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A CLASS OF MULTIVALENT FUNCTIONS 
WITH NEGATIVE TAYLOR COEFFICIENTS 

1. Introduction 
Let D denote the unit disc {z : \z\ < 1}. Let Ap, p = 1,2,. . . , be the 

class of functions / analytic in D and represented by the Taylor series 
oo 

(1.1) = ^ + zeD. 
k=1 

A function / in Ap is said to be p-valent starlike of order a, 0 < a < 1, if 

R e { ® } > p o ' 2 6 D ' 

and / is said to be a p-valent convex function of order a, if ^ is p-valent 
starlike of order a [1]. 

Let 50[p, a] denote the class of p-valent starlike functions / of order a, 
given by the Taylor series 

oo 

(1.2) • f ( z ) = z ^ ~ Y ^ W k \ z k + p , Z Z D . 
k=1 

Similarly, let K[p, a] denote the class of p-valent convex functions of order 
a that are represented by (1.2). Kapoor and Mishra [3] have proved that a 
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function / given by (1.2) is in 5°[p,a] if and only if 
oo 

(1.3) 5 > + i > - p a ) k | < K l - « ) 

and / is in K[p, a] if and only if 

i 1 - 4 ) E (k+p~ p°) * rf1 - «)• 

For any real number A, let 5A[P,O;], 0 < a < 1, denote the class of 
functions / given by the Taylor series (1.2) and satisfying 

oo / U I \ * 

( L 5 ) E H r + p ~ p a ) K I - p { 1 ~ a ) -

It follows that 5o[p,a] = ^[p , a] = K[p,a] and if Ax < A2, then 
5a2[P,«] C a]. Thus, for A > 0, functions in a] are p-valent 
starlike of order a and further if A > 1, functions in S\[p, a] are p-valent 
convex of order a. For A > 0 , p = 1, this class has been studied by Kumar [4]. 
For A < 0, 5a[p, a] contains some non p-valent functions also. 

EXAMPLE. Consider the functions fk in S\[p,«] given by 

where 0 < a < 1, k,p = 1 , 2 , . . . and A < 0. We shall show that, for fixed 
a and p, there exists a positive integer ko such that for all k > ko, the pth 
derivative of each function fk vanishes at some point in D, so that fk is not 
p-valent for k > ko-

la fact, f l P \ z ) is equal to zero, if 

zk p— 1 p — 2 1 p x(k + p — pa) 
k + p-lk + p-2"'k + l(k+ py~x( 1 - a ) ' 

Thus, \z\ < 1 is satisfied if 

p~x(k+p-pa) 
(k + P y ~ \ l - a ) < 

which is equivalent to 

( 1 7 ) a < ( k + P ^ - p - ^ + P) = F ( k ) 

Note that F(k) is increasing for k > (p/(—A)) and limfc_oo F(k) = 1. Thus, 
for fixed a and p, we can choose a ko such that (1.7) is satisfied for all 
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k > ko > (p/(-A)). The function F(k) is increasing what can be seen from 
the following calculations. F(k) < F(k + 1) is equivalent to 

Since 
/ 1 \ X - A 

> 1 + 
X-A 1 - A 

k + p 
it follows that (1.8) is true if k > (p/(-A)). 

In the present paper we study the class S\[p, a] for all nonnegative as 
well as for some negative values of A. In particular, we obtain distortion 
theorems, a covering theorem, order of starlikeness and order of convexity 
for the family «]. These results extend those of Silverman in [5]. Our 
result on quasi-Hadamard product of several functions in S\\p, a] unifies 
and generalizes some recent results of Kumar [4]. 

2. Distortion and covering theorems 
It follows from (1.5) that if / given by (1.2) is in 5a[p, a], then 

(9U (1 -

Equality holds in (2.1), for each k — 1 , 2 , . . . , only for the functions 

The function 
(2.3) = ( 1 " Q y + l z e D , (1 + p - p a ) ( l +p) A 

is of foremost importance in the discussion of sharpness for the results of 
this paper. 

