

Jan Kurek

NATURAL TRANSFORMATIONS OF ANY
HIGHER ORDER COVELOCITIES BUNDLE FUNCTOR

Recently, we have determined in [3] all natural transformations of the $(1, r)$ -covelocities bundle functor T_1^{r*} into itself, which constitute the r -parameter family linearly generated by the p -power natural transformations A_p for $p = 1, \dots, r$.

Moreover, we have obtained in [4] all natural transformations of the $(2, r)$ -covelocities bundle functor T_2^{r*} into T_1^{r*} , which constitute the $(2r + \frac{r(r-1)}{2})$ -parameter family linearly generated by the p_1, p_2 -power mixed transformations $A_{p_1, p_2}^{(2)}$ for $p_1, p_2 = 0, 1, \dots, r$ with $p_1 + p_2 = 1, \dots, r$.

In this paper, we determine all natural transformations of the (k, r) -covelocities bundle functor T_k^{r*} into the $(1, s)$ -covelocities bundle functor T_1^{s*} in the cases $r = s, r < s, r > s$ and any k, l . We deduce that all natural transformations of the functor T_k^{r*} into the functor T_1^{r*} form the $((\binom{k+r}{k} - 1)$ -parameter family linearly generated by the p_1, \dots, p_k -power mixed transformations $A_{p_1, \dots, p_k}^{(r)}$ for $p_1, \dots, p_k = 0, 1, \dots, r$ with $p_1 + \dots + p_k = 1, \dots, r$. Moreover, we deduce that all natural transformations of the functor T_k^{r*} into the functor T_l^{r*} constitute the $l((\binom{k+r}{k} - 1)$ -parameter family of the above mentioned form for all l components.

Also, we deduce that all natural transformations of the functor T_k^{r*} into $T_1^{(r+q)*}$ form the $((\binom{k+r}{k} - 1)$ -parameter family linearly generated by a generalized p_1, \dots, p_k -power mixed transformations $A_{p_1, \dots, p_k}^{(r, r+q)}$ for $p_1, \dots, p_k = 0, 1, \dots, r+q$ with $p_1 + \dots + p_k = q+1, \dots, q+r$.

At last, we deduce that all natural transformations of the functor T_k^{r*} into $T_l^{(r-q)*}$ form the $l((\binom{k+r-q}{k} - 1)$ -parameter family linearly generated for all l components by a generalized p_1, \dots, p_k -power mixed transformations $A_{p_1, \dots, p_k}^{(r, r-q)}$ for $p_1, \dots, p_k = 0, 1, \dots, r-q$ with $p_1 + \dots + p_k = 1, \dots, r-q$.

1. Let M be a smooth n -dimensional manifold. Let $T_k^r M = J^r(M, R^k)_0$ be the space of all r -jets from a manifold M to R^k with target 0.

A vector bundle $\pi_M : T_k^r M \rightarrow M$ with a source r -jet projection is called the (k, r) -covelocities bundle on M .

Every local diffeomorphism $\varphi : M \rightarrow N$ is extended into a vector bundle morphism $T_k^r \varphi : T_k^r M \rightarrow T_k^r N$ defined by $j_x^r F \mapsto j_{\varphi(x)}^r (F \cdot \varphi^{-1})$, where φ^{-1} is constructed locally. Thus, the (k, r) -covelocities bundle functor T_k^r is defined on a category Mf_n of smooth n -dimensional manifolds with local diffeomorphisms as morphisms and with values in a category VB of vector bundles.

There is a canonical identification

$$(1, 1) \quad T_k^r M = T_1^r M \times \dots \times T_1^r M \quad (k - \text{times})$$

of the form $j_x^r F = (j_x^r F^1, \dots, j_x^r F^k)$, where $F = (F^1, \dots, F^k) : M \rightarrow R^k$.

We have defined in [3], the p -power transformations A_p of T_1^r into itself of the form

$$(1, 2) \quad A_p : j_x^r F \mapsto j_x^r (F)^p$$

where $(F)^p$ denotes the p -th power of $F : M \rightarrow R$ for $p = 1, \dots, r$.

We define the p_1, \dots, p_k -power mixed transformation $A_{p_1, \dots, p_k}^{(r)}$ of the functor T_k^r into T_1^r as a generalization of the p -power transformation A_p of the functor T_1^r into itself.

