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A CLASS OF MULTIVALENT FUNCTIONS
WITH NEGATIVE TAYLOR COEFFICIENTS

1. Introduction
Let D denote the unit disc {z : |z| < 1}. Let A,, p = 1,2,..., be the
class of functions f analytic in D and represented by the Taylor series

(1.1) flz) =2+ Eakzk“’, z€ D.
k=1

A function f in A, is said to be p-valent starlike of order a, 0 < o < 1, if

Re{%l} >pa, z€D,

and f is said to be a p-valent convex function of order a, if 5f—;(31 is p-valent
starlike of order « [1].
Let S°[p, a] denote the class of p-valent starlike functions f of order a,

given by the Taylor series

o0
(1.2) - f(z) =27 - Z lax|2**?,  z € D.

k=1
Similarly, let K[p,a] denote the class of p-valent convex functions of order
a that are represented by (1.2). Kapoor and Mishra [3] have proved that a
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function f given by (1.2) is in 5°[p, o] if and only if

(1.3) > (k+p - pa)lax| < p(1-a)
k=1
and f is in K{[p, o] if and only if
(14) > (££2) & +5- pallasl <501 - a).
k=1

For any real number A, let Sy[p,a], 0 < a < 1, denote the class of

functions f given by the Taylor series (1.2) and satisfying

oo k +P A
(1.5) > ) (k+p-palail <p(1- o).

k=1
It follows that Sy[p,a} = S°[p,a}, Si[p,e] = K{p,e] and if A; < A;, then
Sx,[p,a] € Si,[p,a). Thus, for A > 0, functions in Si[p, a] are p-valent
starlike of order a and further if A > 1, functions in S)[p, @] are p-valent
convex of order a. For A > 0,p = 1, this class has been studied by Kumar [4].
For A < 0, 5)\[p, ] contains some non p-valent functions also.

ExaMPLE. Consider the functions fi in S\[p, a] given by
A+1
" (l1-a) k+
1.6 fi(2) =27 - 2°TP
(16 U Ry
where 0 < a < 1, k,p = 1,2,... and A < 0. We shall show that, for fixed
a and p, there exists a positive integer ko such that for all £ > ko, the pth
derivative of each function f; vanishes at some point in D, so that fi is not
p-valent for k > k.
In fact, f,(cp)(z) is equal to zero, if
k. p=1 p-2 1_pMk+p-po)
k+p—-1k+p-2"""k+1(k+p' 21 -0a)
Thus, |z| < 1 is satisfied if
p Mk +p— pa)
(k+p)-*(1-a)

’ ZED,

<1

which is equivalent to
(k+p)' > —p(k+p)
(b + P~ >

Note that F(k) is increasing for k > (p/(—2)) and limy_, o, F(k) = 1. Thus,
for fixed o and p, we can choose a ko such that (1.7) is satisfied for all

(1.7) a< = F(k).
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k > ko > (p/(—=A)). The function F(k) is increasing what can be seen from
the following calculations. F(k) < F(k + 1) is equivalent to

1 1-X 1 pl—)\
(1.8) (1+ _k+p) _ (1+ z) i
Since
1\ 1=
14— >14 ——
( * k+p) * k+p

it follows that (1.8) is true if £ > (p/(—A)).

In the present paper we study the class Si[p,a] for all nonnegative as
well as for some negative values of A. In particular, we obtain distortion
theorems, a covering theorem, order of starlikeness and order of convexity
for the family Si[p, @]. These results extend those of Silverman in [5]. Our
result on quasi-Hadamard product of several functions in S,[p,a] unifies
and generalizes some recent results of Kumar [4].

2. Distortion and covering theorems
It follows from (1.5) that if f given by (1.2) is in S,[p, ], then

(1—a)p*?
(k+p —pa)(k+p)
Equality holds in (2.1), for each k£ = 1,2,..., only for the functions

(1 - a)pk+l k+p

(2.1) lax| <

2.2 z)= 2P - 2P ze D.
@2 fil2) (k +p - pa)(k + p)*
The function
_ A1
(2.3) fi(z) = 2P - (1=ap ¥ zeD,

(1+p~ pa)(1 +p)*
is of foremost importance in the discussion of sharpness for the results of
this paper.
We obtain the following results.

THEOREM 1. Let f be in S)[p,a]. Then for A > —1

P (1 — a)pk+1 1+p
(25) [ PR L) e

- (T+p-pa)(1+p)
where r = |z|. Equality holds in (2.4) at z = —r and in (2.5) at z = r only
Jor the function f; defined by (2.3).
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Proof. For A > -1, (k—';z))‘(k + p — pa) is an increasing sequence in k.
So,

l-a)> ¥ (’“;”) (k+p— pa)las]

k=1

> (””) (1+p- pa)ZIakI

Equivalently,

S (1= a)p*+!
(26) 2l S s

Using (2.6), we have

oo o
IFI < 12l + Y lael 121547 < 2P + |22 ) |aal
k=1 k=1

- A
< 1gf? 4 (o172 p(l-oa)
< |7+ 1 (1+p) (14 p - pa)

Hence we get (2.4). Similarly
(o ¢} o0
IF(2) 2 121 = Y larl [21*¥7 2 |27 = |27 a|
k=1 k=1

and, by (2.6), we obtain (2.5).

