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ON THE SOLUTION OF THE FIRST FOURIER PROBLEM
FOR THE SYSTEM OF DIFFUSION EQUATIONS

1. Introduction
In this paper we are studying the first Fourier problem (F) for the
parabolic (in Petrovskii’s sense) system

vn(t,z) = A(Av)(t,z) + o(t,z) (t,z) €]0,T[x £,

with A given real k x k matrix, ¢ : [0,T] x 2 5 (t,z) — ¢(t,z) € R* given
function and v : [0,T] x 2 3 (t,2) — v(¢,z) € R*, unknown function where
2 = {(z1,22) : 2} + 2} < a?}.

The initial condition

(1.2) v(0,z) = g(z), z €1,

where g : 2 5 z — g(z) € R¥ is a given function and boundary condi-
tion

(1.3) v(t,z)=0 on[0,T] x 012

are considered. This corresponds physically to diffusion of several gases and
evolution of their concentrations.

The solution of this problem is represented as a sum of two integrals be-
ing counterparts of the Poisson—Weierstrass integral and potential of plane
domain. Kerneks of these integrals are represented by the matrix-function
G introduced in this paper and playing crucial role in a representation of a
solution v of given Fourier problem (F).

Similar problems were solved by Majchrowski [3] and by Majchrowski
and Rogulski [2], but for 2 = [0,1] only.

2. Assumptions
We make the following assumptions for the functions ¢, ¢ and for the
matrix A:
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(2.1) ¢(t,z) = 0 for (t,z) € [0,T] x 32 and the function @ : [0,T] x
[0,a] x [0,27] — R, defined by &(t,p,7) := ¢(t,pcosy,psiny) is
of the class C!, of the class C? in p, of the class C* in v, the
derivatives %G exist, are continuous, bounded and vanish on
312 for I € {1,2}, and besides %g’o’(t,p,o) = g—,&(t,p,%) for
s €{0,1,2,3},

(2.2) g(z) = 0 for = € d; the function § : [0,a] x [0,27] — R¥, defined
by g(p,7) := g(pcos, psm'y) is of the class C? and of the class C*
in <, the derivatives 57_;7‘" g exist, are continuous, bounded and van-
ish on 92 for | € {1, 2} and besides 3> 2:5(p,0) = a,y,g(p, 27) for
s €{0,1,2,3},

(2.3) all eigenvalues of A have positive real parts.

3. Matrix-function G(t,,p,9)

We denote by g, ., the m-th positive real zero of equation J,(z) = 0,
where n € {0} UN, m € N, and J, is the Bessel function of degree n.

LEMMA 3.1. Under the assumption (2.3) for every T € |0, 00| there exist
positive constants C, 3, ko, E such that for every m € NN [E,o0] there
exists | € N such that for every n € N and for every t € 10, T

exp [ (him, m) ] “ < Cexp [ (n+ l)"’—tﬂ} (n+ 1),

Proof. In virtue of [2] (p. 1077), there exists a canonical decomposi-
tion —;A S 4+ N such that SN = NS, where § is a semisimple matrix
and Nko+l = 0 for ko < k — 1. Let § = BCB~1, where C is the matrix
in the Jordana form for the matrix §, whereas B is the matrix of likeness.
Then

exp[ () ]||<||exp[ (18] XDl (2N <
< 1) exp[=(ttmm Y £S] {| expl—(stmm)2EN]] =
= 1B exp( (e 4CIB | el (e m PN <

< B - 1B™*|) exp[~(ptn,m)*tB]I| expl~(ptm,m )£ N1,
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where # = min(Re A, ) is an eigenvalue of the matrix 2 A). If we take into
consideration the inequality

ko 2415
~(pn )Y
6D Nexpl-(ummyeni = | Y Em il <
Jj=0 )
ko Ti )
< [max{1, (kn,m)*}1% Y FllN 1
j=0
then we have
2 t
exp —(fin,m) ;2-AH <
ko i .
< |IBYf - 1B~ || expl—(thn,m 28] (nm ) D -ﬁHNll’-
=0 7’

The last inequality follows from the inequalities pn ,, > 1 and pn m > n for
each (n,m) € N x N and from the fact that there exists k¥ € NU {0} such
that pom € ]k + 37,k + Lx[ for each m € N (see [4] p. 485 and p. 490).
From Hankel’s asymptotic formula for z — oo (see [4] p. 488)

