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ON THE NORMAL ORDER OF DOMAIN SETS 
OF BINARY RELATIONS 

In the paper we consider any binary relation p with "almost independent" 
codomain sets. We investigate the influence of the independence condition 
on the corresponding domain sets of p and the lifting relation p. 

1. Notation 
X y — finite sets 
P(X) — family of all subsets of X 
Pk(y) — family of all ¿-element subsets of y 
p C X x y — a binary relation 
p C P{X) x Pk(y) — the relation defined by 

X/5Y Vxex3yeyxPy ( s e e [3]) 

a(x, y)(a(x, y)) — the characteristic function of the relation p(p) respec-
tively 

Us = {y£Y: xpy} 
Vy = {x e Y : xpy} 
|i4| — denotes the cardinality or absolute value according to whether A 

is a set or a number 
(a) — the largest integer < a. 
The symbol Q( ) is employed in the following sense: A(X) = 0(B(x)) 

where B(X) is positive, means that 

\MX)\ 
lim sup < oo. 
x-oo 

2. Introduction 
Let X = {xi -< x2 -<•••}, 2) = {2/1 -< 2/2 - < . . . } be the infinite ordered 

sets and p C X x 2) any binary relation. 
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Given any function Y = Y(u) we denote by p\u the relation p restricted 
to the set { x x , . . . , x < u ) } x { t / i , . . . , 2 /<v») } . 

We investigate the asymptotic behaviour of \UX\ and |Vj,| for p = p\u 

as «-approaches infinity. Let X and J7 denote the domain and codomain 
respectively of p\u while X and Y = Y(2l) their cardinalities. Then any 
function V = V(X, Y) (if exists) such that we have 

(i) = 
y€Y 

with some ¿ ( X ) tending to zero as X approaches infinity we call the nor-
mal order of the domain sets Vy (y (E V). The notion of normal order is 
traditionaly used in the theory of numbers (where p is a divisibility rela-
tion). The condition (1) says (roughly speaking) that the value od \Vy\ is 
asymptotically equal to V for almost all y € y. 

In the paper we establish a sufficient conditions for the relation p and 
p to have the normal order of the domain sets and we present the explicite 
formula for V(X,Y). In particular taking as p the divisibility relation one 
obtains the well know conclusions about the normal order of the number 
theoretical functions u{n) and d{n) (cf. [1] p. 356). 

3. Almost independence of codomain sets 
Having endowed the discrete measure on y one regards two sets Ux, Ux< 

as independent iff 

\uxnux,\ = \ux\\ux,\\y\-1. 
In many examples (see below) the above quantity is valid only approxi-
mately. We shall therefore replace the above condition by the average one, 
replacing the corresponding equality by the asymptotic equality as X —* oo. 
More precisely we shall postulate the following approximate formulas (for 
any distinct x i , X2 € X ) 

(A x ) = y / i ( x i ) + 
yey 

(A2) a(xi,y)a(x2,y) = Yfi(x1)p,(x2) + r'(xi,x2;y), 
yey 

where fi(x) is some nonnegative function such that 0 < p,(x) < 1 and r, r' 
are to be regarded as the remainder terms. 

Assume that the following conditions hold true 

(El) 2 > ( * ) = * W { l + 0 ( i ( X ) ) } , 
xex 
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(E2) E r(x;y) = 0(YF(X)[6(X) + F{X)-% 
sex 

(£3) £ r'(x, x2;y) = O (YF(X)2[6(X) + F(X)-1]), 
Xl,X2eX 

with some F(X), S(X) satisfying 

lim F{X) = oo; lim ¿(X) = 0. 
X—*oo X-+oo 

Then we say that the codomain sets Ux (a; 6 «V) are almost independent 
in y. 

4. The principal result 

Theorem. Under the assumptions ( / l i ) ^ / ^ ) , (E1)-{E3) we have that 

vzy xex 

= 0{YF(X)2[6(X) + F(X)" 1 ]} as X —> oo. 

P r o o f . Squaring out the left-hand-side of (*) we obtain that it is equal to 
E{ ^ a(x1,y)a(x2,y)-2^2a(x,y)F(X) + F(X)2} = W-2V + U, say 

y xi,x7 x 

where the variables in the above sums range over y € y, z i , x € X. 
Changing the order of summation we obtain 

W =^^2a(xi,y)a(x2,y)= E E f W x 2 ' f ) + ESQ(z'2/)2-
Xi,x2 y x1jtx2 y . x y 

The second term contributes to the error term, since 

E E «(*, < E E *(*. v) = E i m * ) + K * ; y>] 
x y x y x 

< {yf(A-)[ i + ©(¿(x))] + o ( r F ( A ' ) [ i ( x ) + Fix)-1])} 

= + 0[i(A") + F(X)- 1 ]} = 0{Y/XX)2[£(X) + F( A')-1]}. 