DEFINITION 1. A natural transformation $A_{p_1, \dots, p_k}^{(r)}$ of the (k, r) -covelocities bundle functor T_k^r into the $(1, r)$ -covelocities bundle functor T_1^r defined by

$$(1, 3) \quad A_{p_1, \dots, p_k}^{(r)} : j_x^r F \mapsto j_x^r (F^1)^{p_1} \dots (F^k)^{p_k}$$

is called p_1, \dots, p_k -power mixed transformation for $p_1, \dots, p_k = 0, 1, \dots, r$ with $p_1 + \dots + p_k = 1, \dots, r$, where $F = (F^1, \dots, F^k)$ and $(F^m)^{p_m}$ denotes the p_m -th power of F^m .

DEFINITION 2. A natural transformation $A_{p_1, \dots, p_k}^{(r, s)}$ of the functor T_k^r into the functor T_1^{s*} defined by

$$(1, 4) \quad A_{p_1, \dots, p_k}^{(r, s)} : j_x^r F \mapsto j_x^s (F^1)^{p_1} \dots (F^k)^{p_k}$$

is called a generalized p_1, \dots, p_k -power mixed transformation for $p_1, \dots, p_k = 0, 1, \dots, s$ with $p_1 + \dots + p_k = 1, \dots, s$.

We note that definition of $A_{p_1, \dots, p_k}^{(r, s)}$ in the case $s = r + q$ is correct for $p_1 + \dots + p_k = q + 1, \dots, q + r$.

DEFINITION 3. A natural transformation $P^{(r,r-q)}$ of the functor T_k^{r*} into the functor $T_k^{(r-q)*}$ defined by

$$(1,5) \quad P^{(r,r-q)} : j_x^r F \mapsto j^{r-q} F$$

is called a projection.

Note that the generalized p_1, \dots, p_k -power mixed transformation $A_{p_1, \dots, p_k}^{(r,r-q)}$ for $p_1, \dots, p_k = 0, 1, \dots, r-q$ with $p_1 + \dots + p_k = 1, \dots, r-q$ is a composition

$$(1,6) \quad A_{p_1, \dots, p_k}^{(r,r-q)} = A_{p_1, \dots, p_k}^{(r-q)} \circ P^{(r,r-q)}.$$

If (x^i) are some local coordinates on M , then we have the induced fibre coordinates $(u_i^m, u_{i_1 i_2}^m, \dots, u_{i_1 \dots i_r}^m)$ with $m = 1, \dots, k$ on $T_k^{r*}M$ (symmetric in all subscripts) of the form:

$$(1,7) \quad \begin{aligned} u_i^m(j_x^r F) &= \frac{\partial F^m}{\partial x^i} \Big|_x \\ u_{i_1 i_2}^m(j_x^r F) &= \frac{\partial^2 F^m}{\partial x^{i_1} \partial x^{i_2}} \Big|_x \\ \dots & \dots \\ u_{i_1 \dots i_r}^m(j_x^r F) &= \frac{\partial^r F^m}{\partial x^{i_1} \dots \partial x^{i_r}} \Big|_x. \end{aligned}$$

2. In this part, we determine all natural transformations of the functor T_k^{r*} into T_1^{r*} and then T_l^{r*} by an induction with respect to r .

THEOREM 1. All natural transformations $A : T_k^{r*} \rightarrow T_1^{r*}$ of the (k, r) -covelocities bundle functor into the $(1, r)$ -covelocities bundle functor T_1^{r*} form the $(\binom{k+r}{k} - 1)$ -parameter family of the form

$$(2,1) \quad A = \sum_{\substack{p_1, \dots, p_k = 0, \dots, r \\ p_1 + \dots + p_k = 1, \dots, r}} t_{p_1, \dots, p_k} A_{p_1, \dots, p_k}^{(r)}$$

with any real parameters $t_{p_1, \dots, p_k} \in R$.

Proof. The functor T_k^{r*} is defined on the category Mf_n of n -dimensional smooth manifolds with local diffeomorphisms as morphisms and is of order r .

According to a general theory, [1], [2], [3], the natural transformations $A : T_k^{r*} \rightarrow T_1^{r*}$ are in bijection with G_n^r -equivariant maps of the standard fibres $f : (T_k^{r*} R^n)_0 \rightarrow (T_1^{r*} R^n)_0$.

Let tilda $\tilde{a} = a^{-1}$ denote the inverse element in G_n^r and let (i_1, \dots, i_r) denote the symmetrization of indices.

