smooth elements defined by Formula (0.1).

PROPOSITION 2.1 (cf. [7]). *Suppose that $D \in R(X)$. Then*

- (i) $S \subset S_f^\infty(D) \subset S_f(D) \subset D_\infty \subset \text{dom } D$,
- (ii) $E \subset S_f^\infty(D)$, $E \subset S_K(D)$, for $K = \mathbb{C}$,

where the sets S and E are defined by Formulas (0.2), (0.3), respectively.

As in Section 1, we take

DEFINITION 2.1. A family $T_{f,K} = \{T_{f,h}\}_{h \in K} \subset L_0(X)$ is said to be a family of *functional shifts* for an operator $D \in R(X)$ induced by the function f if

$$(2.6) \quad T_{f,h}x = [f(hD)]x \quad \text{for all } h \in K; x \in S_f(D),$$

where the operator $f(hD)$ is defined by Formula (1.2), the set $S_f(D)$ is defined by Formula (2.3).

We need (cf. [7])

PROPOSITION 2.2. *Suppose that $D \in R(X)$ and $T_{f,K} = \{T_{f,h}\}_{h \in K}$ is a family of functional shifts for D induced by the function $f \in H(K)$. Let $E_\lambda = \ker(D - \lambda I) \neq \{0\}$ for a $\lambda \in K$. Then for all $h \in K$*

$$(2.7) \quad T_{f,h}x = f(\lambda h)x \quad \text{for all } x \in E_\lambda;$$

THEOREM 2.1 (cf. [7]). *Let $D \in R(X)$ and $T(K)$ be defined by Formula (1.3). Let $T_{E_\lambda}(K) := T(K)|_{E_\lambda}$, where $E_\lambda = \ker(D - \lambda I) \neq \{0\}$ and $\lambda \in K$. Then*

(i) *The set $T_{E_\lambda}(K)$ is a commutative ring with the operations defined by Formulas (1.4);*

(ii) *If $\lambda \neq 0$ then the rings $H(K)$ and $T_{E_\lambda}(K)$ are isomorphic. The mapping $T : f \Rightarrow T_{f,K}|_{E_\lambda}$ is an isomorphism of $H(K)$ onto $T_{E_\lambda}(K)$.*

We note that by our assumptions there always exists a number $\lambda \in K$ such that $E_\lambda \neq \{0\}$, for example $0 = \lambda \in K$.

Let $D \in R(X)$ and $E_\lambda \neq \{0\}$ for $0 \neq \lambda \in K$. We introduce, in a similar way as in Section 1 (cf. Formula (1.5)) the **Pommiez** type operator defined as follows

$$(2.8) \quad \mathfrak{P}T_{f,h} := \begin{cases} \frac{f(hD) - f(0)I}{h} & \text{for } 0 \neq h \in K \\ f^{(1)}(0)D & \text{for } h = 0. \end{cases}$$

The equality $Dx = \lambda x$ for $x \in E_\lambda$ and Formula (2.7) together imply that on the set E_λ we have

$$(2.9) \quad \mathfrak{P}T_{f,h} = \begin{cases} \frac{f(\lambda h) - f(0)}{h} I & \text{for } 0 \neq h \in K \\ \lambda f^{(1)}(0)I & \text{for } h = 0. \end{cases}$$

Clearly, Formula (2.9) implies that the operator D commutes with \mathfrak{P} on the set $T_{E_\lambda}(K)$.

We have a similar result to Proposition 1.1.

PROPOSITION 2.3. *Suppose that all assumptions of Proposition 2.2 are satisfied. Then on the set E_λ we have the formula*

$$(2.10) \quad \mathfrak{P}T_{f,h} = (Pf)(hD)D = (DPf)(hD) \quad \text{for all } h \in K,$$

where the Pommiez operator $P \in L_0(H(K))$ is defined by Formula (1.6).

Proof. From the beginning, note that Formula (1.8) and Proposition 2.1(ii) together imply that $E_\lambda \subset S_{Pf}(K)$. By definition, and Formula (1.7) we get on E_λ

$$\begin{aligned} (DPf)(hD) &= (Pf)(hD)D = \left(\sum_{n=1}^{\infty} a_n h^{n-1} D^{n-1} \right) D = h^{-1} \sum_{n=1}^{\infty} a_n h^n D^n \\ &= h^{-1} (f(hD) - f(0)I) = h^{-1} (f(\lambda h)I - f(0)I) = \mathfrak{P}T_{f,h} \text{ for all } 0 \neq h \in K. \end{aligned}$$

By definition, Formula (2.10) holds on E_λ for $h = 0$, also.

