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ON TRANSLATE OF BERNSTEIN T Y P E 
RATIONAL POLYNOMIALS 

1. Introduction 
Papanicolau [2] studied some approximation results on bounded contin-

uous functions / by a class of linear operators (Ln itf) defined as 

for / € C b [ 0 , OO). 

Now, following the operators (1.1), we define the following Bernstein type 
rational polynomials (Pn , tf) a s 

( i . 2 ) { P n M x ) = j ^ A n k t f ^ i . y 

where 

f e C B [ 0,oo) and aG(0 , l ] , 

and study some approximation results on the operators (1.2). 

2. In this section we prove some basic results which are useful in proving 
the main results. 

L E M M A . For t > 0 and n E N , the following identities hold 
n 

(2 .1) 5 > „ , m = t, 
k=0 
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,„ „, .A , ( k \ n°~H2 

(2-3) ¿^GM'=(n7Z°%"t}=<-»>• 
P r o o f . On differentiating the expression (2.1) with respect to t and 

adjusting the terms, we get the required results (2.2) and (2.3). However 
the proof is similar to that of K. Balazs [1]. 

3. In this section we prove our main results. 

THEOREM 1 . For fixed x e [0, oo) and all T >0, we have 

( 3 . 1 ) sup | ( P n i t / ) ( i ) - f(x +1) | 0 as n oo. 
o <t<T 

P r o o f . From the definition (1.2) we write 

\(Pn,tf)(x) ~ f{x + i)| < £ f i x + " f(x + t) 

+ £ A n t k t t f ( x + ^ ; ) - f ( x + t) 
ii^x v n J 

+ 

= Si + S2 (say). 

This first sum Si in the above expression is arbitrarily small if S is chosen 
sufficiently small. The choice of 6 depends only on powers of n. 

Now, with 6 > 0 so chosen and fixed, and with M = sup:c>0 |/(a?)|, the 
following estimate 

'/. IVI . — . / \ ^ 

n-

2 Z1V1
 TJ 

\ n" / n* ' 
k=0 

2M ^ t ( k \ 2 

2 M A . ( k \ 2 2M 

i—n N ' 

(using the result (2.3)), approaches to 0 as n —> oo. 
Hence the theorem is proved. 

THEOREM 2 . Let f e C ^ ' ^ A ] , A > 0 , be such that w(f';6) is the 
modulus of continuity of /'. Then for n > 1 and S > 0 one gets 

„20.-142 
( 3 . 2 ) | ( P n , t / ) ( ® ) - / ( * + 0 l < 1 + n a . H W f ' W + " ( / ' ? S ) { + J n , a , « } . 
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Proof . Using the mean value theorem, we write 

/ ( * + ¿ r ) - / ( » + ' ) = - « ) A « + < ) + - « ) { / ' ( * + v ) - f(*+*)h 

where 77 lies between t and • 
Now, applying (1.2) on above, we get 

|(Pn,*/)(*) " f (x + 01 = 
k=l \ ' J 

and, using the inequality 

(3 .3 ) \ f ' ( x + r j ) - f ' ( x + <)| < { 1 + \V - t \ S - ' M f ; 6), 

we see that 

(3 .4 ) | ( P „ , T / ) ( X ) - f ( x + i ) | < | / ' ( I + <)L 

+w(f 
k=l 

IJ^GM 
•¿"-"GMT k 

1 
na 

Now, using the results ( 2 . 1 ) to ( 2 . 3 ) in the inequality ( 3 . 4 ) , we get the 
required result ( 3 .2 ) . 

Hence the theorem is proved. 

Using a slight different method, we can get the following result. 

THEOREM 3. Under the conditions of Theorem 2, one gets 

(3.5) |(F„,,/)(i) - / ( * + <)!< 

S ( T O T ) » ' « + - < ™ { T + 0 + (^IF)}' 
Proof . We know that 

f { x + ^ ) ~ f ( x + t ) = {^~t)/,(i) + nn» - fwdy• 
x+t 

Now, applying (1.2) and using the inequality (3.3) on above, we get 

\ ( P n , t f ) ( x ) - f ( x + t ) \ < \ f ' ( t ) \ 

x+ 

k=l x / 1 

fc=l x+t ' ' 



238 S. P. Singh, S. K. Jain 

( / • lOt^ i iy+i l + j) 

+ 

k 
1 na + 

Now using the results (2.1) to (2.3) in the above expression, we get the 
required result (3.5). 

Hence the theorem is proved. 
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