

Andrzej Kasperski

NOTES ON SOME OPERATOR EQUATIONS
IN THE ORLICZ SPACES OF VECTOR MULTIFUNCTIONS

1. Introduction

In this paper we apply the results of [1] and [3] to the case of the spaces $M_{Y,\varphi}^1$, $M_{Y,\varphi}^0$ of multifunctions. All definitions and theorems connected with the idea of Musielak-Orlicz space can be found in [2].

Let I be a bounded interval. Let (I, Σ, μ) be the Lebesgue measure space. Let X be a real separable Hilbert space with the norm $\|\cdot\|_X$. We denote by $L^\varphi(I, X)$ the Orlicz space of all strongly measurable functions $x : I \rightarrow X$ for which the number $\|x\|_\varphi = \inf\{r > 0 : \int_I \varphi(\frac{\|x(t)\|_X}{r})d\mu \leq 1\}$, is finite, where φ is a N -function i.e. $\varphi : R \rightarrow R_+$, $\varphi(u)$ is an even convex function, equal zero iff $u = 0$, $\lim_{u \rightarrow 0} \frac{\varphi(u)}{u} = 0$, $\lim_{u \rightarrow \infty} \frac{\varphi(u)}{u} = \infty$. It is known that $(L^\varphi(I, X), \|\cdot\|_\varphi)$ is a Banach space. We shall denote by $E^\varphi(I, X)$ the closure in $L^\varphi(I, X)$ of the set of all bounded functions.

We will apply the following theorem from [3]:

THEOREM 1. *Assume that $D = [0, d]$ and M, N are complementary N -functions. We shall consider the operator A defined by*

$$A(x)(t) = \int_0^t f(t, s, x(s)) ds \quad \text{for } t \in D, x \in L^\varphi(D, X).$$

Let:

C1. $(t, s, x) \rightarrow f(t, s, x)$ is a function from $D^2 \times X$ into X which is continuous in x for a.e. $t, s \in D$, and strongly measurable in (t, s) for every $x \in X$,

C2. $\|f(t, s, x)\|_X \leq K(t, s)(b(s) + S(\|x\|_X))$ for $t, s \in D$, $x \in X$, where

AMS (1991) subject classification: 46E99, 28B20.

Key words and phrases: Orlicz space, multifunction, Musielak-Orlicz space of multifunctions, integral operator, Volterra equation.

$b \in L^N(D, R)$, S is a nonnegative nondecreasing continuous functions defined on $[0, \infty)$ and $K(t, s) \geq 0$ for $t, s \in D$,

C3. N satisfies the condition Δ' , i.e. there exist $\lambda, u_0 \geq 0$ such that $N(uv) \leq \lambda N(u)N(v)$ for $u, v \geq u_0$, $K \in E^M(D^2, R)$, φ is an N -function and there exist $\alpha, \gamma, u_0 \geq 0$ such that $N(\alpha S(u)) \leq \gamma \varphi(u) \leq \gamma M(u)$ for $u \geq u_0$,

C4. N satisfies the condition Δ_3 , i.e. there exist $\lambda, u_0 \geq 0$ such that $N(\lambda u) \geq uN(u)$ for $u \geq u_0$, $K \in L^M(D^2, R)$, there exist $\lambda, u_0 > 0$ such that $S(u) \leq \lambda \frac{M(u)}{u}$ for $u \geq u_0$, φ is an N -function satisfying the condition Δ' and such that $\int \int_{D^2} \varphi(M(K(t, s))) ds dt < \infty$,

C5. φ is an N -function and the function N satisfies the condition Δ_2 , i.e. there exist $\lambda, u_0 \geq 0$ such that $N(2u) \leq \lambda N(u)$ for $u \geq u_0$, there exist $\gamma > 0$ such that $S(u) \leq \gamma N^{-1}(\varphi(u))$ for $u \geq 0$, $K(t, \circ) \in E^M(D, R)$ for a.e. $t \in D$ and the function $t \rightarrow \|K(t, \circ)\|_M$ belongs to $E^\varphi(D, R)$.