LEMMA 2.1. *Suppose that $D \in R(X)$, $R \in \mathcal{R}_D$ and $T_{f,K} = \{T_{f,h}\}_{h \in K}$ is a family of functional shifts for D induced by the function $f \in H(K)$. Then on the set $S_{Pf}(D)$ the equality*

$$(2.11) \quad (Pf)(hD) = \mathfrak{P}T_{f,h}R$$

holds for all $h \in K$, where $S_{Pf}(D)$ is determined by Formula (2.3).

Proof. Let $x \in S_{Pf}(D)$ and $0 \neq h \in K$ be arbitrarily fixed. Definition and Formula (1.7.) together imply

$$\begin{aligned} (Pf)(hD)x &= \sum_{k=0}^{\infty} a_{k+1} h^k D^k x = \sum_{k=0}^{\infty} a_{k+1} h^k D^k DRx \\ &= h^{-1} \sum_{k=0}^{\infty} a_{k+1} h^{k+1} D^{k+1} Rx = h^{-1} (f(hD)Rx - a_0 Rx) \\ &= h^{-1} (f(hD) - f(0)I)Rx = \mathfrak{P}T_{f,h}Rx. \end{aligned}$$

Evidently, Formula (2.11) holds for $h = 0$, also.

Note, the last equality implies that if $x \in S_{Pf}(D)$ then $Rx \in S_f(D)$. Clearly and conversely, if $Rx \in S_f(D)$ then $x \in S_{Pf}(D)$.

Lemma 2.1. implies

PROPOSITION 2.4. *Suppose that all assumptions of Lemma 2.1 are satisfied. Then Formula (2.11) holds on the set $S_K(D)$, where $S_K(D)$ is determined by Formula (2.5).*

Obviously, Proposition 2.1(ii) and the definition together imply

$$E_\lambda \subset S_K(D) \subset S_{Pf}(D).$$

Using Theorem 2.1, in a similar way as Theorem 1.2. (cf. Theorem 1.3) we prove

THEOREM 2.2. *Suppose that all assumptions of Proposition 2.2 are satisfied, $f^{(1)}(0) \neq 0$ and $f(h) \neq f(0)$ for $0 \neq h \in K$. Then $T_{Pf,K}$ is invertible in the ring $T_{E_\lambda}(K) = T(K)|_{E_\lambda}$ and its inverse $[T_{Pf,K}]^{-1} = T_{g,K} \in T_{E_\lambda}(K)$, where the function g is defined by Formula (1.11).*

Theorem 2.2, Proposition 2.3 together imply

THEOREM 2.3. *Suppose that all assumptions of Theorem 2.2 are satisfied. Then Formulas (1.13.a), (1.13.b) hold on the set E_λ .*

Evidently, Theorem 2.1. implies

REMARK 2.1. Suppose that all assumptions of Proposition 2.2. are satisfied and $f(h) \neq 0$ for $h \in K$. Then Formula (1.14) holds on E_λ .

COROLLARY 2.1. *Suppose that all assumptions of Proposition 2.2 are satisfied and $\lambda \in K$. Let an operator $R \in \mathcal{R}_D$ be such that the operator $I - \lambda R$ is invertible. Then the set*

$$E_\lambda(R) := (I - \lambda R)^{-1}(\ker D) \subset E_\lambda,$$

(cf. [14]). This implies that Theorem 2.2, Theorem 2.3, Remark 2.1 also hold for $E_\lambda(R)$. If $K = \mathbb{C}$ then these same hold for the set E defined by Formula (0.3).

Evidently, the above corollary holds in the case when the operator D has a Volterra right inverse R , (cf. [14]).

Here, we shall show that Euler–Maclaurin type formulas hold on the set $S_K(D)$.