2 nw 1
In(z) = 4/ = [cos (x - 7) + O(;)]
it follows that cos(pin,m — &%) = O(le) Consequently, there exists a con-
stant § > 0 such that ’

=64+ Z(n+ ) +Ir < ptam S8+ Z(n+ 1) 4 in

holds for sufficiently large m € N and for some ! € N because of the in-
equality 0 < fnm < pnm+1 for (n,m) € (NU {0}) x N. Hence, for suffi-
ciently large m € N, there exists I € N such that for each n € NU {0} we
have

(3.2) %(n + 1)1 < i < (m D

Finally

exp [“ (Hn,m)z‘a%A} } < Cexp [— (n+1)?. Zr;rﬁ] (n + 1)2"0.

This ends the proof of Lemma 3.1.

LEMMA 3.2. Under the assumption (2.3) there ezists a constant b € R
such that for each t > 0 the inequality || exp[—(pin,m)? 2 A]|| < b holds.
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Proof. Observe that (see [2])
.4
e~k 72 < '-72-—].—6"1 for all 7,k,z > 0.
Then from (3.1) we obtain the inequality

Il exp[—(pn,m)*4(S + NIl <

ko 2;
<UBI 1B S exp [ - (no+ 7Tt SEEE v
j=0
N i
<|1]l- ||B-‘||(1+Z<4J[I3I] W, )

for sufficiently large m, for instance m > mgy. The methods applied above
allow us also to show for m < mg that all the functions of the form

|- (52)'

are bounded. The proof of Lemma 3.2 is complete.

R+9t—> €eR

Let us introduce now a matrix-valued function
G :]0,00[ x [0,a] X [0,a] x R — R¥*
given by the formula

(33) G(,rp,9) =
_ }:EJ (ﬂnma)J (unma)cosm? exp[ (m)? tA]

511. n+1 (l"’n m)]2

n=0 n=1
with

e = 2 forn=0,
711 forn>0,

which plays the same role for the system (1.1) as the function 65 for a
single parabolic equation in Cannon’s paper [1] or the matrix-function M
introduced by Majchrowski and Rogulski ([2]).

Now we shall consider the properties of the matrix-function G.

THEOREM 3.1. Under the assumption (2.3) the matriz-valued function G
defined by the formula (3.3) is of the class C*° and all its partial derivatives
can be calculated by term-by-term differentiation of the series (3.3).
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Proof. From the fact that J,(z) and I,4(z), where ! € N, have no com-
mon roots (see [4] p. 484), from the inequality |J,(z)] < 1 for n € NU {0}
and z € R (see [4] p. 31), and from Hankel’s asymptotic formula we obtain
the inequality

Jn (I‘n m a)J (I‘n.m a)
En[Int1(Bn,m)]?
for all n € NU {0}, m € N and r,p € [0,a], where C is a constant indepen-
dent of r, p, m, n. It follows from Lemma 3.1 that the series is uniformly
convergent on the arbitrary subset

Ps ={(t,r,p,9): 6 <t < T;r,pe|0,a]; J € R}

of the set ]0, 0o X [0, a] X [0,a] x R.
Taking also into consideration Lemma 3.2 we complete the proof of the-
orem.

<cC

4. Auxiliary theorems

LEMMA 4.1. If

1° Z Z Cn,m 18 cOnvergent,

n=0m=1

2° the functions fnm :[0,T] — R, where (n,m) € J = (NU {0}) x N, have
the properties

@ A AV V A(mim=xnro<
(n,m)€J 6€]0,T[ g€J0,1] I((m)€EN t€[6,T]
fam(t) < g¥Fi0™),
®) /\ tl—i.I(I)1+ fam(®) = 1= fnm(0),

(n,m)eJ

(c) A A ((fﬂ+1,m(t) < fn,m(t)) A (fn,m+1(t) < fn,m(t))),
tef0,T) (n,m)eJ
then

1) /\ Z E(cn.m Ja,m(+)) is uniformly convergent on [6,T),

§€l0,T] n=0 m=1

2) there ezists

t_.o_‘_zzcnmfnm(t) Ezcnm

n=0m=1 n=0m=1
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Proof. At first we shall prove that for every £ > 0 there exists pg € N,
such that for all £ > py and r > py and all p,q € N such that p > & and
¢ > r the following inequality holds

r g k-1 r-1
I E E Cn mf‘n. m(t) Z E Cn .mf.n m(t)l <€
n=0m=1 n=0 m=

which we can rewrite as

|i i Cn,m fa,m (t) + zp: rf Cn,mfn,m(t)l <E.