Let $(t, s, u) \rightarrow h(t, s, u)$ be a nonnegative functions defined for $0 \leq s \leq t \leq d$, $u \geq 0$, satisfying the following conditions:

h is continuous and nondecreasing in u ,

for any nonnegative $u \in L^1(D, R)$ there exists the integral $\int_0^t h(t, s, u(s)) ds$ for a.e. $t \in D$,

for any a , $0 < a \leq d$, $g = 0$ is the only nonnegative integrable function on $[0, a]$ which satisfies $g(t) \leq \int_0^t h(t, s, g(s)) ds$ a.e. on $[0, a]$.

Assume that the conditions C1., C2., and any one of C3.-C5. are fulfilled. Assume in addition that

for any $r > 0$

$$\lim_{\tau \rightarrow 0} \sup_{\|x\|_\varphi \leq r} \int_0^d \|A(x)(t + \tau) - A(x)(t)\|_X dt = 0,$$

$\beta(f(t, s, Z)) \leq h(t, s, \beta(Z))$ for a.e. $t, s \in D$ and every bounded subset Z of X , where $\beta(Z)$ is a measure of noncompactness of Z (see [3], p. 239). Then for any $p \in E^\varphi(D, X)$ there exist an interval $J = [0, a]$ and a function $u \in L^\varphi(J, X)$ which satisfies the equation

$$x(t) = p(t) + A(x)(t)$$

for a.e. $t \in J$. In addition, under the assumption C4. $J = D$.

Remark 1. If $Z \subset R$ is bounded, then $\beta(Z) = 0$.

2. Main Definitions

Let Y be a real separable Hilbert space. Let Θ denotes the zero element in Y . Let

$$M(I, Y) = \{x : I \rightarrow Y : x \text{ is strongly measurable}\},$$

$$M(I, R) = \{q : I \rightarrow R : q \text{ is measurable}\},$$

$$M_Y(I) = \{F : I \rightarrow 2^Y : F(s) \text{ is nonempty for every } s \in I,$$

$$\text{closed and bounded for a.e. } s \in I\}.$$

We denote for all $a \in Y$, $r \geq 0$,

$$B(a, r) = \{x \in Y : \|x - a\|_Y \leq r\},$$

Let:

$$M_Y^0(I) = \{F \in M_Y(I) : F(s) = B(\Theta, r_F(s)) \text{ for every}$$

$$s \in I, r_F(\circ) \in M(I, R)\},$$

$$M_Y^1(I) = \{F \in M_Y(I) : F(s) = B(a_F(s), r_F(s)) \text{ for every } s \in I,$$

$$a_F(\circ) \in M(I, Y), r_F(\circ) \in M(I, R)\}.$$

If $F, G \in M_Y^1(I)$ and $F(t) = G(t)$ for a.e. $t \in I$, then $F = G$ in $M_Y^1(I)$.

In the set $M_Y^1(I)$ we introduce the operations $\odot : R \times M_Y^1(I) \rightarrow M_Y^1(I)$, $\oplus : M_Y^1(I) \times M_Y^1(I) \rightarrow M_Y^1(I)$ as follows: let $F_1, F_2 \in M_Y^1(I)$, $a \in R$, $F_1(s) = B(a_{F_1}(s), r_{F_1}(s))$, $F_2(s) = B(a_{F_2}(s), r_{F_2}(s))$, for every $s \in I$, if $F = F_1 \oplus F_2$ then

$$F(s) = B(a_{F_1}(s) + a_{F_2}(s), r_{F_1}(s) + r_{F_2}(s))$$

for every $s \in I$, if $G = a \odot F_1$, then

$$G(s) = B(aa_{F_1}(s), ar_{F_1}(s))$$

for every $s \in I$. It is easy to see that $F, G \in M_Y^1(I)$.