It is clear that equality holds in (2.4) and in (2.5) only if it holds in (2.6).
However, in view of (1.5), this is true only if
(1 - a)p*?
&0 )= TG
Thus,.as indicated at the beginning of this section, f must be equal to f;
defined by (2.3). The proof is complete.

THEOREM 2. For -1 < A <0, let

p—}‘

EEDEEr=
The disc |z| < 1 is mapped by any function in S\[p,a], A > —1, onto a
domain that contains the disc

(a) |w] < l—ﬁ%ﬁsn(}),a,)\), fA>0and 0 <a<1lor
~1<A<0anday<a<l,

(b) Jw] < #[ﬁ%)—(%e)k]? = r(p,a,A), if =1 < A < 0 and
0<a<ap.

Qg =
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Proof. First, note that, if A < 0, then

p—A

S @Tpi

Therefore, 0 < ag < 1. In view of Theorem 1 (2.5), the range of f contains
the disc |w| < max(g(r)), 0 < r < 1, where

r)=rP — p(1~a) P er+1
9(r) = (1+p—pa)<p+1) '

Differentiation with respect to r gives

g(r)=prr™ [1 - (g 1++p12(i ;ac;) (p i 1 ) AT] '

Note that [(1+p)(1 - a)/(1+p—-pa)] < 1,if & > 0, and (p/(1+p))* < 1,
if A > 0. Therefore, g is increasingin r, 0 < r < 1,if0<a<land A >0,
so max(g(r)) = g(1). This gives the first part of (a).

Next, if =1 < A < 0, then the condition

(1+p)(1—a)< P )A <1
(I1+p-pa) \1+p) ~
is equivalent to ag < a. Therefore, if -1 < A< 0and ap < a <1, theng
is increasing in r, 0 < 7 < 1. Thus max(g(r)) = ¢g(1). This gives the second
part of (a).

On the other hand, if -1 < A < 0 and 0 £ a < ag, then g'(r) = 0,
where

0 <1

ro= (p: 1)*((11:;;(; ;_;aoz) ‘L
and
o0 = o[22 (12) ] <

max g(r) = g(ro) =

1 [ (1+p~po) (p+ 1)*}"
(P+)LA+p(A-a)\ p '
This gives (b). The proof is complete.

Remark 1. By choosingp=1,A=0and p=1, A =1 in Theorem 2
we get

3—-«a

r1(1,a,0) = and 7(l,e,1) = 155"

1
2—-a
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a result of Silverman [5, Theorem 5]. Further, for fixed p and A, -1 < A <0,
a routine calculation shows that

(P_:'_l—)- = rl(p1a07A) = ali—»néo rz(p’a7 A)
THEOREM 3. For f € Si[p,a],0 < a < 1, A > 0, we have
, _ (1 - )
(2.8) |f'(2)| < prP 1(“ (1+p)*"1(1+ p - pa) )
: » M1 -a)
(2.9) If'(z)| 2 pr® (1‘ (1+ p)-1(1+ p - pa) )

with v = |z|. Equality holds in (2.8) at z = —r and in (2.9) at z = r only
Jor the function f, defined by (2.3).

Proof. Since
(1+ o) lax] < (k+p—pa)lai| < p(1 - ),
PPZ(p)k;() p—pa)lar| < p

we have

k+p p(1-0)
(210 5 (457 s
Using (1.5) and (2.10), we get

(1—5;7”)% kil(k +p)ladl < kfj (’“p#)A(k + p)lal

Z(k+p) (k+p- Pa)]akl-l-z( » )Apalak|

k=
pl-a) _p+p)(l-a)

Sp(l—a)+Pa(1+p_pa) T (+p-pa)
So,
P A1 (l—a)
(2.11) Z(k+P)|ak' S A +p1(1+p-pa)

Using (2.11), we get for |z| = r

)
1£'(2) <plelP™ + D (K + p)larl|z|**+7
k=1

o0
<pret +17 ) (K + p)lax|

k=1
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p*! (1-e)
(1+p)*1(Q+p-pa)
(1-a)p? T)
(14+p)?Y(1+p-pa) )

<prP7l 4P

= pr”"l (1 +

This gives (2.8). Similarly,

00

IF/(2)] 2 plzlP™! = Y (k + p)laxl|z|*+*7

k=1
p— (1 - a)p*
2o l<1 T A+p-pall +p)k-”)'

This gives (2.9).