The first one is equal to 

+ E r ( I l , l 2 ; J ) = y f ( I ) 2 { l + 0 ( i ( I ) ) } 2 
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+ o [y £ ,!(*)] + 0{y^(X)2[i(.Y) + F( A')-1]} 

X 

= Y F ( X ) 2 { 1 + © ( ¿ ( A ) ) + O i n i J - ' t l + ¿ ( X ) ] + © ( [ ¿ ( A ) + F ( - Y ) " 1 ] ) } 

= Y F { X f { 1 + 0 [ t f ( A ) + n ^ ) - 1 ] } . 

S i m i l a r l y w e s h o w 

x y x 

= F(X){FF(X){1 + 0(i(A'))} + 0(Kf (A-)a[i(X) + W 1 ] ) } 

= y F ( A ) 2 { l + ©(¿¡(A') + F(A')-1)}, 

u = = Y F ( x f -
y 

T h e r e f o r e w e h a v e 

W - 2 V + U = 0{yF(A)2[(5(A) + F ( A ) " 1 ] } 

w h i c h c o m p l e t e s t h e p r o o f o f t h e T h e o r e m . 

COROLLARY. Under the assumptions of the Theorem there exists an ab-
solute constant C > 0 such that 

( 2 ) c a r d [ y € J : £ a(x, y) > F(A'){1 + [6(X) + F(X)-1]*} 
xex 

or £ a ( x , j / ) < F ( X ) { l - [ ¿ ( A ) + F ( A ) - 1 ] 3 } j < C y [ £ ( A ) + F(A)"1]*. 
xex 

P r o o f . D e n o t i n g t h e a b o v e se t by S ( y , X ) w e o b t a i n in v i e w o f ( * ) 

£ [ ¿ ( A ) + F { X ) ~ ^ F { X f = 0{yF(A')2[^(A) + F ( A ' ) " 1 ] } 

vzs(y,x) 

h e n c e for s o m e c o n s t a n t C > 0 it h o l d s 

c a r d S { y , X ) < CY[6(X) + F ( A ) _ 1 ] 5 

as a s s e r t e d . 

PROPOSITION. Under the assumptions of the above corollary we have 

( 3 ) c a r d { y € / > * ( ? ) : £ a ( X , Y ) > W W " 1 ] * ) } 

X€P(X) 

(4) card{Y€P fc(3>): £ 3(X, Y) < 2
i ,<*><1-[4W ! ,(*r1]*)} 
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< CYk[6{X)+ FiX)-1}*. 

P r o o f . Letting S C V , * ) , Sk(y,X), S j U J , * ) b e t h e corresponding sets 
in (2), (3), (4 ) respectively and ¥ = { y i , . . . , yk}, we will prove the implica-
tion 

(5 ) { » 1 , . •. , ite} € Sk(y, X ) U S'k(y, X ) => B i ^ x * V j € 5 ( y , 

This condition completes the proof since the cardinality of such { j / i , . . . 
. . . , y^) is bounded by 

as it is required in (3 ) and (4). To prove (5) let 

X' = X'(k) = { x £ X : a ( { x } , { y i , . . . , y k } ) = l } 

and assume on the contrary that V i< j < k yj G Y \ S(y, X). 

Then we have 

£ a(X, { y i , . . . , yk}) — 2'x'' 
xeP(A-) 

where in view of (2 ) 

xex 
k 

< E £ * ̂ wo + w*)+w1]*} 
j-1x£X 

and 

|X'| > max £ a ( x , y j ) > F(A'){1 - [S{X) + F(X)-1]^} 

on the other hand. Hence in view of (3 ) and (4) we obtain that {?/i, . . . , yk} 
is neither in Sk(y,X) nor S'(y, X). This contradiction proves that (5) holds 
true and therefore the proof of Proposition is established. 

R e m a r k . If we attach with any pair (x, y) such that xpy the "arrow" 
with the endpoints x and y respectively then we can express the conditions 
(E1 ) - (E3 ) by saying that 

( i ) the number of all arrows is asymptotically equal to Y F ( X ) 
( i i ) the ends of arrows form the "independent" sets in codomaine of the 

relation. 