n=0m=r n=km=1

Let us denote

P q p r-1
Sl(t) = Z z cn,mfn,m(t), S2(t) = z Z cn,mfn,m(t)

n=0 m=r n=k m=1
w w
CTSU") = ch,,, Aw,,- = ZM,(."), Zm(’)
s=1 =0

max(ag’),;. . ,aﬁ’)l, o 6 6l fori<r<y,
max(c?,...,08?) forr=1, and for s € N,

min(o{?,...,0{?) for r =1, and for s € NU {0},

ma'x(AO,r, (EER] Ak—l,r, _Ak—l,r, Ak,r’ cecy Ap,r) for 0 < k < y

m(® .= {min(ag’), . ..,aﬁ")l, i’)l,a(’),...,ass)) forl<r<g,
{ max(Ag,ry...,Ap,) fork =0,

ma 1= min(ﬁo,r, R 'Sk—l,r, —6k—1,r, 6k,ry vy 6p,r) for0<k < D,
k= min(éo,r,...,0p,) fork=0.

Next, using the Abel transformation, we get the inequality

q

q-r
_ Z cn,mfn,m(t) = an,r+8(t)(a£:-)s 5‘2—)3 1) =
3=0

q—1—r

= £n)1 nr(t) + E r+a(fn r+s(t) = fartst1(2))+

+ 0™ fuo(t) < 2MM £ (1)
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and analogously
q
Z cn,mfn,m(t) 2 2m£-n)fn,r(t)

which imply

Sl(t) S Z(2m$-n)fn,r(t)) = 2{ Z(As,r - As—l'r)fs,r(t) + AO,rfO,r(t)} =
n=0 s=1

=2{ 3 A1 (fo10 () = forlD)) + Bpr ()]
s=1

Finally, we have
|S1(8)] < 2D for(t) < 2Degg”,s
where Dy = max(|My|,|{mk|). The last inequality holds independently of
t € [6,T) and for all § € ]0,T).
Using the Abel transformation, we have

r—-1 r—1
Y eamfam(®) = 0 fan(®) + Y (68 — o)) fuu(t) =
m=1 8=2

r—2
= E Ugn)(fn’,(t) - fn,s+l(t) + Uii)lfn,r—l(t)
s=1

and, by the assumptions, we obtain the inequalities

r—1

Z cn,mfn,m(t) S Ml(n)fn,l(t) S My(-n)fn,l(t)>

m=1
r-1
Z cn,mfn,m(t) 2 m(ln)fn,l(t) 2 ms-n)fn,l(t)-
m=1
Next, the Abel transformation gives

P
Y MM foa(t) = = Aror e fra(t)+

n=k

p~1
+ Y Anr(fan(t) = fas1,1(8) + Aprfpa(t),
n=k

and from the assumptions we have 2m; fy 1(t) < S2(t) < 2Mi fi1(t) or
{S2(t)|] € 2Dk fi.1(t) and then

151(2) + S2()| < 2D4(@” + gty < ¢
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for k > k¢, r > 7o, where ko and 79 ate sufficiently large non-negative
integers, go € ]0,1[ and there exists py = max(ko, o).

This ends the proof of part 1). Part 2) follows immediately from the
equality

t—->0+ E Z Cn 'mfn m(t) - Z Z Cn mfn m(O)

n=0m=1 n=0 m=1

LEMMA 4.2. The functions of the form fp m(t) = exp[~(tn,m)*at], where
a>0,t€[0,T)], (n,m) € J fulfil assumptions of Lemma 4.1.

Proof. The inequality (a) of Lemma 4.1 follows immediately from (3.2).
Continuity of the functions f, ,, is evident. From [4] (p. 479) it follows
that the positive zeros of J,(z) are interlaced with those of Jp41(2), i.e.
0<...<fnm < fint1,m < fnm4+1 < Pnt1,m+1 What implies that for every
t € [0, 7] the functions f, m satisfy 2°(c).