We note that equality in (2.10), hence in (2.11), holds only if (2.7) is
true. So equality holds in (2.8) at z = —r and in (2.9) at z = r only for the
function f; defined by (2.3). This completes the proof.

3. Quasi-Hadamard product
Let f and g be two functions analytic in D and be represented by the
Taylor series

oo
f(2) = a0z = Y ax2**?, a0 >0, 0,20, k=1,2,...,
k=1

o0
9(2) = boz® — 3 bkz*P, by >0, b 20, k=1,2,....
k=1

The quasi-Hadamard product of f and g is defined to be the analytic func-
tion f o g given by.the Taylor series

(fog)(2z) = aoboz? — Zakbkzk+”.
k=1

Note that the usual Hadamard product would give the Taylor series

o0
agbo2® + Z arbrz*tP.
k=1

For p = 1, the above definition of quasi-Hadamard product is due to Ku-
mar [4]. Quasi-Hadamard product of several functions is defined similarly.
We next prove a theorem that generalizes and unifies some recent results of
Kumar [4, Theorem A, B, C].
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THEOREM 4. Fori=1,2,...,m let g;, given by
e o]
gi(2) = 2" =) i, @20, k=1,2,...,

be in Sy,[p,ai], 0 < a; <1 and —00 < \; < 0. Then, the function g =
=g10929...00m 1s1n S,[p,a°], where p= Y72 X+ (m—1) and a® =
= max{a;,az,...,0n}.

Proof. It is sufficient to show that

k+
Z [( p) (k+p- pa")Hak,] <p(1-a®).
k=1 P i=1

Without loss of generality we assume that a,, = a°. Since g; € S),[p, ai],
we have

oo k+ bY;
(3.1) Z(-——p) (k+p-paj)ar; < p(1- ;)
k=1 p
for every 1 = 1,2,...,m.
Therefore,
o) (2 )" (2 )"
3.2 i < <|— .
(32) Wi kdp-poi\k+tp) “\k+p

Using (3.2)for i =1,2,...,m—1 and (3.1) for i = m, we obtain,

[(k +P) (k+p- Pa°)(.ﬁ ‘“"")]
[ el

=1

I

p
Hence, g = g1 0929 ...0gm € S,[p,a°]. The proof is complete.

ot [(k_+£) m(k +p- pam)ak,m] < p(1 - am) = p(1 - a°).

Remark 2. Theorem 4 is new even in the case of p = 1 and provides
several interesting consequences. If we take A; = 0 and A; = 1 for ¢ =
=1,2,...,m in Theorem 4 with p = 1, we get Theorem A and Theorem B
of [4], respectively. Similarly, the choice of A\; = 0 for ¢ = 1,2,...,¢ and
Ai=1lfori=¢q+1,q+2,...,min Theorem 4 with p = 1, gives Theorem C
of [4].

A general problem in the theory of univalent functions concerns the
study of those transformations which carry one or several univalent as well



Class of multivalent functions 231

as nonunivalent functions into the class of univalent functions. A useful
consequence of Theorem 4, related to the above problem is that quasi-
Hadamard product of suitable number of nonunivalent functions can pro-
duce a univalent function. For example, in Theorem 4 with p = 1, if we
choose —1 + % <X <0,i=1,2,...,m, then the quasi-Hadamard product
fiofao...0 frm of functions f; in Sy[1,a] is a starlike univalent function.
Similarly, if m > 2,1 =1,2,...,m,and %—1 < A; £0,then fiofs0...0fnm,
for f; in S,[1, ], is a convex univalent function. A yet simpler example gives
that the quasi-Hadamard product of an univalent convex function given by
(1.2) and a function in S_4[1,a] is a convex univalent function. Similar
remarks for p-valent cases also follow from Theorem 4.

4. Order of starlikeness and order of convexity for S,(p, a]
Silverman [4] has shown that the order of starlikeness of the family of

univalent convex functions of order « is equal to 2. Kapoor and Mishra [3]
have shown that, if f given by (1.2) is in K[p, a], then f is in §°[p, 8], where

= fla)= —PTL
B =hlo) = 2p+1-pa’
THEOREM 5. Suppose —00 <t < s<o0,s—t>1,p=1,2,..., and

1- ;}; <a<l. If f€S,pa], then f € S¢[p, 0], where
(H2)™(1+p-pa) - (1+p)(1- )
(H2)™(1 4 p - pa) - p(1 - a)

The result is sharp with

— P D : p(l—'a) p
(42 fiz)== _(1+p) CEr e

(41) gB=

, m=s-—1t.

