

S. P. Singh, S. K. Jain

ON TRANSLATE OF BERNSTEIN TYPE
 RATIONAL POLYNOMIALS

1. Introduction

Păpanicolau [2] studied some approximation results on bounded continuous functions f by a class of linear operators $(L_{n,t}f)$ defined as

$$(1.1) \quad (L_{n,t}f)(x) = \sum_{k=0}^n \binom{k+n-1}{k} \frac{t^k}{(1+t)^{n+k}} f\left(x + \frac{k}{n}\right),$$

for $f \in C_B[0, \infty)$.

Now, following the operators (1.1), we define the following Bernstein type rational polynomials $(P_{n,t}f)$ as

$$(1.2) \quad (P_{n,t}f)(x) = \sum_{k=0}^n A_{n,k,t} f\left(x + \frac{k}{n^\alpha}\right),$$

where

$$(1.3) \quad A_{n,k,t} = \binom{n}{k} \left(\frac{n^{\alpha-1}t^k}{(1+n^{\alpha-1}t)^n} \right)$$

$f \in C_B[0, \infty)$ and $a \in (0, 1]$,

and study some approximation results on the operators (1.2).

2. In this section we prove some basic results which are useful in proving the main results.

LEMMA. *For $t \geq 0$ and $n \in \mathbb{N}$, the following identities hold*

$$(2.1) \quad \sum_{k=0}^n A_{n,k,t} = t,$$

$$(2.2) \quad \sum_{k=0}^n A_{n,k,t} \left(\frac{k}{n^\alpha} - t \right) = - \frac{n^{\alpha-1} t^2}{1 + n^{\alpha-1} t},$$

$$(2.3) \quad \sum_{k=0}^n A_{n,k,t} \left(\frac{k}{n^\alpha} - t \right)^2 = \frac{(n^{2\alpha-2} t^4 + n^{-\alpha} t)}{(t + n^{\alpha-1} t)^2} = B_{n,\alpha,t} \text{ (say).}$$

Proof. On differentiating the expression (2.1) with respect to t and adjusting the terms, we get the required results (2.2) and (2.3). However the proof is similar to that of K. Balâzs [1].

3. In this section we prove our main results.

THEOREM 1. *For fixed $x \in [0, \infty)$ and all $T \geq 0$, we have*

$$(3.1) \quad \sup_{0 \leq t \leq T} |(P_{n,t}f)(x) - f(x+t)| \rightarrow 0 \text{ as } n \rightarrow \infty.$$

Proof. From the definition (1.2) we write

$$\begin{aligned} |(P_{n,t}f)(x) - f(x+t)| &\leq \sum_{|\frac{k}{n^\alpha} - t| < \delta} A_{n,k,t} \left| f\left(x + \frac{k}{n^\alpha}\right) - f(x+t) \right| + \\ &\quad + \sum_{|\frac{k}{n^\alpha} - t| \geq \delta} A_{n,k,t} \left| f\left(x + \frac{k}{n^\alpha}\right) - f(x+t) \right| = S_1 + S_2 \text{ (say).} \end{aligned}$$

This first sum S_1 in the above expression is arbitrarily small if δ is chosen sufficiently small. The choice of δ depends only on powers of n .

Now, with $\delta > 0$ so chosen and fixed, and with $M = \sup_{x \geq 0} |f(x)|$, the following estimate

$$\begin{aligned} S_2 &\leq \frac{2M}{\delta^2} \sum_{|\frac{k}{n^\alpha} - t| \geq \delta} A_{n,k,t} \left(\frac{k}{n^\alpha} - t \right)^2 \leq \\ &\leq \frac{2M}{\delta^2} \sum_{k=0}^n A_{n,k,t} \left(\frac{k}{n^\alpha} - t \right)^2 = \frac{2M}{\delta^2} B_{n,\alpha,t} \end{aligned}$$

(using the result (2.3)), approaches to 0 as $n \rightarrow \infty$.

Hence the theorem is proved.