By (1,7) the action of an element $(a_j^i, a_{j_1 j_2}^i, \dots, a_{j_1 \dots j_r}^i) \in G_n^r$ on $((u_i^m, u_{i_1 i_2}^m, \dots, u_{i_1 \dots i_r}^m)_{m=1, \dots, k}) \in (T_k^{r*} R^n)_0$ is of the form

$$(2,2) \quad \bar{u}_i^m = u_j^m \tilde{a}_i^j$$

$$\bar{u}_{i_1 i_2}^m = u_{j_1 j_2}^m \tilde{a}_{i_1}^{j_1} \tilde{a}_{i_2}^{j_2} + u_{j_1}^m \tilde{a}_{i_1 i_2}^{j_1}$$

$$\bar{u}_{i_1 \dots i_r}^m = u_{j_1 \dots j_r}^m \tilde{a}_{i_1}^{j_1} \dots \tilde{a}_{i_r}^{j_r}$$

$$+ u_{j_1 \dots j_{r-1}}^m \frac{r!}{(r-2)!2!} \tilde{a}_{(i_1}^{j_1} \dots \tilde{a}_{i_{r-2}}^{j_{r-2}} \tilde{a}_{i_{r-1} i_r)}^{j_{r-1}}$$

$$+ \dots + u_{j_1 j_2}^m \left[\frac{r!}{(r-1)!1!} \tilde{a}_{(i_1}^{j_1} \tilde{a}_{i_2 \dots i_r)}^{j_2} + \dots \right] + u_{j_1}^m \tilde{a}_{i_1 \dots i_r}^{j_1}.$$

The action of an element $a \in G_n^r$ on $(w_i, w_{i_1 i_2, \dots, i_r}) \in (T_1^{r*} R^n)_0$ is of the same form (2,2).

1°. First consider the case $r = 2$. Equivariancy of G_n^2 -equivariant map $f = (f_i, f_{i_1 i_2}) : (T_k^{2*} R^n)_0 \rightarrow (T_1^{2*} R^n)_0$ in the form

$$(2,3) \quad \begin{aligned} w_i &= f_i((u_i^m, u_{i_1 i_2}^m)_{m=1, \dots, k}), \\ w_{i_1 i_2} &= f_{i_1 i_2}((u_i^m, u_{i_1 i_2}^m)_{m=1, \dots, k}) \end{aligned}$$

with respect to homotheties in $G_n^2 : \tilde{a}_j^i = t \delta_j^i$, $\tilde{a}_{j_1 j_2}^i = 0$, give a homogeneity conditions

$$(2,4) \quad \begin{aligned} t f_i((u_i^m, u_{i_1 i_2}^m)_{m=1, \dots, k}) &= f_i((t u_i^m, t^2 u_{i_1 i_2}^m)_{m=1, \dots, k}) \\ t^2 f_{i_1 i_2}((u_i^m, u_{i_1 i_2}^m)_{m=1, \dots, k}) &= f_{i_1 i_2}((t u_i^m, t^2 u_{i_1 i_2}^m)_{m=1, \dots, k}). \end{aligned}$$

By the homogeneous function theorem, [2], we deduce firstly that f_i is linear in u_i^m and is independent on $u_{i_1 i_2}^m$ for $m = 1, \dots, k$ and secondly that $f_{i_1 i_2}$ is linear in $u_{i_1 i_2}^m$ and is bilinear in $u_{i_1}^{m_1}, u_{i_2}^{m_2}$ for $m_1, m_2 = 1, \dots, k$.

Using the invariant tensor theorem, [2], for G_n^1 , we obtain f in the form:

$$(2,5) \quad \begin{aligned} f_i &= \sum_{1 \leq m \leq k} \lambda_m u_i^m, \\ f_{i_1 i_2} &= \sum_{1 \leq m \leq k} \mu_m u_{i_1 i_2}^m + \sum_{1 \leq m_1 \leq m_2 \leq k} \lambda_{m_1 m_2} u_{(i_1}^{m_1} u_{i_2)}^{m_2} \end{aligned}$$

with any real parameters $\lambda_m, \mu_m, \lambda_{m_1 m_2} \in R$ for $m, m_1, m_2 = 1, \dots, k$.