being eztremal.
Proof. In view of (1.5), it suffices to show that
(552)(k+p—pB) _ (KR)*(k+p—pa)
1-4 - l-a
for all £k =1,2,.... This is equivalent to show that
(££2)*(k + p — pa) — (E22)!(k + p)(1 - @)
(E£2)s(k + p - pa) — p(E22)H(1 —a)

g <

Equivalently
(B2)y™(k + p — pa) — (k+ p)(1 - @)
(&2)m(k + p - pa) — p(1 - o)

B < =F(k), k=12....
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Since F(k) is an increasing sequence of k for s—t > 1and 1— ;}5 <a<1,the
above is true, if we take § = F(1). In order to show that F is an increasing
sequence of k, extend F' as a function of the real variable z. We get that
F'(z) is equal to the expression given below

43) {+p) T p (s - )z +p) —pla(s -t - 1) +s—t+1)(z +p)
+ap?(s = O]+ (1 - a)p™*+(z + p)*}(1 - @)lp'(z + p)**!
—ap™*i(z +p)* —p*(z +p)' +ap ™ (z +p)] 77
Put g(r)=(s—t)r? = pla(s—t~ 1)+ s—~t+ 1)r + ap*(s — t). Then
9(0) = ap*(s — t) > 0,
9(p) = -p’(1- @) <0,
9(1+p) = (s~ )1 +p—pa) - p(1+p)(1- )
Sinces—~t>landa>1- ;1;, we get g(1+ p) > 0, so both the roots of
g(r) lie in the interval (0,1 4+ p) and it follows that g(r) > 0 for r > 1 + p.
This gives that F'(z) > 0 for z > 1 and F(k) in an increasing sequence
in k.
A calculation gives that the (p41) coefficient of the function f in S;[p, a]
given by (4.2) satisfies

( : : p) | (lzj(-lp——ﬂ];ﬂ) ( 1 i p) ’ (lpilp_—(;)a) -

where 3 is given by (4.1). Therefore, in view of (1.5), f is in S¢[p, 8]. Hence
the value of 8 given by (4.1) is the largest.

Remark 3. Theorem 5 has many interesting consequences in the case
of p =1 also.

(a) Taking t = 0 and s > 1, we get that the order of (univalent) starlike-
ness of any function in S4{1,a] = S;[a], 0 < a < 1, is equal to
2°(2-a)-2(1-a)
22(2-a)-(1-a)’

(4.4)

The choice s = 1 in (4.4) gives the result of Silverman [5, Theorem 7).
(b) Taking t = 1 and s > 2, we get that the order of (univalent) convexity
for any function in S4[1,a] = S,[e], 0 < a < 1, is equal to

2*(2-a)—4(1-a)

(4.5) 32-a)—2(1=a)
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(c) Taking t = 0 and s > 1, we get that the order of p-valent starlikeness
of any function in S,[p,a], 1 — ;17 <a<l,is equal to

(2)*(1 4 p—pa) - (1+p)(1-0)
(22)*(1+ p - pa) — p(1 - @)

The choice s = 1 in (4.6) gives the result of Kapoor and Mishra [3,
Theorem 4(i)).

(d) Taking ¢t = 1 and s > 2, we get that the order of p-valent convexity
for any function in S,[p,e], 1~ 7y < @ < 1, is equal to

(£2)7(1 + p - pa) - (L2)(1 + p)(1 - )
(H2)(1 4 p - pa) - (H2)p(1 - a)

In our next theorem we determine the sharp value of a constant y = y(«)

such that
{f( )} > py

for f in Si[p,a], A > =1 and z € D. We note that in general, if we do not
assume the coeflicients to be negative, then there does not exist any positive

constant v such that
re L2}

for p-valent convex functions of order a {2].

(4.6)

(4.7)

THEOREM 6. Let f, given by the Taylor series (1.2), be in Si\[p, a], for
A> =1. Then

(4.8) Re{%} >,
where
(4.9) y=7(e)=1- (1ip)k(1$z:—a;a)°

The above result is sharp, the function f; defined by (2.3) being eztremal.

Proof. Kapoor and Mishra [3] have shown that a function f given by
(1.2) satisfies (4.8) if and only if

= Jaxl
(4.10) ’;p(l_y) <1

Since f is in S,[p, a], we have
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s k+p /\(k"‘p—pd)
;( P ) p(i-a) w1

Thus, it is sufficient to show that
A
! <(k+p) (k+p—pa), forall k =1,2,....

pA-7)"\ » p(l-ea)
This is equivalent to
<1 ( P )A U=e) _ ), k=12
7= k+p) (k+p—pa) 7 77T
A brief calculation shows that ¢(k) is an increasing sequence in k, if A > —1.
Thus we get. (4.9) by taking ¥ = ¢(1). We note that

(1 - a)p*t!? 1
(1+p—pa)(1+p)* p(1-7)
where 7 is given by (4.9). Therefore, in view of (4.10), the value of vy defined
by (4.9) is the largest. This completes the proof.

L
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