We obtain the following results. 

T h e o r e m 1. Let f be in S;x[p,a]. Then for A > - 1 

where r = \z\. Equality holds in (2.4) at z = —r and in (2.5) at z = r only 
for the function f\ defined by (2.3). 
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P roo f . For A > —1, + p — pot) is an increasing sequence in k. 
So, 

oo / j. , \ A 
p ( l - a ) > W - ± £ ) (fc + p-pa)|a f c| 

k=i ^ p ' (1 . \ A oo 

p ' k= l 

Equivalently, 

Using (2.6), we have 
oo oo 

\ m < w p + E K I H fc+P * w p + M 1 + p E I«*I 
k=l k=1 < M > + | W - £ j | * M i - « ) 

- 11 ™ Vl + P/ (1+p-pa) 
Hence we get (2.4). Similarly 

l/OOl > Mp - E K l Mfc+P * Mp - W1 + p E M 
k= 1 k=l 

and, by ( 2 . 6 ) , we obtain ( 2 . 5 ) . 

It is clear that equality holds in ( 2 . 4 ) and in ( 2 . 5 ) only if it holds in ( 2 . 6 ) . 

However, in view of ( 1 . 5 ) , this is true only if 

/9 | | _ (l~a)px+1 

( 2 J ) N " (l + p-pa)(l + p)>-
Thus, as indicated at the beginning of this section, / must be equal to f\ 
defined by ( 2 . 3 ) . The proof is complete. 

THEOREM 2 . For - 1 < A < 0 , let 

a 0 = 1 - F 
(1 +p)l"A _ p l - A ' 

The disc \z\ < 1 is mapped by any function in S\\p, a], A > —1, onto a 
domain that contains the disc 

(a) M < 1 - ^ ¡ Z p l f ^ x = r i (p ,a ,A) , if A > 0 and 0 < a < 1 or 

—1 < A < 0 and <*<> < a < 1, 

(b) M < j^ki+Sff.L«)(17£)A]P = r2 (p,a ,A), i f - 1 < A < 0 and 
0 < a < a 0 . 
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P r o o f . First, note that, if A < 0, then 

0 < ( l + p J i - a - p i - A < L 

Therefore, 0 < «o < 1. In view of Theorem 1 (2.5), the range of / contains 
the disc |w| < max(jf(r)), 0 < r < 1, where 

g ( r ) = r v . P ( i - q ) ( _ p J ) \ P + i . 

Differentiation with respect to r gives 

W ( 1 + p - p a ) \ p + l j . 

Note that [ ( l + p ) ( l - a ) / ( l + p - p a ) ] < 1, if a > 0, and (p / ( l + p))x < 1, 
if A > 0. Therefore, g is increasing in r, 0 < r < 1, if 0 < a < 1 and A > 0, 
so max(</(r)) = <7(1). This gives the first part of (a). 

Next, if —1 < A < 0, then the condition 

( l + p ) ( l - q ) / 
( l + p - p a ) V l + i V 

is equivalent to ao < a. Therefore, if — 1 < A < 0 and ao < a < 1, then g 
is increasing in r, 0 < r < 1. Thus max(g(r)) = g( 1). This gives the second 
part of (a). 

On the other hand, if —1 < A < 0 and 0 < a < ao, then g'(ro) = 0, 
where 

/ p + l \ A ( l + p - p a ) 

° V P J ( l + p ) ( l - « ) < ' 
and 

a, * _ J ( l + r - p a ) / l + p y i " - 2 

Therefore, 

m a x g ( T ) „ , < „ ) . » f i l i a l ( 2 ± T ) 1 
(p + i ) L ( i + p ) ( i - o ) V r ) J 

This gives (b). The proof is complete. 

