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ON THE NORMAL ORDER OF DOMAIN SETS
OF BINARY RELATIONS

In the paper we consider any binary relation p with “almost independent”
codomain sets. We investigate the influence of the independence condition
on the corresponding domain sets of p and the lifting relation p.

1. Notation

X, Y — finite sets

P(X) — family of all subsets of X’

P(Y) — family of all k-element subsets of Y
p C X x Y — a binary relation

p C P(X) x P(Y) — the relation defined by

XpY ¢ Veex3yevzpy  (see [3)])

a(z,y)(a(z, y)) — the characteristic function of the relation p(p) respec-
tively

Us={y €Y :zpy}

Vy={z €Y :zpy}

|A] — denotes the cardinality or absolute value according to whether A
is a set or a number

{(a) — the largest integer < a.

The symbol O( ) is employed in the following sense: A(X) = O(B(z))
where B(X) is positive, means that

|A(X )I
lim su
Xevod B(X) ©
2. Introduction
Let X = {z1 <22 < ...}, D = {3h < y2 < ...} be the infinite ordered
sets and p C X X P any binary relation.
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Given any function Y = Y (u) we denote by p|, the relation p restricted
to the set {z1,...,z¢)} X {¥1,---, Yy }-

We investigate the asymptotic behaviour of |U,| and [V,| for p = p|,
as u-approaches infinity. Let A’ and ) denote the domain and codomain
respectively of p|, while X and ¥ = Y(X) their cardinalities. Then any
function V = V(X,Y) (if exists) such that we have

(1) DV =1Vl = 0¥ V?é(X))

yeYy

with some §(X) tending to zero as X approaches infinity we call the nor-
mal order of the domain sets V, (y € Y). The notion of normal order is
traditionaly used in the theory of numbers (where p is a divisibility rela-
tion). The condition (1) says (roughly speaking) that the value od |V,]| is
asymptotically equal to V for almost all y € ).

In the paper we establish a sufficient conditions for the relation p and
p to have the normal order of the domain sets and we present the explicite
formula for V(X,Y). In particular taking as p the divisibility relation one
obtains the well know conclusions about the normal order of the number
theoretical functions w(n) and d(n) (cf. [1] p. 356).

3. Almost independence of codomain sets
Having endowed the discrete measure on ) one regards two sets Uy, Uy
as independent iff

IUa: N Uz'l = IU:BIIUI’”yI_l'

In many examples (see below) the above quantity is valid only approxi-
mately. We shall therefore replace the above condition by the average one,
replacing the corresponding equality by the asymptotic equality as X — oc.
More precisely we shall postulate the following approximate formulas (for
any distinct z,,z € &)

(41) S a(e1,y) = Ya(ar) + (a1 ),
yey
(A2) > a(z1,9)(22,9) = Yp(e1)u(z2) + 7' (21,29, ),
yeY

where p(z) is some nonnegative function such that 0 < p(z) <1 and r, '
are to be regarded as the remainder terms.
Assume that the following conditions hold true

(E1) > ulz) = F(X){1+ 0(5(X))},

TEX
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(E2) Y r(z;Y) = OY F(X)[§(X) + F(X)™')),
reX
(E3) Y r(z,22;Y) = OY F(X)'[6(X) + F(X)7']),
1,T2€X
T1#T2

with some F(X), 6(X) satisfying
lim F(X)=o00; lim 6(X)=0.
X =00 X—o00

Then we say that the codomain sets U, (z € &’) are almost independent
in ).

4. The principal result
THEOREM. Under the assumptions (A1) Az), (E1)+{E3) we have that

@ T( ay)-Fx)

ye€Y =zeX
= O{Y F(X)*[6(X) + F(X)™Y]} as X — .