In [7] was proved the following

PROPOSITION 2.5. *Suppose that all assumptions of Lemma 2.1 are satisfied and D is closed. Then for all $h \in K$ $T_{f,h}$ commute on the set $S_f(D) \cap S_f^{(1)}(D)$ with the operator D , where $S_f(D)$, $S_f^{(1)}(D)$ are determined by Formulas (2.3), (2.2), respectively.*

THEOREM 2.4. *Suppose that all assumptions of Proposition 2.5 are satisfied. Let $T_{S_K(D)} = T(K)|_{S_K(D)}$, where $T(K)$ is determined by Formula (1.3). Then*

(i) the set $T_{S_K(D)}$ is a commutative ring with the operations defined by Formulas (1.4);

(ii) the rings $H(K)$ and $T_{S_K(D)}$ are isomorphic. The mapping $T : f \Rightarrow T_{f,K}|_{S_K(D)}$ is a ring isomorphism from $H(K)$ onto $T_{S_K(D)}$.

Definition of the set $S_K(D)$, Formula (1.8) and Proposition 2.5. imply

PROPOSITION 2.6. *Suppose that all assumptions of Proposition 2.5 are satisfied. Then Formula (2.10) holds on the set $S_K(D)$.*

Using Theorem 2.4, in a similar way as Theorem 1.2 (cf. Theorem 1.3) we prove

THEOREM 2.5. *Suppose that all assumptions of Proposition 2.5 are satisfied, $f^{(1)}(0) \neq 0$ and $f(h) \neq f(0)$ for $0 \neq h \in K$. Then $T_{Pf,K}$ is invertible in the ring $T_{S_K(D)}$ and its inverse $[T_{Pf,K}]^{-1} = T_{g,K} \in T_{S_K(D)}$, where the function g is defined by Formula (1.11).*

Theorem 2.5. and Proposition 2.6. together imply

THEOREM 2.6. *Suppose that all assumptions of Theorem 2.5 are satisfied. Then Formulas (1.13.a), (1.13.b) hold on the set $S_K(D)$.*

Clearly, Theorem 2.4 implies

Remark 2.1. Suppose that all assumptions of Proposition 2.5. are satisfied and $f(h) \neq 0$ for $h \in K$. Then Formula (1.14) holds on $S_K(D)$.

3. In the present section, an isomorphism of a ring of analytic functions onto a ring of continuous shifts is established. As consequences, Formulas (1.13) for a subset of the space of D -analytic elements (cf. [14], [15]) are given.

In this section we still assume that X is a complete linear metric space. As before, the function $f \in H(K)$ has expansion (2.1), where $K = K_\rho$, $0 < \rho \leq +\infty$. Let $D \in R(X)$ and F be an initial operator for D corresponding to an $R \in \mathcal{R}_D$. Write

$$A_R(D) := \left\{ x \in D_\infty : x = \sum_{n=0}^{\infty} R^n F D^n x \right\},$$

$$A(D) := \bigcup_{R \in \mathcal{R}_D} A_R(D).$$

The set $A(D)$ is said to be the space of D -analytic elements (cf. [15]).

It is obvious that

$$S \subset A(D) \subset D_\infty.$$

Denote by $T^c(K) \subset T(K)$ the set of all continuous functional shifts for $D \in R(X)$ induced by the set $H(K)$.

THEOREM 3.1 (cf. [7]). *Suppose that an operator $D \in R(X)$ and $T_{f,K} = \{T_{f,h}\}_{h \in K} \subset T^c(K)$ is a family of functional shifts for D induced by the function $f \in H(K)$. If an operator $R \in \mathcal{R}_D$ is continuous then $A_R(D) \subset S_f(D)$.*

The following theorem (similar to Theorems 1.1, 2.1, 2.6) for the set $T^c(K)|_{A_R(D)}$, where $R \in \mathcal{R}_D$ is continuous holds

THEOREM 3.2. *Let $D \in R(X)$ and $T_{A_R(D)}^c := T^c(K)|_{A_R(D)}$, where $R \in \mathcal{R}_D$ is continuous. Then*

- (i) *the set $T_{A_R(D)}^c$ is a commutative ring with the operations defined by Formulas (1.4);*
- (ii) *the rings $H(K)$ and $T_{A_R(D)}^c$ are isomorphic. The mapping $T : f \Rightarrow T_{f,K}^c|_{A_R(D)}$ is a ring isomorphism from $H(K)$ onto $T_{A_R(D)}^c$.*

P r o o f. (i) Evidently, it is enough to show that the multiplication of two continuous families of functional shifts for D which are restricted to the set $A_R(D)$ is well defined. Suppose that we are given families $T_{f,K}, T_{g,K} \in T^c(K)$, where $f, g \in H(K)$ are arbitrarily fixed and

$$f(h) = \sum_{k=0}^{\infty} a_k h^k, \quad g(h) = \sum_{k=0}^{\infty} b_k h^k \quad \text{for all } h \in K.$$