R e m a r k 1. By choosing p = 1, A = 0 and p = 1, A = 1 in Theorem 2 
we get 

1 3 — a 
r x ( l , a , 0 ) = and r x ( l , a , 1) = 
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a result of Silverman [5, Theorem 5]. Further, for fixed p and A, — 1 < A < 0, 
a routine calculation shows that 

— i - p - = ri(p,a0 >A) = lim r 2(p,a , A). 
( p + l j a-*a0 

T H E O R E M 3 . For f E S " A [ P , « ] , 0 < a < 1 , A > 0 , we have 

(2.8) + 

(2.9, 

with r = \z\. Equality holds in ( 2 . 8 ) at z = —r and in ( 2 . 9 ) at z = r only 

for the function f i defined by (2.3). 

P r o o f . Since 

(1 + p - p a ) g < £ \ k + P~ * P(1 " «)» 

we have 

Using (1.5) and (2.10), we get 

" X > + p ) \ * \ * E ( ^ r ) V + 

= E V + p - i«)i« fc | + E W i 

-FK )~r F ( 1 + p _ p a ) ¡i + p.pa) 
So, 

«21 „A+l /-i _ ^ 

(2.U) ^ + 

Using (2.11), we get for \z\ = r oo i f ( z ) ^ r ' + E ^ + ^ i i 2 ! ^ - 1 

^=1 
oo 

K p r ^ 1 + r p ^ 2 ( k + p ) \ a k \ 

k= 1 
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A+l ( ! _ Q ) 
( l + p ) * - 1 ( l + p - p a ) 

= n r P - i f i + ( 1 ~ 
P \ ^ ( l + p ) * - i ( l + p - p a ) J' 

This gives (2.8). Similarly, 
oo 

> r.r-P-1 (^ - C1 ~ " f r * ^ 
v ( i + p _ p a ) ( i + p ) A - i 

This gives (2.9). 
We note that equality in (2.10), hence in (2.11), holds only if (2.7) is 

true. So equality holds in (2.8) at z = -r and in (2.9) at z = r only for the 
function f i defined by (2.3). This completes the proof. 

3. Quasi-Hadamard product 
Let / and g be two functions analytic in D and be represented by the 

Taylor series 
oo 

f ( z ) = a0zp ao > 0, ak > 0, k = 1 , 2 , . . . , 
k=l 

oo 

g ( z ) = b0zp ~ Y , h z k + p , b0 > 0, bk> 0, k = 1 , 2 , . . . . 
fc=i 

The quasi-Hadamard product of / and g is defined to be the analytic func-
tion fog given by. the Taylor series 

oo 

( f o g ) ( z ) = a 0 b 0 z ' - y £ a k b k z k + r . 

k= 1 

Note that the usual Hadamard product would give the Taylor series 

aobo 

k=1 

For p = 1, the above definition of quasi-Hadamard product is due to Ku-
mar [4]. Quasi-Hadamard product of several functions is defined similarly. 
We next prove a theorem that generalizes and unifies some recent results of 
Kumar [4, Theorem A, B, C]. 
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THEOREM 4. For i = 1 , 2 , . . . , m let gi, given by 

oo 
9i{z) = akyizk+r, akti > 0, k = 1 , 2 , . . . , 

k=i 
be in 5>,.[p,a;], 0 < a,- < 1 and —oo < A,- < oo. Then, the function g = 
= 9i <>92 o • • • Offm is in 5M[p,a<>], where p = Aj + (m — 1) and = 
= m a x { a 1 , a 2 , . . . , a m } . 

P roo f . It is sufficient to show that 
00 r y 1 - \ fi m 

£ ( » ) (*+ IK' 
fc=1 L\ P J ¿=1 

Without loss of generality we assume that am = a 0 . Since g€ [p, a,], 
we have 

°° /L i \ Aj 
(3.1) E ( — ) (* + p - p « i K i < K i - « . - ) 

for e v e r y i = 1 , 2 , . . . , m. 

Therefore, 

f3 2) a < ~ "«) ( P ) < ( J L . \ 
- k + p-pai\k + pj ~\k + p) 

Using (3.2) for i = 1 , 2 , . . . , m — 1 and (3.1) for i = m, we obtain, 

0 0 f / U 1 ^ / m \ Ai + ...+ A m _ i + m - l -1 

= E [ ( ^ r ) "m(k + P- P<x™)ak,m] <P( l-am)= p( 1 - a 0 ) . 