The equivariancy of f in the form (2,5) with respect to the kernel of the projection $G_n^2 \rightarrow G_n^1 : \tilde{a}_j^i = \delta_j^i$ and $\tilde{a}_{j_1 j_2}^i$ are arbitrary, gives relationship

$$(2,6) \quad \lambda_m = \mu_m \quad \text{for } m = 1, \dots, k.$$

We define new parameters t_{p_1, \dots, p_k} for $p_1, \dots, p_k = 0, 1, 2$ and satisfying $p_1 + \dots + p_k = 1, 2$, in the following way

$$(2,7) \quad t_{p_1 \dots p_m \dots p_k} = \lambda_m$$

iff $p_m = 1$ for $m = 1, \dots, k$ and others $p_n = 0$ for $n \neq m$,

$$t_{p_1 \dots p_{m_1} \dots p_{m_2} \dots p_k} = \lambda_{m_1 m_2}$$

iff $p_{m_1} = p_{m_2} = 1$ for $1 \leq m_1 < m_2 \leq k$, and others $p_n = 0$ for $n \neq m_1, m_2$,

$$t_{p_1 \dots p_m \dots p_k} = \lambda_{m,m} \quad \text{iff } p_m = 2 \text{ for } m = 1, \dots, k.$$

If we use the parameters (2,7) in the formulas (2,5) and if we use the combinatoric relation: $1 + k + \binom{k+1}{2} = \binom{k+2}{k}$, then we obtain the $(\binom{k+2}{k} - 1)$ -parameter family in the form (2,1) for $r = 2$.

2°. Assume that theorem holds for $(r-1)$ and G_n^{r-1} -equivariant map $f = (f_i, f_{i_1 i_2}, \dots, f_{i_1 \dots i_{r-1}}) : (T_k^{(r-1)*} R^n)_0 \rightarrow (T_1^{(r-1)*} R^n)_0$ define the $(\binom{k+r-1}{k} - 1)$ -parameter family of the form

$$(2,8) \quad A = \sum_{\substack{p_1, \dots, p_k = 0, \dots, r-1 \\ p_1 + \dots + p_k = 1, \dots, r-1}} t_{p_1 \dots p_k} A_{p_1, \dots, p_k}^{(r-1)}$$

with any real parameters $t_{p_1 \dots p_k}$. We assume that G_n^r -equivariant map $\bar{f} : (T_k^r R^n)_0 \rightarrow (T_1^r R^n)_0$ is of the form $\bar{f} = (f_i, f_{i_1 i_2}, \dots, f_{i_1 \dots i_{r-1}}, f_{i_1 \dots i_r})$ provided that $f = (f_i, \dots, f_{i_1 \dots i_{r-1}})$.

The equivariancy of \bar{f} with respect to the homotheties in $G_n^r : a_j^i = t \delta_j^i$, $a_{j_1 j_2}^i = 0, \dots, a_{j_1 \dots j_r}^i = 0$, gives for the r -th component $f_{i_1 \dots i_r}$ a homogeneity condition:

$$(2,9) \quad t^r f_{i_1 \dots i_r}((u_i^m, u_{i_1 i_2}^m, \dots, u_{i_1 \dots i_r}^m)_{m=1, \dots, k}) \\ = f_{i_1 \dots i_r}((t u_i^m, t^2 u_{i_1 i_2}^m, \dots, t^r u_{i_1 \dots i_r}^m)_{m=1, \dots, k}).$$

Using the homogeneous function theorem and the invariant tensor theorem, [2], we obtain that the r -th component $f_{i_1 \dots i_r}$ is of the general form

$$(2,10) \quad f_{i_1 \dots i_r} = \sum_{1 \leq m \leq k} \mu_m u_{i_1 \dots i_r}^m + \sum_{1 \leq m_1 \leq m_2 \leq k} \mu_{m_1 m_2}^{(2,r-1)} u_{(i_1}^{m_1} u_{i_2 \dots i_r)}^{m_2} \\ + \dots + \sum_{1 \leq m_1 \leq \dots \leq m_{r-1} \leq k} \mu_{m_1 \dots m_{r-1}}^{(r-1,2)} u_{(i_1}^{m_1} \dots u_{i_{r-2}}^{m_{r-2}} u_{i_{r-1} i_r)}^{m_{r-1}} \\ + \sum_{1 \leq m_1 \leq \dots \leq m_r \leq k} \mu_{m_1 \dots m_r}^{(r)} u_{i_1}^{m_1} \dots u_{i_r}^{m_r}.$$

Equivariancy of \tilde{f} with respect to the kernel of the projection $G_n^r \rightarrow G_n^{r-1}$: $\tilde{a}_j^i = \delta_j^i$, $\tilde{a}_{j_1 j_2}^i = 0, \dots, \tilde{a}_{j_1 \dots j_{r-1}}^i = 0$ and $a_{j_1 \dots j_r}^i$ are arbitrary, gives

$$(2,11) \qquad \qquad \qquad \mu_m = t_{p_1 \dots p_m \dots p_k}$$

iff $p_m = 1$ for $m = 1, \dots, k$ and others $p_n = 0$ for $n \neq m$.