LeMMA 4.3. If

1° S is a semisimple real matriz k x k with eigenvalues A such that Re X >
0,

oo o0
2° E E Cn,m 18 convergent,

n=0m=1
3° B is a positive constant,

then A;so Yomeo Some1 Cn,m €XP(—(pin,m )2 BLS) is convergent and there ez-
ists the limit

(o ~ B e o]

(41)  lim Z Z enm XP—(tim.m)?BtS] = (E . c,,,,,,)I

n=0m=1 n=0m=1

where I is the unit matriz k X k.

Proof. In view of the relation || exp(—cS)|| < Dexp(—ca), with a =
min{Re A : det(§ — AI) = 0} and ¢, D positive constants (see [2]), we
have

Nl expl—(ptn,m)? BESHI < 1M 1M 7| exp[~(n,m ) eBE]1],

where M is the matrix of likeness. From the assumptions and from Lem-
mas 4.1, 4.2 the convergence of considered series follows. From the first part
of Lemma 4.3 we obtain (4.1), because the series is uniformly convergent on

[6,T] for all & € 10, TY.
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Let us introduce now some denotations which will be used in the next
theorem:

F:[0,T] x [0,1] x [0,27] 3 (n,p,7) = F(n,p,7) €R,

— 2 fOl PF(% P> 7)Jn(ﬂn,mp) dp
Gn,m(M,7) 1= UoraGnn))? ,

hn,m("], T, ﬂ) = Jn(l‘n,m"')[cos nﬂ’;n,m("’) + sin nﬂfln,m(n)]:

where

1 2 27 1
hpm(n) i= —m————— cosnyJ, mP)F(n,p,7)dp| dv,
m(0)i= Gy Of [Ofp Y In(tin,mp)E (s Py 7) p] i

2 2 27 1

n,m N Y T i n(pnmp)F Py d dv
b () = 7 Of [ofpsman (tn,mP)F(n, p,7) dp| dy
cn,m(n, 7716) = ui,mhn.m(n'y T, ﬂ),

(r,8) €[0,1] x [0,27] and (n,m)€ J.

THEOREM 4.1. If the function F fulfils the same assumptions (2.1) as
@ with a = 1 and k = 1, then the series Y oo o 3 | cnm(n,7,0),
Yoreo Som=y bnm(n,7,B) are uniformly convergent in n on every interval
(6, T — 6,), where0< § <T -6, < T, for all (r,0) € [0,1] x [0, 27].

Proof. If we denote a,;, := anm(n,7) for fixed 7, ¥ and » € {0} UN,
then

o0

> amJn(finmr)

m=1
is the Fourier-Bessel series of the function F with respect to p. By as-

{
sumptions, for / = 0 and ! = 1 the derivatives ‘;_,.rF(U»TnH) have limited
total fluctuation in [¢,1—¢] for all £ € ]0, 1[ and there exist the integrals
1 ! n

fo \/— 2 F(W,P,ﬂ) dp, fo +2_(P a—er(n,P,ﬂ)) dp, n € NU {0}7 and
the limits lim, g+ ﬁF(n,r B) = 0, lim,_,;- WF(n,r B) = 0. Hence the

series Yoo GmpinmJh(fin,m) (see [4] p. 605) is convergent to 2 F(n,r, )
for fixed 7, 8 and n. From the recurrence formulae

200(2) + ndn(2) = 2Jao1(2),  2d0(2) — ndn(2) = —2Jn41(2),
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for n € {0} UN, it follows immediately that
52 = (2002~ Iuna(2)) =
= ~Ta(2) = T Jn(2) + ZIn(2) =

= () = ()~ B+ 2 (an(z)—JnH(z)) -

By assumptlons on F, the series

2 n?—r ) n? —n —
Z ’7,_""—' mIn(a,m?) = 2 Z amJn(ﬂn,mT)
m+1 Ka,m m=1

is the Fourier—Bessel expansion of the function F. Analogously, the series
% E;’:ﬂ A fin mInt1(fin,m ™) is the Dini expansion of the form

Y1 dmdnt1(Ang1,mp), where
d
b -—-2A2+1m f ('é'iF(n)tnB) F('I],t ﬂ)) ’n+l(An+1 mt)dtx

X {(’\n+l m— O+ D)2 Ongrm) + Ao (Tnp1 Angr,m))? 3

where Ani1,m denotes m-th positive real zero of the function {2J] ,(2) +
(n+1)Jn+1(2)}. Taking advantage of the recurrence formulae for the Bessel
function, we see that Ap41.m = fin,m and, in virtue of assumptions, b,, =
@ lin,m. The assumptions are sufficient to the uniformly convergence of the
Fourier-Bessel series and of the Dini series (see [4] p. 593 and p. 601) with
respect to the variable r on all intevrals [¢,1 — €], where 0 < ¢ < 1.
Taking into consideration the recurrence formulae since furthermore the
series > _ Gmpn,mJIL(fn,mT) is convergent to the function F(n,r B3),
(see [4] p. 605) and the series Y ; ampd o J)(fin,m) is umformly con-

vergent to ar2 F(n,r,ﬂ), with respect to r, the series Y, cnm(n,7,0) is
convergent in 7 for n € {0} UN.