Let now

$$M_{Y,\varphi}^0(I) = \{F \in M_Y^0(I) : r_F(\circ) \in L^\varphi(I, R)\},$$

$$M_{Y,\varphi}^1(I) = \{F \in M_Y^1(I) : a_F(\circ) \in L^\varphi(I, Y), r_F(\circ) \in L^\varphi(I, R)\},$$

$$EM_{Y,\varphi}^1(I) = \{F \in M_Y^1(I) : a_F(\circ) \in E^\varphi(I, Y), r_F(\circ) \in E^\varphi(I, R)\}.$$

The spaces $M_{Y,\varphi}^1(I)$ and $M_{Y,\varphi}^0(I)$ will be called the Orlicz spaces of vector multifunctions (see [1]).

3. On the operator H

Let $H : I \times Y \rightarrow Y$ and let

$$H(F)(t) = \{H(t, x) : x \in F(t)\} \text{ for every } t \in I, F \in M_Y(I).$$

In [1] is proved the following

LEMMA 1. *Let the function H fulfil the following conditions:*

a) $H(s, x)$ is a strongly measurable function as a function of s for every $x \in Y$,

- b) there exists $L > 0$ such that $\|H(s, x) - H(s, y)\|_Y \leq L\|x - y\|_Y$ for all $s \in I$, $x, y \in Y$,
- c) $H(s, \Theta) = \Theta$ for every $s \in I$,
- d) if $\|x\|_Y < \|y\|_Y$, then $\|H(s, x)\|_Y < \|H(s, y)\|_Y$ and if $\|x\|_Y = \|y\|_Y$, then $\|H(s, x)\|_Y = \|H(s, y)\|_Y$ for every $s \in I$,
- e) for every $t \in I$ and every $y \in Y$ there is $x \in Y$ such that $y = H(t, x)$.

Then $\mathbf{H} : M_{Y, \varphi}^0(I) \rightarrow M_{Y, \varphi}^0(I)$.

Remark 2. Let $\mathcal{C}(F)(t) = \mathbf{H}(F + (-a_F))(t)$ for every $t \in I$, where $F(t) = B(a_F(t), r_F(t))$ for every $t \in I$. If the assumptions of Lemma 1 hold, then

$$\mathcal{C} : M_{Y, \varphi}^1(I) \rightarrow M_{Y, \varphi}^0(I).$$

4. On the operator T

Let $D = [0, d]$, $0 < d < \infty$. Let $K : D \times D \rightarrow R_+$ be measurable. Let $q : D \rightarrow R$ be measurable. We introduce the operator A^1 by the formula:

$$A^1(q)(t) = \int_0^t K(t, s)q(s) ds$$

for every $t \in D$.

Let $x : D \rightarrow Y$ be strongly measurable. We introduce the operator A^2 by the formula:

$$A^2(x)(t) = \begin{cases} \int_0^t K(t, s)x(s) ds, & \text{if } \int_0^t K(t, s)\|x(s)\|_Y ds < \infty \\ \Theta & \text{if } \int_0^t K(t, s)\|x(s)\|_Y ds = \infty \end{cases}$$

for every $t \in D$.

Let $\mathcal{B}(F) = \{A^2(x) : x \in M(D, Y) \cap F\}$ for every $F \in M_Y(D)$.

Remark 3. If $A^1 : L^\varphi(D, R) \rightarrow L^\varphi(D, R)$, then

$$\mathcal{B} : M_{Y, \varphi}^0(D) \rightarrow M_{Y, \varphi}^0(D).$$

Proof. Let $F \in M_{Y, \varphi}^0(D)$. We have for $t \in D$

$$\begin{aligned} \sup_{x \in M(D, Y) \cap F} \left\| \int_0^t K(t, s)x(s) ds \right\|_Y &\leq \sup_{x \in M(D, Y) \cap F} \left\{ \int_0^t K(t, s)\|x(s)\|_Y ds \right\} \\ &= \int_0^t K(t, s)r_F(s) ds. \end{aligned}$$