Considering the equivariancy of \tilde{f} with respect to the kernel of the projection $G_n^{r-1} \rightarrow G_n^1$ in G_n^r : $\tilde{a}_j^i = \delta_j^i$ and $\tilde{a}_{j_1 j_2}^i, \dots, \tilde{a}_{j_1 \dots j_{r-1}}^i$ are arbitrary and $\tilde{a}_{j_1 \dots j_r}^i = 0$, we obtain the following relationship for parameters:

$$(2, 12) \quad \mu_{m_1 m_2}^{(2, r-1)} = \frac{r!}{(r-1)! 1!} t_{p_1 \dots p_{m_1} \dots p_{m_2} \dots p_k}$$

iff $p_{m_1}, p_{m_2} = 1, 2$, $p_{m_1} + p_{m_2} = 2$ for $1 \leq m_1 \leq m_2 \leq k$ and others $p_n = 0$ for $n \neq m_1, m_2$

$$\mu_{m_1 \dots m_{r-1}}^{(r-1,2)} = \frac{r!}{(r-2)!2!} t_{p_1 \dots p_{m_1} \dots p_{m_{r-1}} \dots p_k}$$

iff $p_{m_1}, \dots, p_{m_{r-1}} = 1, \dots, r-1$ satisfy $p_{m_1} + \dots + p_{m_{r-1}} = r-1$ for $1 \leq m_1 \leq \dots \leq m_{r-1} \leq k$ and others $p_n = 0$ for $n \neq m_1, \dots, m_{r-1}$.

Moreover, we put for the remaining $\binom{k+r-1}{r}$ -parameters

$$(2, 13) \quad \mu_{m_1 \dots m_r}^{(r)} = t_{p_1 \dots p_{m_1} \dots p_{m_r} \dots p_k}$$

iff $p_{m_1}, \dots, p_{m_r} = 1, \dots, r$ satisfy $p_{m_1} + \dots + p_{m_r} = r$ for $1 \leq m_1 \leq \dots \leq m_r \leq k$ and others $p_n = 0$ for $n \neq m_1, \dots, m_r$.

Thus, we obtain the $\left(\binom{k+r}{k} - 1\right)$ -parameter family of natural transformations in the form (2,1), where $\left(\binom{k+r}{k} - 1\right) = \left(\binom{k+r-1}{k} - 1\right) + \binom{k+r-1}{r}$. This proves our theorem.

By the canonical identification (1,1), $T_l^{r*}M = T_1^{r*}M \times \dots \times T_1^{r*}M$ (l times), any natural transformation $A : T_k^{r*} \rightarrow T_l^{r*}$ correspond bijectively to G_n^r -equivariant map $f = ((f^m)_{m=1,\dots,l}) = ((f_i^m, f_{i_1 i_2}^m, \dots, f_{i_1 \dots i_r}^m)_{m=1,\dots,l})$. Considering the G_n^r -equivariancy of f , we obtain by Theorem 1 that each component f^m of f for $m = 1, \dots, l$ define that $(\binom{k+r}{k} - 1)$ -parameter family in the form (2,1).

COROLLARY 2. All natural transformations $A : T_k^{r*} \rightarrow T_l^{r*}$ form the $l \cdot \binom{k+r}{k} - 1$ -parameter family of the form (2,1) for all l components.

3. We are going to determine all natural transformations $T_k^{r*} \rightarrow T_l^{s*}$ in the cases: $r < s$, $r > s$ and any k, l .

THEOREM 3. *All natural transformations $A : T_k^{r*} \rightarrow T_1^{(r+q)*}$ form the $\binom{k+r}{k} - 1$ -parameter family of the form*

$$(3,1) \quad A = \sum_{\substack{p_1, \dots, p_k = 0, \dots, q+r \\ P_1 + \dots + p_k = q+1, \dots, q+r}} t_{p_1 \dots p_k} A_{p_1, \dots, p_k}^{(r, r+q)}$$

with any real parameters $t_{p_1 \dots p_k} \in R$.

Proof. We apply induction on $q = s - r$.