Next, applying [4] (p. 583 and p. 598), we can represent the partial
sum of a Fourier—Bessel series and of a Dini series as a sum of residues
of one function of complex variable having poles at the points p, . in
the case of Fourier-Bessel series and at the points p,,, and A, in the
case of Dini series. Therefore, the function which is the sum of the series
Yoy nm(m, 1, B) is continuous with respect to the parameters 7 and 8
for all n € {0} U N. It follows from the definition of residue and from the
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compactness of the contour on which we calculate integrals. This means
that the functions whose variables are parameters of integrals are continu-
ous.

Let us denote Sy (n,7,8) := Y o —; ¢n,m(n,7,8). Making use of the math-
ematical induction with respect to p € N and integrating by parts, one can
prove that

27 1 2r aZP
(4.2) afcosn‘rF(n,p,*/)d7=(—1)”;;;;0fcosn‘rmf’(n,p,v)dv,

by assumption

323-—1 323-—1
972-10(Mp:0) = 5=y F(n,p,27)

for s e NN [1,p], (,p) € [0,T] x [0,1], and that

27 1 2w ) H2v
(4.3) Of sinny F(n, p,7) dy = (-1)P = Of smn’rmF(n,p,v)dv,

by assumption

§2(s-1) §2(s-1)
8’72—(_"_1) G(’?, P O) = WF(T], Py 27!')

for s € NN[1,p}, (n,p) € [0,T)x[0,1]. Applying the equalities (4.2) and (4.3)
for p = 2, we obtain the uniformly convergence of the series > o> ; Su(7n,7,8),
by assumptions on F. Observe that the series Y oo_, Anm(n,7,8) is a Four-
ier—Bessel series which is uniformly convergent on [§, 1 — 6], with respect to
the variable r. So, by proceeding as before, we prove the convergence of the

series 3> (3> ham(n, 7, B)).

5. The solution of the problem (F)

In order to construct a solution of the problem (F) given by (1.1)-(1.3)
we shall prove two existence theorems.

Denote

(5.1) v1(t,z) = v1(t,rcos B, rsin B) = %y (¢, 1, B) =

a

2
=1-r% il [ il G(t,r,p,ﬂ—7)§(p,7)d7]pdp,
0 0

where g(p,7) = g(pcosy,psiny) = g(y), y € 2, (rcosf,7sinff) = z € 2,
t € ]0, T, the function g occurs in (1.2) and G is given by (3.3).



218 T. Jagodzitski

THEOREM 5.1. If the function g fulfils the assumptions (2.2), then the
function vy given by the formula (5.1) is a solution of the problem (F) with

p=0.

Proof. Making use of the properties of the function G and of the equal-
ity

G(t,r,p,8-7) = Z Z Tt ) nltinm) |

iy gt 57;[JnJ{-l(/"n,m)]2
X (cos nf cos ny + sin nf sin ny) exp [ = (Kn,m )2ai2A] )

(see (3.3) and defining A, m, Cnm — the Rf-valued coefficients of the
Fourier—Bessel expansion of the function § by formulas

27

2 r P -
m = wn m ) dvy|d ,
Ar, ent @ Ins1 G l? of pJ. (#n, a)[ Of cosnyg(p,7) 7] p

Crm = 2 f pJn (ll'nm )[ il smn'ry(p,*/)d‘r] dp,

X
o 5n7"a2[Jn+l(l‘n m)}?

where (n,m) € J, we can represent the function 7; in the form

51(t,r,ﬂ)=iiexp[ (Bnm)' = ] (l’"nmr)x

n=0m=1

x{cosnfAnm + sinnfCpm}.
Next, we are going to prove that the function v; fulfils the equation

(5.3) 8”1 — (7, f) = AAT (1, 0).