Theorem 3.1 implies that $A_R(D) \subset S_f(D), S_g(D), S_{fg}(D)$. Let F be an initial operator for D corresponding to the continuous operator $R \in \mathcal{R}_D$. Let $0 \neq x \in A_R(D)$ and $h \in K$ be arbitrarily fixed. Our assumptions and Proposition 1.1 imply

$$\begin{aligned} [T_{f,h} T_{g,h}]x &= T_{f,h}[T_{g,h}x] = T_{f,h}\left[T_{g,h}^* \sum_{n=0}^{\infty} R^n F D^n x\right] \\ &= T_{f,h}\left[\sum_{n=0}^{\infty} T_{g,h} R^n F D^n x\right] = T_{f,h}\left[\sum_{n=0}^{\infty} \sum_{k=0}^n b_{n-k} h^{n-k} R^k F D^n x\right] \\ &= \sum_{n=0}^{\infty} \sum_{k=0}^n b_{n-k} h^{n-k} T_{f,h} R^k F D^n x \\ &= \sum_{n=0}^{\infty} \sum_{k=0}^n b_{n-k} h^{n-k} \sum_{j=0}^k a_{k-j} h^{k-j} R^j F D^n x \\ &= \sum_{n=0}^{\infty} \sum_{k=0}^n \sum_{j=0}^k a_{k-j} b_{n-k} h^{n-j} R^j F D^n x \end{aligned}$$

$$\begin{aligned}
&= \sum_{n=0}^{\infty} \sum_{j=0}^n \left(\sum_{k=j}^n a_{k-j} b_{n-k} \right) h^{n-j} R^j F D^n x \\
&= \sum_{n=0}^{\infty} \sum_{j=0}^n c_{n-j} h^{n-j} R^j F D^n x, \text{ where } c_q = \sum_{p=0}^q a_p b_{q-p} \ (q \in \mathbb{N}_0).
\end{aligned}$$

Clearly, if $\mathbf{a} = \{a_q\}$, $\mathbf{b} = \{b_q\}$ then the sequence $\mathbf{c} = \{c_q\}$ is a convolution of \mathbf{a} and \mathbf{b} , i.e. $\mathbf{c} = \mathbf{a} * \mathbf{b} = (\sum_{p=0}^q a_p b_{q-p})$.

Take $w(h) = f(h)g(h)$ then $w \in H(K)$ and $w(h) = \sum_{n=0}^{\infty} c_n h^n$, $h \in K$. This follows from the Cauchy theorem about multiplication of two series.

Hence,

$$[T_{f,h} T_{g,h}]x = \sum_{n=0}^{\infty} T_{w,h} R^n F D^n x = T_{w,h} \left(\sum_{n=0}^{\infty} R^n F D^n x \right) = T_{w,h} x$$

for $T_{w,K} = T_{f,g,K} \in T^c(K)$.

(ii) The proof is along going the same lines as the proofs of the mentioned theorems which concern the sets S , E_{λ} and $S_K(K)$ (cf. [5], [7]).

PROPOSITION 3.1. *Suppose that all assumptions of Theorem 3.1 are satisfied and $R \in \mathcal{R}_D$ is continuous. Then following formula*

$$(3.1) \quad \mathfrak{P}T_{f,h} = (Pf)(hD)D$$

holds on the set $A_R(D)$ for all $h \in K$.

P r o o f. Fix $x \in A_R(D)$ and take $y = Dx$. The continuity of $R \in \mathcal{R}_D$ implies that

$$A_R(D) \subset S_{Pf}(D), \quad D(A_R(D)) \subset A_R(D).$$

First inclusion follows from Theorem 3.1. and Formula (1.8) , second from [15] (Theorem 3.2 p. 22). This and Formula (1.7) together imply

$$\begin{aligned}
[(Pf)(hD)D]x &= (Pf)(hD)y = \sum_{n=1}^{\infty} a_n h^{n-1} D^{n-1} y = \sum_{n=1}^{\infty} a_n h^{n-1} D^{n-1} Dx \\
&= h^{-1} \sum_{n=1}^{\infty} a_n h^n D^n x = h^{-1} (f(hD) - f(0)I) = \mathfrak{P}T_{f,h} \quad \text{for all } 0 \neq h \in K.
\end{aligned}$$

For $h = 0$ Formula (3.1) follows from definition.