On the other hand for $x(s) = xr_F(s)/\|x\|_Y$ for every $s \in D$, where $x \in Y$

and $x \neq \Theta$, we have for $t \in D$

$$\left\| \int_0^t K(t, s)x(s) ds \right\|_Y = \left\| \frac{x}{\|x\|_Y} \int_0^t K(t, s)r_F(s) ds \right\|_Y = \int_0^t K(t, s)r_F(s) ds.$$

Let

$$0 < \int_0^t K(t, s)r_F(s) ds < \infty$$

and let $y \in B(\Theta, \int_0^t K(t, s)r_F(s) ds)$. Let

$$x_t(s) = yr_F(s) / \int_0^t K(t, s)r_F(s) ds$$

for every $s \in D$. We have

$$\int_0^t K(t, s)x_t(s) ds = y \quad \text{and} \quad x_t \in M(D, Y) \cap F \text{ because}$$

$$\|x_t(s)\|_Y = \left\| yr_F(s) / \int_0^t K(t, s)r_F(s) ds \right\|_Y \leq r_F(s) \text{ for every } s \in D.$$

So $\mathcal{B}(F)(t) = B(\Theta, r_{\mathcal{B}(F)}(t))$ for every $t \in D$, where

$$r_{\mathcal{B}(F)}(t) = \begin{cases} \int_0^t K(t, s)r_F(s) ds, & \text{if } A_v^1(r_F)(t) < \infty \\ 0, & \text{if } A_v^1(r_F)(t) = \infty \end{cases}$$

for every $t \in D$. It is easy to see that $r_{\mathcal{B}(F)} \in L^\varphi(D, R)$.

Let $F \in M_{Y, \varphi}^1(D)$ and let $F(s) = B(a_F(s), r_F(s))$ for every $s \in D$. We introduce the operator T by the formula:

$$T(F)(s) = \begin{cases} B(A^2(a_F)(s), A^1(r_F)(s)), & \text{if } A^1(r_F)(s) < \infty \\ \{A^2(a_F)(s)\}, & \text{if } A^1(r_F)(s) = \infty \end{cases}$$

for every $s \in D$.

Remark 4. If $A^1 : L^\varphi(D, R) \rightarrow L^\varphi(D, \bar{R})$, where $\bar{R} = [-\infty, +\infty]$, then $T : M_{Y, \varphi}^1(D) \rightarrow M_{Y, \varphi}^1(D)$.

Proof. Let $F \in M_{Y, \varphi}^1(D)$, $F(s) = B(a_F(s), r_F(s))$, for every $s \in D$. It is easy to see that

$$B(A^2(a_F)(s), A^1(r_F)(s)) = B(A^2(a_F)(s), 0) \oplus B(\Theta, A^1(r_F)(s))$$

for every $s \in D$ and

$$A^2 : L^\varphi(D, Y) \rightarrow L^\varphi(D, Y),$$

so $T(F) \in M_{Y, \varphi}^1(D)$.

COROLLARY 1. *If the assumptions of Lemma 1 and Remarks 2, 4 hold, then*

$$T(\mathcal{C}) : M_{Y,\varphi}^1(D) \rightarrow M_{Y,\varphi}^0(D).$$

Remark 5. $\mathcal{B}(F) = T(F)$ for every $F \in M_{Y,\varphi}^0(D)$.

5. General Theorem

THEOREM 2. *Let the assumptions of Theorem 1 without the assumptions C3. and C5. hold. Let $H(s, x) = H(x)$ for every $s \in I$ satisfy the assumptions of Lemma 1 with $I = D$. Let there exists a function $R_1 : R_+ \rightarrow R_+$ such that: $\|H(x)\|_Y = R_1(\|x\|_Y)$ for every $x \in Y$, R_1 is a increasing continuous function on $[0, \infty)$ and there exists $L_1 > 0$ such that $R_1(u) \leq L_1 u$ for every $u \in [0, \infty)$. If the assumption C4. of Theorem 1 holds with the function $S = R_1$ and $\int_0^d \|K(t, \circ)\|_M dt < \infty$, then for every $P \in M_{Y,\varphi}^1(D)$ there exists $F \in M_{Y,\varphi}^1(D)$ which satisfies the equation*

$$F(t) = P(t) \oplus A(a_F)(t) \oplus \mathcal{B}(\mathcal{C}(F))(t)$$

for a.e. $t \in D$.