THEOREM 2. *Let $f \in C^{(1)}[0, \lambda]$, $\lambda > 0$, be such that $w(f'; \delta)$ is the modulus of continuity of f' . Then for $n \geq 1$ and $\delta > 0$ one gets*

$$(3.2) \quad |(P_{n,t}f)(x) - f(x+t)| \leq \frac{n^{2\alpha-1} t^2}{1 + n^{\alpha-1} t} \|f'\| + w(f'; \delta) \{ \sqrt{B_{n,\alpha,t}} + B_{n,\alpha,t} \}.$$

Proof. Using the mean value theorem, we write

$$f\left(x + \frac{k}{n^\alpha}\right) - f(x+t) = \left(\frac{k}{n^\alpha} - t\right) f'(x+t) + \left(\frac{k}{n^\alpha} - t\right) \{f'(x+\eta) - f'(x+t)\},$$

where η lies between t and $\frac{k}{n^\alpha}$.

Now, applying (1.2) on above, we get

$$|(P_{n,t}f)(x) - f(x+t)| = \left| \sum_{k=1}^n A_{n,k,t} \left[f\left(x + \frac{k}{n^\alpha}\right) - f(x+t) \right] \right|,$$

and, using the inequality

$$(3.3) \quad |f'(x+\eta) - f'(x+t)| \leq \{1 + |\eta - t|\delta^{-1}\} w(f'; \delta),$$

we see that

$$(3.4) \quad \begin{aligned} |(P_{n,t}f)(x) - f(x+t)| &\leq |f'(x+t)| \left| \sum_{k=1}^n A_{n,k,t} \left(\frac{k}{n^\alpha} - t \right) \right| + \\ &+ w(f'; \delta) \left\{ \sum_{k=1}^n A_{n,k,t} \left| \frac{k}{n^\alpha} - t \right| + \sum_{k=1}^n A_{n,k,t} \left(\frac{k}{n^\alpha} - t \right)^2 \right\}. \end{aligned}$$

Now, using the results (2.1) to (2.3) in the inequality (3.4), we get the required result (3.2).

Hence the theorem is proved.

Using a slight different method, we can get the following result.

THEOREM 3. *Under the conditions of Theorem 2, one gets*

$$(3.5) \quad \begin{aligned} |(P_{n,t}f)(x) - f(x+t)| &\leq \\ &\leq \left(\frac{n^{2\alpha-1}t^2}{1+n^{\alpha-1}t} \right) \|f'\| + w(f'; \delta) \left\{ \frac{x^2}{\delta} + \left(1 + \frac{x}{\delta} \right) \sqrt{B_{n,\alpha,t}} + \left(\frac{B_{n,\alpha,t}}{2\delta} \right) \right\}. \end{aligned}$$

Proof. We know that

$$f\left(x + \frac{k}{n^\alpha}\right) - f(x+t) = \left(\frac{k}{n^\alpha} - t\right) f'(t) + \int_{x+t}^{x+\frac{k}{n^\alpha}} (f'(y) - f'(t)) dy.$$

Now, applying (1.2) and using the inequality (3.3) on above, we get

$$\begin{aligned} |(P_{n,t}f)(x) - f(x+t)| &\leq |f'(t)| \left| \sum_{k=1}^n A_{n,k,t} \left(\frac{k}{n^\alpha} - t \right) \right| + \\ &+ w(f'; \delta) \sum_{k=1}^n A_{n,k,t} \left| \int_{x+t}^{x+\frac{k}{n^\alpha}} \left\{ 1 + \frac{|y-t|}{\delta} \right\} dy \right| \leq \end{aligned}$$

$$\leq |f'(t)| \left| \sum_{k=1}^n A_{n,k,t} \left(\frac{k}{n^\alpha} - t \right) \right| + \\ + w(f'; \delta) \sum_{k=1}^n A_{n,k,t} \left\{ \frac{x^2}{\delta} + \left(1 + \frac{x}{\delta} \right) \left| \frac{k}{n^\alpha} - t \right| + \dots + \frac{1}{2\delta} \left(\frac{k}{n^\alpha} - t \right)^2 \right\}.$$

Now using the results (2.1) to (2.3) in the above expression, we get the required result (3.5).

Hence the theorem is proved.

Acknowledgements. The authors are thankful to the learned referee whose criticism and suggestions has improved the contents of the paper.

References

- [1] K. Balâzs, *Approximation by Bernstein type rational functions*, Acta Math. Acad. Sci. Hungar. 26 (1975), 123–134.
- [2] G. C. Papanicolau, *Some Bernstein type operators*, Amer. Math. Month. 82 (1975), 674–677.

DEPARTMENT OF MATHEMATICS
G.G. UNIVERSITY
BILASPUR (M.P.), INDIA-495009

Received October 14, 1991; revised version July 20, 1994.