1°. First consider the case $q = 1$. According to general standard methods, [1], [2], the natural transformations $A : T_k^{r*} \rightarrow T_1^{(r+1)*}$ are in bijection with G_n^{r+1} -equivariant maps of the standard fibres $f : (T_k^{r*} R^n)_0 \rightarrow (T_1^{(r+1)*} R^n)_0$.

Let $(u_1^m, u_2^m, \dots, u_r^m) := (u_{i_1}^m, u_{i_1 i_2}^m, \dots, u_{i_1 \dots i_r}^m)$ for $m = 1, \dots, k$, denotes the fibre coordinates on $T_k^{r^*} M$.

Considering the equivariancy of $f = (f_1, \dots, f_r, f_{r+1})$ with respect to homotheties in $G_n^{r+1} : a_j^i = t\delta_j^i, \dots, a_{j_1 \dots j_{r+1}}^i = 0$, we obtain the homogeneity condition:

$$(3, 2) \quad t f_1(u_1^m, \dots, u_r^m)_{m=1, \dots, k} = f_1((tu_1^m, \dots, t^r u_r^m)_{m=1, \dots, k}),$$

.....

$$t^r f_r((u_1^m, \dots, u_r^m)_{m=1, \dots, k}) = f_r((tu_1^m, \dots, t^r u_r^m)_{m=1, \dots, k}),$$

$$t^{r+1} f_{r+1}((u_1^m, \dots, u_r^m)_{m=1, \dots, k}) = f_{r+1}(tu_1^m, \dots, t^r u_r^m)_{m=1, \dots, k}).$$

Moreover, using the equivariancy of $\bar{f} = (f_1, \dots, f_r)$ with respect to the kernel of the projection $G_n^r \rightarrow G_n^1$ in G_n^{r+1} , we obtain by Theorem 1 the $\binom{k+r}{k} - 1$ -parameter family of natural transformations

$$A = \sum_{\substack{p_1, \dots, p_k = 0, \dots, r \\ p_1 + \dots + p_k = 1, \dots, r}} t_{p_1 \dots p_k} A_{p_1, \dots, p_k}^{(r)}$$

with any real parameters $t_{p_1 \dots p_k} \in R$.

By the homogeneous function theorem and by the invariant tensor theorem, [2], we deduce that the $(r+1)$ -th component f_{r+1} is of the form

$$\begin{aligned}
 (3,3) \quad f_{i_1 \dots i_{r+1}} = & \sum_{1 \leq m_1 \leq \dots \leq m_{r+1} \leq k} \tau_{m_1 \dots m_{r+1}}^{(r+1)} u_{(i_1}^{m_1} \dots u_{i_{r+1})}^{m_{r+1}} \\
 & + \sum_{1 \leq m_1 \leq \dots \leq m_r \leq k} \tau_{m_1 \dots m_r}^{(r,2)} u_{(i_1}^{m_1} \dots u_{i_{r-1}}^{m_{r-1}} u_{i_r i_{r+1})}^{m_r} \\
 & + \dots + \sum_{1 \leq m_1 \leq m_2 \leq k} \tau_{m_1 m_2}^{(2,r)} u_{(i_1}^{m_1} u_{i_2 \dots i_{r+1})}^{m_2}
 \end{aligned}$$

with any real parameters $\tau_{m_1 \dots m_{r+1}}^{(r+1)}, \tau_{m_1 \dots m_2}^{(r,2)}, \dots, \tau_{m_1 m_2}^{(2,r)} \in R$.

The equivariancy of f with respect to the kernel of the projections $G_n^{r+1} \rightarrow G_n^r$ and $G_n^{r+1} \rightarrow G_n^1$, gives the following relations:

(3,4) $t_{p_1 \dots p_k} = 0$ iff $p_1, \dots, p_k = 0, 1$ satisfy $p_1 + \dots + p_k = 1$,

$$(3,5) \quad \tau_{m_1 m_2}^{(2,r)} = \frac{(r+1)!}{r! 1!} t_{p_1 \dots p_{m_1} \dots p_{m_2} \dots p_k}$$

iff $p_{m_1}, p_{m_2} = 1, 2$ satisfy $p_{m_1} + p_{m_2} = 2$ for $1 \leq m_1 \leq m_2 \leq k$ and others $p_m = 0$ for $m \neq m_1, m_2$

$$\tau_{m_1 \dots m_r}^{(r,2)} = \frac{(r+1)!}{(r-1)!2!} t_{p_1 \dots p_{m_1} \dots p_{m_r} \dots p_k}$$

iff $p_{m_1}, \dots, p_{m_r} = 1, \dots, r$ satisfy $p_{m_1} + \dots + p_{m_r} = r$ for $1 \leq m_1 \leq \dots \leq m_r \leq k$ and others $p_m = 0$ for $m \neq m_1, \dots, m_r$.