As the conclusion we obtain that the almost all coimages of points have 
asymptotically F ( X ) elements. 
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5. Examples 

E X A M P L E 1. Let U be any set of cardinality n (n —• oo), p — the relation 
of inclusion. We set X = Pi(U), y = P(U). We have 

\UX\ = 2 n _ 1 , \UXl C\UX2\ = 2 n " 2 , ( x l 7 £x 2 ) . 
Hence (Ai) and (A2) a r e satisfied with n(x\) = ^(«2) = K ^ i i ^ ) = 
r'(xi,®2;IV) = 0. Therefore (El) holds with F(X) = F(n) = f , 6{n) = 0, 
while (E2), (E3) hold trivially. By the Corollary we obtain that the number 
of y € P(U) having more that f (1 + (f ) (or less then f (1 - ( f ) - J ) ) 
elements is at most C2nn~i with some constant C not depending on n. 

E X A M P L E 2. X — Pi(U), y — set all subsets of U with even number of 
elements (including the empty set). Since 

£ < - » - ( : ) = < i - i r = o 
m=0 v

 ' 

we have that 

\y\ = l2* = 2*-1; \UX\ = 12»-1 = \\y\ 

\uXlnuX2\ = \2n~2 = ±\y\, (xi^x2). 

Therefore we obtain the same conclusion as in Example 1. 

E X A M P L E 3 . y — family of sets with the number of elements divisible 
by 3. Using the formulas 

S U H H - t ) . 

GUO-K'—! 

which can be proved by induction (see ex. 1.17.18 [2]), we infer that 

1 ^ 1 = 1 ( 2 - ' + 2 CO . I I Z I T ) , 
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IUX1 nuX2| = i ( 2 " - 2 + 2cos , { x i ± X 2). 

Hence (Ai), (^2) hold with 

1 2 2 
/z(xx) = f i ( x 2 ) = | r ( ® i ; 3 ? ) | < - ; |r(®!, x2; 3>)| < - . 

Therefore (El ) is satisfied with F(n) = y, ¿(n) = 0. Also for n > 8 the 
conditions (E2) and (E3) hold true, since 

The conclusion is therefore the same as in Example 1. 

EXAMPLE 4. Let p be the divisibility relation and T — be a large positive 
integer (T -> oo). We define 

y = {/(*) = t2 + 1, t — positive integer t < T}, 

X = {p: p — prime number, p < VT}. 

Then we have the approximation formula 

2 > ( p , y ) = E E E 1 

yey t<T -d (mod p) t<T 
/ ( i )=0(p) }(-d)= 0 (mod p) tstf (mod p) 

T - t f f t - d / T - d \ \ 
= E — + - ( — / J 

tf (mod p) F V y \ F / / 
/(1?)=0 (mod p) 

T . J T - d / T — 

where 

il if p = 2 

2 if p = 1 (mod 4) 
0 if p = 3 (mod4). 

The choice /i(p) = assures that |r(p; y ) | < 4. The same argument shows 
that 

E ' y ) a ( p i ' y) = t M p i )Kp2 ) + r\pi ,p2-,y) 
yey 

with \r'{pi,p2',y)\ < 4. 
The assertion (El ) follows from the well known formula (see e.g. [1]) for 
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the prime reciprocal series 

T - = loglogv/r f l + O(loglogT) -1)}. 
V 

P<VT 

Since X = ir(y/T) — number of primes < \ / T , we obtain (manipulating 
with the error term 0 ( )) that 

T - = loglogX{l + 0[(loglog X) - 1 ]} . ' p 

p<Vf 

Moreover we have 

X ) \r'(PuP2;y)\ <8T = O ( X l o g l o g X ) 
Pi ,P2<\/T 

hence the conditions (E2), (E3) are satisfied with Y = T, X = ir(\/T), 

F(X) = log log X; S(X) = (loglog A')"1. 
Therefore by the Corollary we infer that almost every value f(t), (t < T) 

has 
loglogX{l + ©[(loglog X)-*]} = loglogT{l + 0[(loglogr)"i]} 

prime divisors not exceeding v/T. Since y = f(t) has at most 4 prime divisors 
in the interval [VT, T2 + 1] the same conclusion holds for the number of all 
prime divisors of / ( f ) . 
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