Hence, g = gi o g% o.. .0 gm E a0 ] . The proof is complete. 

R e m a r k 2. Theorem 4 is new even in the case of p = 1 and provides 
several interesting consequences. If we take A,- = 0 and A,- = 1 for i = 
= 1 , 2 , . . . , m in Theorem 4 with p = 1, we get Theorem A and Theorem B 
of [4], respectively. Similarly, the choice of A,- = 0 for i = 1,2,...,q and 
Aj = 1 for i — q +1, q + 2 , . . . , m in Theorem 4 with p = 1, gives Theorem C 
of [4]. 

A general problem in the theory of univalent functions concerns the 
study of those transformations which carry one or several univalent as well 
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as nonunivalent functions into the class of univalent functions. A useful 
consequence of Theorem 4, related to the above problem is that quasi-
Hadamard product of suitable number of nonunivalent functions can pro-
duce a univalent function. For example, in Theorem 4 with p = 1, if we 
choose — 1 + ^ < A,- < 0, i = 1 , 2 , . . . , m, then the quasi-Hadamard product 
/ i o / 2 « . , . o / m of functions fi in a] is a starlike univalent function. 
Similarly, if m > 2, i = 1 , 2 , . . . ,m, and < Aj < 0, then / i o / 2 o . ..ofm, 
for fi in [1, a], is a convex univalent function. A yet simpler example gives 
that the quasi-Hadamard product of an univalent convex function given by 
(1.2) and a function in 5 _ i [ l , a ] is a convex univalent function. Similar 
remarks for p-valent cases also follow from Theorem 4. 

4. Order of starlikeness and order of convexity for S\\p, a] 
Silverman [4] has shown that the order of starlikeness of the family of 

univalent convex functions of order a is equal to Kapoor and Mishra [3] 
have shown that, if / given by (1.2) is in K[p, a], then / is in 5°[p,/?], where 

fl = /3(a) = _ P ± J _ . 

T h e o r e m 5. Suppose —oo < t < s < oo, s — £ > l , p = l , 2 , . . . , and 
l - ^ r < a < l . / / / € S a [ p , a ] , then f G St\p,f3], where 

a ( l ± E ) m ( i + p - p a ) - ( i + p ) ( i - g ) _ 

( ' ( ^ ( l + p - p a ) - p ( l - a ) ' m ~ S 

The result is sharp with 

being extremal. 

P r o o f . In view of (1.5), it suffices to show that 

(ttzyjk + p-p?) (H±Ey(k + p-pa) 

1-/3 ~ 1 - a 

for all k = 1,2, This is equivalent to show that 

< ( ^ ) ' ( f c + p - p a ) ~ ) ' ( * + P ) ( l - « ) 

Equivalently 

+ P ~ Pa) ~ (* + p)( 1 - a) 
fi < p ' — - = F(k), fr = l , 2 , . . . . 
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Since F(k) is an increasing sequence of k for s-t > 1 and 1 - < a < 1, the 
above is true, if we take /? = F( l ) . In order to show that F is an increasing 
sequence of k, extend F as a function of the real variable x. We get that 
F'(x) is equal to the expression given below 

(4.3) {(* + p)s+t-lpa+t[(s - t)(x + p)2 - p(a(s - t - l ) + s-t + l )(x + p) 
+ ap2(s - t)] + (1 - a)p2°+l(x + p)2 t}( l - a)\p\x + p)3+1 

- apt+1(x + py-p3+1(x + pY + aps+1(x + p)']"2. 

Put g(r) = (s- t)r2 - p(a(s - t - 1) + s - t + l)r + ap2(s - t). Then 

fl(0) = ap2(s - t) > 0, 
g(p) = - p \ 1 - a) < 0, 

g{ 1 + p) = (s - t)( 1 +p-pa)~ p( 1 + p)(l - a). 