Moreover, we put

$$(3,6) \quad \tau_{m_1 \dots m_{r+1}}^{(r+1)} = t_{p_1 \dots p_{m_1} \dots p_{m_{r+1}} \dots p_k}$$

iff $p_{m_1}, \dots, p_{m_{r+1}} = 1, 2, \dots, r+1$ satisfy $p_{m_1} + \dots + p_{m_{r+1}} = r+1$ for $1 \leq m_1 \leq \dots \leq m_{r+1} \leq k$ and others $p_m = 0$ for $m \neq m_1, \dots, m_{r+1}$.

Then, the G_n^{r+1} -equivariant map $f = (f_1, \dots, f_r, f_{r+1})$ define the $(\binom{k+r}{k} - 1)$ -parameter family of the form

$$(3,7) \quad A = \sum_{\substack{p_1, \dots, p_k = 0, \dots, r+1 \\ p_1 + \dots + p_k = 2, \dots, r+1}} t_{p_1 \dots p_k} A_{p_1, \dots, p_k}^{(r,r+1)}.$$

2°. Assume that the theorem holds for $(q-1)$ and the G_n^{r+q-1} -equivariant map $\bar{f} : (T_k^{r*} R^n)_0 \rightarrow (T^{(r+q-1)*} R^n)_0$ define the $(\binom{k+r}{k} - 1)$ -parameter family of natural transformations $A : T_k^{r*} \rightarrow T_1^{(r+q-1)*}$ of the form

$$(3,8) \quad A = \sum_{\substack{p_1, \dots, p_k = 0, \dots, r+q-1 \\ p_1 + \dots + p_k = q, \dots, q+r-1}} t_{p_1 \dots p_k} A_{p_1, \dots, p_k}^{(r, r+q-1)}$$

with any real parameters $t_{p_1 \dots p_k} \in R$.

Consider the G_n^{r+q} -equivariant map $f : (T_k^{r*} R^n)_0 \rightarrow (T_1^{(r+q)*} R^n)_0$ of the form $f = (\bar{f}, f_{r+q})$. The equivariancy of f with respect to homotheties in $G_n^{r+q} : \bar{a}_j^i = t \delta_j^i$, $\bar{a}_{j_1 j_2}^i = 0, \dots, \bar{a}_{j_1 \dots j_{r+q}}^i = 0$, gives for the $(r+q)$ -th component f_{r+q} the homogeneity condition

$$(3,9) \quad t^{r+q} f_{r+q}((u_1^m, \dots, u_r^m)_{m=1, \dots, k}) = f_{r+q}((tu_1^m, \dots, t^r u_r^m)_{m=1, \dots, k}).$$

By the homogeneous function theorem and the invariant tensor theorem, [2], we deduce that f_{r+q} is of the general form:

$$(3,10) \quad f_{i_1 \dots i_{r+q}} = \sum_{1 \leq m_1 \leq \dots \leq m_{r+q} \leq k} \nu_{m_1 \dots m_{r+q}}^{(r+q)} u_{i_1}^{m_1} \dots u_{i_{r+q}}^{m_{r+q}} + \sum_{1 \leq m_1 \leq \dots \leq m_{r+q-1} \leq k} \nu_{m_1 \dots m_{r+q-1}}^{(r+q-1,2)} u_{(i_1)}^{m_1} \dots u_{i_{r+q-2}}^{m_{r+q-2}} u_{i_{r+q-1} i_{r+q}}^{m_{r+q-1}} + \dots + \sum_{1 \leq m_1 \leq \dots \leq m_{q+1} \leq k} \nu_{m_1 \dots m_{q+1}}^{(q+1,r)} u_{(i_1)}^{m_1} \dots u_{i_q}^{m_q} u_{i_{q+1} \dots i_{q+r}}^{m_{q+1}}$$

with any real parameters $\nu_{m_1 \dots m_{r+q}}^{(r+q)}, \nu_{m_1 \dots m_{r+q-1}}^{(r+q-1,2)}, \dots, \nu_{m_1 \dots m_{q+1}}^{(q+1,r)}$.