Proof. Squaring out the left-hand-side of (¥) we obtain that it is equal
to

Z{ Z a(:vl,y)a(zg,y)—2Za(z,y)F(X)—f-F(X)z} =W-2V4U, say

where the variables in the above sums range over y € Y, z;,z2,2 € X.
Changing the order of summation we obtain

W = Z Za(zlay)a(xhy)_ Z Ea(xlsy a(z2’y)+zza(z’y)2

T1,%2 ¥ T1#z2 Y

The second term contributes to the error term, since

YN oy < N a(z,y) = Y IVa(e) + (2 Y))

< A{Y F(X)[1 4 O(5(X))] + O(Y F(X)[6(X) + F(X)™'])}
= {YF(X)[1 + O[6(X) + F(X)™')} = O{Y F(X)*[6(X) + F(X)™1]}.
The first one is equal to

> Yp(zou(=) + (1,22 0)} = Y V(e )u(az) - E:YM(G«‘I)2

T1# T2 Z1,T2

+ 3 r(z1,25Y) = YF(X)P{1 + O(5(X))}?

T1#72



296 J. M. Pomykala, J. A. Pomykala
+O[Y Y u(@)] + OfY F(X)[8(X) + F(X)™])

= YF(X) {1+ O(6(X)) + O(F(X)'[1 + 6(X)] + O([6(X) + F(X)'])}
=YF(X)*{1+ 0[§(X) + F(X)™]}.

Similarly we show

V=FX)Y > als,y) = F(X) ) (Yi(z) + 1(2; D))

= F(X{Y F(X){1+O(6(X))} + O(Y F(X)*[§(X) + F(X)™'])}
=YFP(X)* {1+ O(8(X) + F(X)™1)},
U= F(X)!=YFX).
Therefore we have
W -2V +U = O0{YF(X)*[6(X)+ F(X)™]}
which completes the proof of the Theorem.

COROLLARY. Under the assumptions of the Theorem there exists an ab-
solute constant C > 0 such that

() card{ye¥: Y a(z,y) > F(X){1+[6(X) + F(X)]3)
z€X
or Y a(z,y)<F(X){1 - [6(X) + F(X) ¥} }<CY5(X) + F(X)™1]3.
z€X
Proof. Denoting the above set by S(), X') we obtain in view of (%)
> B(X)+ FX)TRF(X)? = OY F(X)8(X) + F(X)™)}
YyES(Y,X)
hence for some constant C > 0 it holds
card S(Y,X) < CY[6(X) + F(X) )3
as asserted. .
ProrosITION. Under the assumptions of the above corollary we have
(3) card {Y € P(Y): Z a(X, Y) > 2kF(X)(1+[6(X)+F(X)‘1]%)}
XeP(X)
< CYMo(X)+ F(X)™]
(4) card {Y € Pk(y) . E a(X, Y) < 2F(X)(1—[5(X)+F(X)"1]§)}
XeP(X)
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< CYH[6(X) + F(X)™1]3.

Proof. Letting S(V,X), Sk(¥,X), S.(V, X) be the corresponding sets
in (2), (3), (4) respectively and Y = {y,...,yx}, we will prove the implica-
tion
(5)  {v1,---»9k} € S(I, X)U SV, X) = Jigi<r ¥ € SOV, X).

This condition completes the proof since the cardinality of such {y,...
...y Yk} is bounded by

(k)_/ 1) CY[6(X)+ F(X)™'J3 < CY*[§(X) + F(X)™'}3
as it is required in (3) and (4). To prove (5) let
X' =X®k)={zeX:a({z},{v1,.--»w}) =1}

and assume on the contrary that Vicj<k y; € Y \ S(V, X).
Then we have

z a(x’{yl’ . "7yk}) = 2|X !
XeP(X)
where in view of (2)

X' =) a({=} {v, - w})

zeX

k
<YY" alw,y;) < KFXO{L+[6(X) + F(X)™']3}

j=lzeX

and
K12 max 3 a(r) 2 FOOLL- (00 + X))

on the other hand. Hence in view of (3) and (4) we obtain that {y;,...,yx}
is neither in Sx(Y, X') nor S(Y, X’). This contradiction proves that (5) holds
true and therefore the proof of Proposition is established.

Remark. If we attach with any pair (z,y) such that zpy the “arrow”
with the endpoints z and y respectively then we can express the conditions
(E1)-(E3) by saying that

(i) the number of all arrows is asymptotically equal to Y F(X)
(ii) the ends of arrows form the “independent” sets in codomaine of the
relation.