Calculating derivatives of v;, we have

% 55 (3o on [ i

n=0m=1

X {Jﬂ (#n,m 1) cos nfAnm + Jn (pn,m 2) sinnfBChr m },

~ 0%y,  18v 1 8%v
Bt S 18 100
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= zoo: i exp [— (un,m)2;t§'A] { [dii;-]n (“n'm £)+

n=0m=1

Since W = Jy(ptn,m L) is a solution of the Bessel equation

d*W 14w

2
2 _ R _
ar Yrg TR m=0

Thus the function 7; is a solution of the equation (5.3).

Now we can observe that

‘51((), Taﬂ) = Z E I{Jn (ﬂn,m '2') (COS nﬁAn,m + sin nﬁcn,m)} = §(r,ﬁ),

n=0m=1

where I is the unit matrix k& x k. It follows from the definitions of 7; and
fnm that im,_,- 91(t,7,8) = 0 € R¥. The proof of Theorem 5.1 is now
complete.

Next, let us denote

(5.4) va(t,z) = va(t, T cos B, rsin B) = B(t, 7, 8) =
9 t 2 a

= — [f [fpG(t—T,r,p,ﬂ—v)ﬁ(n,p,‘r)dp] d7] dn,
0 0 0

ra?

where @(t,r,8) = ¢(t,rcosB,rsin ) = ¢(t,z), (rcosB,rsinfB) = z € 12,
telo,Tl.
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THEOREM 5.2. If the function ¢ fulfils the assumptions (2.1), then the
function vy given by the formula (5.4) is a solution of the problem (F') with

g=0.

Proof. Analogously as the function § in the proof of Theorem 5.1
we can represent the function  for the fixed ¢t in the form of the se-
Ties

o(t,r,B) = mﬁ; (.uOm )Aom(t)+ZZJn(unm)

n=1m=1
x{cos nf A, m(t) +sinnfCp m(t)}

where A, m(t), Cn,m(t) are the following R*-valued coefficients of the Four-
ier—Bessel expansion of the R*-valued function & (for fixed ¢)

2
An,m(t) -~ enﬂ.a2[Jn+1(ﬂn,m)]2 *

27

x [ pn (/‘n,mg)[ 1l ¢(t,p,7)cosn7d7] dp, (n,m)€J,
0

0
2

X
enT@?[Jnp1(ftn,m)]?
27

X f pJIn (l‘n,ms)[ f &(t,p,v)sinmd‘r] dp, (mn,m)€J.
0

Crm(t) =

0

Making use of the properties of G, we can represent the function v, in the
form

'52(t,’l‘,,3) =

= 55 {consn(pun) [ oo [ 1) e-ma] Aum(@ins
+ sinnfJ, (l‘n,m%) ft exp [— (#nm ) (t—n)A] Crm(t) dﬂ}-

0

Calculating derivatives of v, we obtain

___vz(t rB)= Z z {CosnﬂJ (p,nm ) An o (t)+

n=0m=1

+ sinnfJ, (ﬂnm ) ,m(t)}
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£ S

n=0m=1

x [nﬂ of exp | - (nmy )(t—mA] At dnt
+sinnﬂofeXp[— (unm ) (t—n)A] nm(t)én],

Avy(t, 7, B) =
= 23 [Esn (inm ) + 2k (bnm D) = (2) 9n(bnm D) ] %

n=0m=1

| cosns Of exp[— (#nm3 ) (t = DA Aum(D)dn+

sinns [ o0 [ (sun) e om0 -

- i i [{ (l‘n m )2 cosnfBJp (un,m 2) X

n=0m=1

9 jexp[ (o 2) = A] Ann(tdn} +

2
n,m . r
+ {(#a ) sin nfJ, (l"n,m;)x

X jexp[ (unml) (t—n)A] nm(t)dn}],

since the function J,,(fn,m £) is a solution of the Bessel equation, analogously
as in the proof of Theorem 5.1. Thus, we obtain

2 %(t,7,8) = ABT(1,1,8) + (L, ).

From (5.4) it follows that %,(0,7,3) = 0 € R¥ and lim,_,,- %(t,r,8) =0 €
R*,
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COROLLARY 5.1. Suppose that the functions g and ¢ fulfil the assump-
tions (2.2) and (2.1), respectively. Then the function v = vy +v, is a solution
of the problem (F). '
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