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ON GENERALIZED SINE AND COSINE FUNCTIONS

Introduction
In the present paper we give an answer to R. Ger’s question of finding
addition formulas for functions f, ¢ which satisfy the functional equation

D (f(2)" + (9(z)" = 1;

f, g are supposed to be real functions on a given group (X,+) and n € N is
fixed, N being the set of positive integers.

The idea of replacing the usual trugonometric identity sin? z +cos®z = 1
by (I) with » > 2 was considered in R. Tardiff’s paper (2], where some
geometric aspects of this question have been discussed.

The addition formulas we have obtained coincide with the well known
representations of cos(z + y) and sin(z + y) in the case of (X,+) = (R, +)
and n = 2, where R is the set of real numbers.

We denote the set of all integers by Z; C will stand for the set of complex
numbers.

1. Let X be an arbitrary non-empty set. We shall make use of the fol-

lowing result.

LEMMA 1.1. Two real functions f, g defined on X satisfy functional
equation (1) if and only if there ezists a function t : X — R such that

(1.0) f(=)=

forallz € X.

Proof. The sufficiency is obvious. We shall prove the necessity. Let
m : X — C be a function defined by the formula

(1.1) m(z) := f(z) + ig(z), ze€X.

sint(z)
{/cos™ t(z) + sin™ t(z)

cost(z)
3/cos™ t(z) + sin” (z)’

9(z) =
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Since functions f, g satisfy functional equation (1), they do not vanish simul-
taneously and therefore |m(z)| # 0,z € X. Let t : X — R be any function
such that t(z) € argm(z), ¢ € X. Then
(1.2) f(z) = |m(z)|cost(z), g(z) = |m(z)|sint(z), =z € X.
Moreover
(1.3) 1=(f(x)" + (9(=))" = |m(z)|"(cos™ t(z) + sin™ t(z)), =z € X,
implying

1
3/cos™ t(z) + sin™ t(z)’
Hence and from conditions (1.2) we obtain the required assertion.

|m(z)| = zeX.

COROLLARY 1.1. If n € N is odd, functions f,g : X — R salisfy func-
tional equation (1) and t(z) € argm(z), z € X, then

t(z) € U - E-i—2k71',§71'+2k1r , T€X.
4 4
kEZ
Proof. Condition (1.3) implies cos™ t(z) +sin™ t(z) > 0, 2 € X, whence
our assertion follows.
Now, suppose that X is a subset of a group (G, +). We look for formulas

expressing f(z 4+ y) and g(z + y) in terms of f(z), f(y), g9(z), g(y), in the
caseof z,y,z+y € X.

THEOREM 1.1. Suppose that functions f,g : X — R satisfy functional
equation (1) and function t : X — R is such that the relations (1.0) hold
for all z € X. If t is invertible on X, then, for every z,y € X such that
z+y € X and a:=t71(i(z + y) — t(z)) € X, the following equalities are
satisfied

f(z)f(a) — g(z)g(a)
Y(f(2)f(a) - g(2)g(a))" + (f(=)9(a) + f(@)g ()"’
f(z)g(a) + f(a)g(z) _
Y(f(2)f(a) - g(z)g(a))™ + (f(z)g(a) + f(a)g(z))
Moreover, if t is an additive and invertible function, then a = y.

Proof. Note that
(1.4)  f(z)f(a) - g(z)g(a)

_cost(z) cos(i(z + y) — t(x)) — sint(z) sin(t(z + y) — #(z))
- %/cos™ ¢(z) + sin™ t(z) {/cos™ {(a) + sin™ t(a)

fz+y) =

g(z+y) =
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_ cost(z + y)
B t/cos™ t(z) + sin™ t(z) {/cos™ t(a) + sin™ ¢(a)

and, similarly,
(1.5)  f(z)g(a) + f(a)g(z)
_ sint(z + y)
B 3/cos™ t(z) + sin™ t(z) }/cos™ U(a) + sin” t(a)

Hence

(1.6)  (f(z)f(a) - g(z)g(a))" + (/(z)9(a) + f(a)g(2))"
_ cos™t(z + y) +sin™ t(z + y)
(cos™ t(z) + sin™ t(z))(cos™ t(a) + sin™ t(a))’

Since ¢ + y € X, we have cos™t(z + y) + sin™ t(z + y) # 0 and, by (1.0),

_ cost(z+y) oY
flz+y) = oo Wa Ty Fon TS Now, from conditions (1.4) and (1.6) we

infer that

f(z)f(a) — g(z)g(a)
Y (f(z)f(a) - g(z)g(a))” + (f(z)g(a) + f(a)g(z))"
_ cost(z + y)
- Ycos"t(z + y) + sin” t(z + y)
Analogously, one can prove the other equality occuring in assertion of
the theorem.