As the conclusion we obtain that the almost all coimages of points have
asymptotically F(X) elements.
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5. Examples

EXAMPLE 1. Let U be any set of cardinality n (n — o0), p — the relation
of inclusion. We set X = P;(U), Y = P(U). We have

|Ug| =277, Uy N UL, | =272, (21 # zz)

Hence (A;) and (A;) are satisfied with p(z;) = p(zz) = , r(z1;Y) =
r'(z1,22;Y) = 0. Therefore (E1) holds with F(X) = F(n) = , é(n) = 0,
while (E2), (E3) hold trivially. By the Corollary we obtain that the number
of Y € P(U) having more that 2(1 + (%)‘%) (or less then (1 - (%)"))
elements is at most C2"n~3 with some constant C' not depending on 7.

EXAMPLE 2. X = P{(U), Y — set all subsets of U with even number of
elements (including the empty set). Since

> 0(h) =01 =0

we have that
1
2

1
|Uz, N UL, | = 52"—2 = Zlyl, (z1 # 72).

Therefore we obtain the same conclusion as in Example 1.

1 -
N R AR

ExXAMPLE 3. Y — family of sets with the number of elements divisible

by 3. Using the formulas
8 n 1 nw
> (3k):§(2 +2cos?),
)
R Y. (n—-2)m
(3k 1)—3(2 + 2 cos 3 ),

(3k+2) (2n+2 (_:3—%)

which can be proved by induction (see ex. 1.17.18 [2]), we infer that
Y| = %(2" + 2cos%),

1 - n-—5)r
'Uz|= 5(211 1+2cos%—),

-
ol
iing

CRlng

wip |l

~ O

=0
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1 -4
IUz‘l n Uzzl = 5(271—2 + 2cos (77‘_3_)1), (2:1 # $2).

Hence (A;), (Az) hold with

1 2 2
p(z1) = p(z2) = X |r(z1; V)] < 3 |r(z1,22; V)| £ 3"

Therefore (E1) is satisfied with F(n) = 2, §(n) = 0. Also for n > 8 the
conditions (E2) and (E3) hold true, since

271
§1< 2 1<n?<Z=—-1<Y.
reX T1,T2€X

The conclusion is therefore the same as in Example 1.

EXAMPLE 4. Let p be the divisibility relation and T — be a large positive
integer (T — o). We define

Y ={f(t) =t* + 1, t — positive integer t < T},
X = {p: p — prime number, p < VT}.
Then we have the approximation formula

Yoapy)= Y 1= > Yoo

yeY t<T ¥ (mod p) t<T

1()=0(p) F(9)=0 (mod p) t=9 (mod p)
T-9 (t -9 <T - 19>)
= Z + —
d (mod p) p p p

J(9)=0 (mod p)

= S +o) (52 - (152) -2,

p p
where
1 ifp=2
wp)=<2 ifp=1 (mod4)
0 ifp=3 (mod4).

The choice u(p) = ﬂfl assures that |r(p;Y')| < 4. The same argument shows
that

Y alp,9)a(p2, ) = Ta(py)p(p2) + r'(p1, 22; V)
yey

with |r'(p1,p2; V)| < 4.
The assertion (E1) follows from the well known formula (see e.g. [1]) for
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the prime reciprocal series

3 L _ loglog VT{1 + O(loglog T') ™)}
pS\/Tp

Since X = 7(v/T) — number of primes < /T, we obtain (manipulating
with the error term Q( )) that

3 2 = loglog X{1 + Of(loglog X)1]}.
p<VT P
Moreover we have

Z I'(p1,p2; V)| < 8T = O(X loglog X)
plvP?S\/T

hence the conditions (E2), (E3) are satisfied with Y = T, X = =n(V/T),
F(X) =loglog X; 6(X) = (loglog X)~1.

Therefore by the Corollary we infer that almost every value f(t), (t < T)
has

loglog X {1 + O[(loglog X)~3]} = loglog T{1 + O[(loglog T)~ %]}

prime divisors not exceeding v/T. Since y = f (t) has at most 4 prime divisors
in the interval [\/T,T? + 1] the same conclusion holds for the number of all
prime divisors of f(t).
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