Since s — t > 1 and a > 1 — we get 5(1 + p) > 0, so both the roots of 
g(r) lie in the interval (0,1 + p) and it follows that g(r) > 0 for r > 1 + p. 

This gives that F'(x) > 0 for x > 1 and F(k) in an increasing sequence 
in k. 

A calculation gives that the (p+1) coefficient of the function / in 5s[p, a] 
given by (4.2) satisfies 

/l+pV(l+p-p/?)/ p V p(l-a) = 

\ p J p(l-(3) \l +p) (1 + p-pa) ' 

where ¡3 is given by (4.1). Therefore, in view of (1.5), / is in 5t[p,/?]. Hence 
the value of (3 given by (4.1) is the largest. 

R e m a r k 3. Theorem 5 has many interesting consequences in the case 
of p = 1 also. 

(a) Taking t = 0 and s > 1, we get that the order of (univalent) starlike-
ness of any function in ¿",[1, a] = Ss[a], 0 < a < 1, is equal to 

2 ' ( 2 - q ) - 2 ( l - q ) 
K } 2S(2 - a) - (1 - a) ' 

The choice s = 1 in (4.4) gives the result of Silverman [5, Theorem 7]. 
(b) Taking t = 1 and s > 2, we get that the order of (univalent) convexity 

for any function in 5 s [ l , a ] = 5s[a], 0 < a < 1, is equal to 

( A c\ 28(2 — a) — 4(1 - a) 
K } 2"(2 — a) — 2(1 — a) ' 
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(c) Taking t = 0 and s > 1, we get that the order of p-valent starlikeness 
of any function in 5a[p, a], 1 — ^ < a < 1, is equal to 

( l i £ ) « ( l + p - p a ) - ( l + f , ) ( l - Q ) 

( i ± £ ) ' ( l + J > - p a ) - p ( l - a ) • 

The choice s = 1 in (4.6) gives the result of Kapoor and Mishra [3, 
Theorem 4(i)]. 

(d) Taking t = 1 and s > 2, we get that the order of p-valent convexity 
for any function in 5 s[p,a] , 1 — -p < a < 1, is equal to 

( 4 . 7 ) 
(i±H)*(l + p - p a ) - ( i ± i > ( l - a ) 

In our next theorem we determine the sharp value of a constant 7 = 7 ( a ) 
such that 

R e \ i > n 

for / in a], X > — 1 and z 6 D. We note that in general, if we do not 
assume the coefficients to be negative, then there does not exist any positive 
constant 7 such that 

»m>» 
for p-valent convex functions of order a [2]. 

THEOREM 6. Let / , given by the Taylor series ( 1 . 2 ) , be in 5 x [ p , a ] , for 
A > - 1 . Then 

(4.8) R e{4r} 
where 

(4.9) 7 = 7 (a ) = 1 " ( Y ^ ) 
A ( 1 - a ) 

(1 + p - p a ) ' 

The above result is sharp, the function fi defined by (2.3) being extremal. 

P r o o f . Kapoor and Mishra [3] have shown that a function / given by 
(1.2) satisfies (4.8) if and only if 

(4-10) £ - T ^ L < 1. 
1 - 7 ) " 

Since / is in a], we have 
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£ I t J k i - « ) | o t l £ L 

Thus, it is sufficient to show that 

1 + for all fc = 1 , 2 , — 
p{ 1 - 7 ) V P J P(l-a) 

This is equivalent to 

k = 1,2, 

~ \k+pj (k+p-pa) h 

A brief calculation shows that (¡>{k) is an increasing sequence in k, if A > —1. 
Thus we get (4.9) by taking 7 = </>(l). We note that 

(1 - a ) p A + 1 1 
(1 + p - pa ) ( l + p)x p{\ - 7) 

where 7 is given by (4.9). Therefore, in view of (4.10), the value of 7 defined 
by (4.9) is the largest. This completes the proof. 

Acknowledgement. The authors thank the referee for his valuable sug-
gestions which improved the final form of the manuscript. 
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