= f(z +y).

Note that any group (X, +) which is isomorphic to a subgroup of the
additive group (R,+) yields an example of a group admitting an injective
homomorphism t spoken of in Theorem 1.1.

In the sequel we are going to solve the system of two functional equations
occurring in Theorem 1.1, in the case of @ = y and n € N even. The case
of n € N odd requires different methods and will be a subject of another

paper.
2. Let (X, +) be a group and let an even n € N be fixed. Suppose that
f, g are two real functions on X.

LEMMA 2.1. If f and g do not vanish simultaneously, then

(f(2)f(y) - 9(z)g())" + (f(=)9(y) + f(y)9(z))" >0, =z,yeX.
Proof. The assumption implies f(z)+ig(z) # 0 for every z € X. Hence

0 # (f(z) +ig(z))(f(y) + ig(v))
= (f(=)f(y) - 9(z)9(y)) + i(f(z)9(y) + f(¥)9(2)), =,y€X.
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Therefore, f(z)f(y) — g(z)g(y) # 0 or f(z)g(y) + f(y)g(z) # 0 for all

z,y € X, and we obtain the assertion, because of the eveness of n.

If functions f,g : X — R do not vanish simultaneously, then we can
define a function w : X? — R by the formula

21)  w(z,y):= V() (@) - 9(x)g(@)" + (f(z)9(v) + f(y)g(z))"

for every (z,y) € X2. From Lemma 2.1 it follows that w(z,y) > 0 for all
(.’D ’ y) €X 2
In the sequel (T',-) will stand for multiplicative group of the unit circle.

THEOREM 2.1. Functions f,g : X — R do not vanish simultaneously and
satisfy for all x,y € X the following system of functional equations

f(=)f(y) — g(=)9(y) f(z)g(y) + f(¥)g(=)
w(:c, y) w(za y)

1D f(z+y)= , 9(z+y)=

if and only if there exists a character h : X — T with u := Reh, v := Imh
such that

u(z)
[ . O E—
(2) ¢mw;$wu»
O T ey

Moreover, if functions f,g: X — R satisfy system (I1) or conditions (2.2),
then (f(z))" + (g(z))" = 1, 2 € X.

Proof. The latter part of our assertion is obvious. We shall first prove
the necessity. Let m : X — T be defined by (1.1) and let A : X — T be such
a function that

m(z)
2.3 hi(z) = —=, z€X.
- )= )
We shall prove that h is a character.
By (1.1) and (II), we get

m(z)m(y) = (f(z)f(y) — 9(z)g9(y)) + i(f(=)9(y) + f(y)g9(z))
= (f(z +y) +ig9(z + y)w(z,y) = m(z + y)w(z,y), =z,y€X.

Therefore
m(z+y) 1

memy) - wmy 0 Ve
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Consequently, we have the equality
m(z+y) _|m(z+y)
m(z)m(y) — |m(z)m(y)[’
implying, by (2.3), the following one
m(z +y m(z) m(y)
o = T T = M, sy ex
By (1.1), (2.3), we get

z € X,

h(z +y) =

(2.4) u= ﬁ, v = IT%I-
Since 1= ((2))" + (9(a))" = (u(2))" + (o(&))")|m(@)[", one has
(25) Im(@) = o TE X,

and hence, by (2.4), we get (2.2).

Sufficiency. If functions f, g satisfy conditions (2.2) with A = u+iv being
character of X, then f, g do not vanish simultaneously. Moreover, we have
the relations

w(z +y) = uw(@)u(y) — v(z)v(y), v(z +y) = u(z)v(y) + w(y)v(z), z,y€X,
implying, by (2.1), (2.2),

f(2)f(y) - 9(=)9(y) _ u(z + ) e .
e R ey e ey A A

Analogously, one can prove the other equality in system (II).

COROLLARY 2.1. Ifa: X — R is an additive function and f,g: X — R
are such that for every z € X we have

f(z) =

cos a(z) sin a(z)
— ’ g(:L') = — )
t/cos™ a(z) + sin™ a(z) Y/cos™ a(z) + sin™ a(z)
then f, g do not vanish simultaneously and satisfy the system (11) and the
equation (I).

THEOREM 2.2. If functions f,g : X — R do not vanish simultaneously
and satisfy the system (I1), then f is even, g is odd and f(0) =1, g(0) = 0.