THEOREM 3.3. *Suppose that all assumptions of Proposition 3.1 are satisfied, $f^{(1)}(0) \neq 0$ and $f(h) \neq f(0)$ for $0 \neq h \in K$. Then $T_{Pf,K}^c$ is invertible in the ring $T_{A_R(D)}^c$ and its inverse $[T_{Pf,K}]^{-1} = T_{g,K}^c \in T_{A_R(D)}^c$, where the function g is defined by Formula (1.11).*

Theorem 3.3.and Proposition 3.1. together imply

THEOREM 3.4. Suppose that all assumptions of Theorem 3.3 are satisfied. Then Formulas (1.13.a), (1.13.b) hold on the set $A_R(D)$.

Clearly, Theorem 3.3 implies

Remark 3.1. Suppose that all assumptions of Proposition 3.1. are satisfied and $f(h) \neq 0$ for $h \in K$. Then Formula (1.14) holds on $A_R(D)$.

References

- [1] Z. Binderman, *Complex R-shifts for right invertible operators*, Demonstratio Math. 23 (1990), 1043–1053.
- [2] Z. Binderman, *On some properties of complex R-shifts*, Demonstratio Math. 25 (1992), 207–217.
- [3] Z. Binderman, *Some properties of operators of complex differentiation and shifts*, Zeszyty Naukowe Politechniki Łódź, Matematyka 24 (1993), 5–18.
- [4] Z. Binderman, *Cauchy integral formula induced by right invertible operators*, Demonstratio Math. 25 (1992), 671–690.
- [5] Z. Binderman, *Functional shifts induced by right invertible operators*, Math. Nachr., 157 (1992), 211–224.
- [6] Z. Binderman, *On periodic solutions of equations with right invertible operators induced by functional shifts*, Demonstratio Math. 26 (1993), 535–543.
- [7] Z. Binderman, *A unified approach to shifts induced by right invertible operators*, Math. Nachr. 161 (1993), 239–252.
- [8] Z. Binderman, *On singular boundary value problems for generalized analytic functions*, Zeszyty Nauk. Politech. Łódź, Matematyka, 23 (1993), 11–16.
- [9] I. Gradstein and I. Ryzhik, *Tables of integrals, sums, series and products*, (Russian), Nauka, Moskva, 1971.
- [10] N. Linchuk, *Representation of commutants of the Pommiez operator and their applications*, (Russian), Mat. Zametki 44 (1988), 794–802.
- [11] J. B. Miller, *The standard summation operator, the Euler–Maclaurin sum formula and the Laplace transformation*, J. Australian Math. Soc. 39 (1985), 376–390.
- [12] Nguyen Van Mau, *Boundary value problems and controllability of linear systems with right invertible operators*, Dissertationes Math., 316, Warszawa, 1992.
- [13] D. Przeworska-Rolewicz, *Shift and periodicity for right invertible operators*, Research Notes in Mathematics 43, Pitman Advanced Publish. Program, Boston-London-Melbourne, 1980.
- [14] D. Przeworska-Rolewicz, *Algebraic Analysis*, PWN-Polish Scientific Publishers and D. Reidel Publish. Comp. Warszawa-Dordrecht, 1988.
- [15] D. Przeworska-Rolewicz, *Spaces of D -paraanalytic elements*, Dissertationes Math. 302, Warszawa, 1990.
- [16] D. Przeworska-Rolewicz, *True Shifts*, J. Math. Anal. Appl., 170, (1992), 27–48.
- [17] D. Przeworska-Rolewicz, *Advantages of one-dimensional kernels*, Math. Nachr. 149 (1990), 133–147.
- [18] D. Przeworska-Rolewicz, *Generalized Bernoulli operator and Euler–Maclaurin formula*, In: *Advances in Optimization*, Proc. 6-th. French-German Colloquium on Optimization, Lambrecht, FRG, 2-9 June 1991, Lecture Notes in Economic and Math. Systems, 382, Springer-Verlag, Berlin-Heidelberg-New York, 1992, 355–368.

- [19] D. Przeworska-Rolewicz, *The operator $\exp(hD)$ and its inverse formula*, Demonstratio Math., 26 (1993), 545–552.
- [20] H. von Trotha, *Structure properties of $D - R$ spaces*, Dissertationes Math. 180, (1981).

ACADEMY OF AGRICULTURE
Nowoursynowska 166
02-766 WARSZAWA, POLAND

Received March 13, 1993.