Proof. From the assumptions $A^2 : L^\varphi(D, Y) \rightarrow L^\varphi(D, Y)$. So $\mathcal{B}(\mathcal{C}) : M_{Y,\varphi}^1(D) \rightarrow M_{Y,\varphi}^0(D)$. So we must solve two equations

$$\begin{aligned} a_F(t) &= a_P(t) + A(a_F)(t), \\ r_F(t) &= r_P(t) + \int_0^t K(t, s) R_1(r_F(s)) ds \end{aligned}$$

for a.e. $t \in D$.

It is easy to see that there exists $a' \in L^\varphi(D, Y)$ such that

$$a'(t) = a_P(t) + A(a')(t)$$

for a.e. $t \in D$.

It is easy to see that $\beta(K(t, s) R_1(Z)) = 0$ for every $t, s \in D$ and every bounded subset Z of R and also

$$\lim_{r \rightarrow 0} \sup_{\|x\|_\varphi \leq r} \int_0^d \left| \int_0^{t+\tau} K(t, s) R_1(x(s)) ds - \int_0^t K(t, s) R_1(x(s)) ds \right| dt = 0$$

for any $\tau > 0$.

So there is $r' \in L^\varphi(D, R)$ such that $r' \geq 0$ for $t \in D$ and

$$r'(t) = r_P(t) + \int_0^t K(t, s) R_1(r'(s)) ds$$

for a.e. $t \in D$. Let $\Phi(t) = B(a'(t), r'(t))$ for a.e. $t \in D$. It is easy to see that $\Phi \in M_{Y,\varphi}^1(D)$ and

$$\Phi(t) = P(t) \oplus A(a_\Phi)(t) \oplus B(\mathcal{C}(\Phi))(t)$$

for a.e. $t \in D$.

Remark 6. The function

$$H(x) = \begin{cases} \frac{x}{\|x\|_Y} \ln(1 + \|x\|_Y), & \text{for } x \neq \Theta \\ \Theta, & \text{for } x = \Theta \end{cases}$$

satisfies the assumptions of Theorem 2.

Remark 7. Let φ fulfil the condition Δ_2 . If in Theorem 2 we replace the assumption C4. by the assumption C5. and we assume that $\int_0^d \|K(t, \circ)\|_\psi dt < \infty$ instead of $\int_0^d \|K(t, \circ)\|_M dt < \infty$, where ψ is complementary to φ , then for any $P \in M_{Y,\varphi}^1(D)$ there exist an interval $J = [0, a]$ and $F \in M_{Y,\varphi}^1(J)$ such that

$$F(t) = P(t) \oplus A(a_F)(t) \oplus B(\mathcal{C}(F))(t)$$

for a.e. $t \in J$.

References

- [1] A. Kasperski, *Notes on approximation in the Musielak-Orlicz vector spaces of multifunctions*, Comm. Math. Univ. Carolinae 35 (1994), 81–93.
- [2] J. Musielak, *Orlicz spaces and Modular spaces*, “Lecture Notes in Mathematics Vol. 1034”, Springer-Verlag, Berlin, 1983.
- [3] W. Orlicz and S. Szulfa, *On some classes of nonlinear Volterra integral equation in Banach spaces*, Bull. Acad. Polon. Sci. Ser. Sci. Math. 30 (1982), 239–250.

INSTITUTE OF MATHEMATICS
SILESIAN TECHNICAL UNIVERSITY
Kaszubska 23
44-100 GLIWICE, POLAND

Received June 22 1992; revised version January 2, 1995.