The equivariancy of f with respect to the kernel of the projections $G_n^{r+q} \rightarrow G_n^r$ and $G_n^{r+q} \rightarrow G_n^1$, gives the relationships

$$(3,11) \quad t_{p_1 \dots p_k} = 0 \text{ iff } p_1, \dots, p_k = 0, \dots, r+q-1 \text{ satisfy } p_1 + \dots + p_k = q$$

$$\nu_{m_1 \dots m_{q+1}}^{(q+1,r)} = \frac{(q+r)!}{r!q!} t_{p_1 \dots p_{m_1} \dots p_{m_{q+1}} \dots p_k}$$

iff $p_{m_1}, \dots, p_{m_{q+1}} = 1, \dots, r+q-1$ satisfy $p_{m_1} + \dots + p_{m_{q+1}} = q+1$ for $1 \leq m_1 \leq \dots \leq m_{q+1} \leq k$ and others $p_m = 0$ for $m \neq m_1, \dots, m_{q+1}$

$$\dots \dots \dots \nu_{m_1 \dots m_{q+r-1}}^{(r+q-1,2)} = \frac{(q+r)!}{(r+q-2)!2!} t_{p_1 \dots p_{m_1} \dots p_{m_{r+q-1}} \dots p_k}$$

iff $p_{m_1}, \dots, p_{m_{r+q-1}} = 1, \dots, r+q-1$ satisfy $p_{m_1} + \dots + p_{m_{r+q-1}} = r+q-1$ for $1 \leq m_1 \leq \dots \leq m_{r+q-1} \leq k$ and others $p_m = 0$ for $m \neq m_1, \dots, m_{r+q-1}$.

Moreover, we put

$$(3,12) \quad \nu_{m_1 \dots m_{r+q}}^{(r+q)} = t_{p_1 \dots p_{m_1} \dots p_{m_{r+q}} \dots p_k}$$

iff $p_{m_1}, \dots, p_{m_{r+q}} = 1, 2, \dots, r+q$ satisfy $p_{m_1} + \dots + p_{m_{r+q}} = r+q$ for $1 \leq m_1 \leq \dots \leq m_{r+q} \leq k$ and others $p_m = 0$ for $m \neq m_1, \dots, m_{r+q}$.

This gives the family of natural transformation (3,1) and proves our theorem.

From this theorem we obtain immediately

COROLLARY 4. All natural transformations $A : T_k^{r*} \rightarrow T_l^{(r+q)*}$ form the $l((\binom{k+r}{k}-1)$ -parameter family of the general form (3,1) for all l components.

Finally, we have

THEOREM 5. All natural transformations $A : T_k^{r*} \rightarrow T_1^{(r-q)*}$ form $((\binom{k+r-q}{k}-1)$ -parameter family

$$(3,13) \quad A = \sum_{\substack{p_1, \dots, p_k = 0, \dots, r-q \\ p_1 + \dots + p_k = 1, \dots, r-q}} t_{p_1 \dots p_k} A_{p_1 \dots p_k}^{(r, r-q)}$$

with any real parameters $t_{p_1 \dots p_k} \in R$.

P r o o f. Applying the previous procedure, we obtain that any $A : T_k^{r*} \rightarrow T_1^{(r-q)*}$ is the composition of the projection $P^{(r,r-q)} : T_k^{r*} \rightarrow T_k^{(r-q)*}$ and any $\bar{A} : T_k^{(r-q)*} \rightarrow T_1^{(r-q)*}$, $A = \bar{A} \circ P^{(r,r-q)}$. By result of Theorem 1 this proves our theorem.

C O R O L L A R Y 6. *All natural transformations $A : T_k^{r*} \rightarrow T_l^{(r-q)*}$ form the $l((k+r-q) - 1)$ -parameter family of the form (3,13) for all l components.*

References

- [1] I. Kolar, *Some natural operators in differential geometry*, Proc. Conf. Diff. Geom. and its Appl., Brno 1986, Dordrecht 1987, 91–110.
- [2] I. Kolar, P. Michor and J. Slovák, *Natural Operations in Differential Geometry*, Springer Verlag, 1993.
- [3] J. Kurek, *Natural transformations of higher order cotangent bundle functors*, Ann. Polon. Math., LVIII. 1 (1993).
- [4] J. Kurek, *On natural transformations of higher order covelocities functor*, Ann. Univ. Mariae Curie-Skłodowska Sect. A. 45 (1991), 83–88.

INSTITUTE OF MATHEMATICS
 MARIA CURIE-SKŁODOWSKA UNIVERSITY
 Plac Marii Curie-Skłodowskiej 1,
 20-031 LUBLIN, POLAND

Received October 22, 1992.