Proof. By Theorem 2.1, there exists character h = u + iv on X such
that (2.2) hold. Since 1 = A(0) = u(0) + iv(0), we have u(0) = 1, v(0) = 0
and, consequently, f(0) = 1, g(0) = 0. Moreover u is even and v is odd.
Therefore f is even and g is odd, as well.
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3. In this section we shall show some connections between solutions
of the system (II) and solutions of well-known d’Alembert’s and Wilson’s
trigonometric functional equations.

Let (X,+) be a group and let an even n € N be fixed. Put k := %. In
the sequel, for any real function f on X with |f| bounded by 1, the symbol
p(f,-) will denote the real function defined on X by the formula

1
VU@ + YT-F@)r

THEOREM 3.1. If functions f,g : X — R do not vanish simultaneously
and satisfy the system (II), then the function fp(f,-) satisfies d’Alembert’s
cosine functional equation and the function gp(g,-) satisfies Wilson’s sine
functional equation.

p(f,l') = , zeX.

Proof. By Theorem 2.1, there exists a character h = u + iv on X such
that (2.2) hold. Moreover f, g satisfy (I) and therefore |f|, |g| are bounded
by 1.

Let m be defined by (1.1). Since (u(z))? + (v(z))? = 1 for every z € X,
we have the relation

1
m(z)| = z))? z))? = ,
Im(@) = VTG 9GP = s
implying (2.4) and, by the equation (I),
1
V@) ()

From conditions (2.4) and (3.1) we get fp(f,*) = u, gp(g,+) = v. There-
fore, fp(f,-) and gp(g,-) satisfy the cosine and sine functional equation,
respectively.

z € X,

@31  p(f,2)

= Imzz)] =p(g,z), z€X.

THEOREM 3.2. Suppose that (X,+) is an Abelian group. Let f : X — R
be a function with |f| bounded by 1. Then the function fp(f,-) salisfies the
cosine functional equation if and only if f = 0 or there exisls a character
h =u+iv on X such that the first relation of (2.2) holds.

Proof. Note that |fp(f,-)| is bounded by 1, as well. It is known (see
(1], p- 3, proof of Theorem 9) that a real function is a bounded solution of
the cosine functional equation on X if and only if it vanishes on X or it is
a real part of a character of the group (X, +). Hence, if fp(f,-) satisfies the
cosine functional equation, then fp(f,:) = 0 and therefore f = 0 or there
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exists a character h = u + iv on X such that fp(f,:) = u. Then

f(z)

(3.2) u(z) = , T€EX.
VU@ + YT=TR)"
Now, an easy calculation shows that
(fa) = a2 reX.
(u(@))™ + (v(z))*

From (3.2) it follows that sgn f(z) = sgnu(z) for every z € X and we get
the required assertion.

Conversely, if f = 0, then fp(f,:) = 0. However, if f admits the form
(2.2), then fp(f,-) = u. Therefore fp(f,-) satisfies the cosine functional
equation.

THEOREM 3.3. Suppose that (X,+) is an uniquely 2-divisible Abelian
group and g : X — R is a funclion with |g| bounded by 1. Then the function
gp(g,) satisfies the sine functional equation if and only if there ezists a
character h = u 4+ iv on X and a real constant ¢ such that |cv(z)| < 1 and
cv(z)

)= TP T @

Moreover, if ¢ = 1, then the second relation of (2.2) holds.

(3.3) z € X.

Proof. Observe that |gp(g,-)| is bounded by 1, as well.

Moreover, it is known (see [1], p. 3, proof of Theorem 11) that a real
function is a bounded solution of the sine functional equation on X if and
only if it is proportional to the imaginary part of a character of the group
(X, +). Hence, if gp(g,-) is a solution of the sine functional equation, then
there exists a character h = u + iv on X and a real constant ¢ such that
gp(g,+) = cv. Then

9(z)
V@) + Y=
An easy calculation shows that
(3.4) (cv(2))* V1 = (9(2))" = (9(2))*(1 = (ev(2))?), =€ X.

Thus 1 - (ev(z))? > 0, z € X, and therefore |cv(z)] < 1,z € X. Now, from
(3.4) we have

(cv(@)™ = (g(@)™(1 = (cv(z)))* + (cv(2))"), =z € X.

z € X.

cv(z) =
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Since (1 — (cv(2))?)* + (cv(z))™ > 0, z € X, and sgng(z) = sgnecv(z),
z € X, we get finally
cv(z)
9(z) = )
V(1 = (co(2))?)* + (cv(2))"
Clearly, if ¢ = 1 then g admits the form (2.2). Conversely, if g admits

the form (3.3), then gp(g,-) = cv and therefore gp(f,-) satisfies the sine
functional equation.

ze€X
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