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ON THE SOLUTION OF THE FIRST FOURIER PROBLEM 
FOR THE SYSTEM OF DIFFUSION EQUATIONS 

1. Introduction 
In this paper we are studying the first Fourier problem (F) for the 

parabolic (in Petrovskii's sense) system 

vt(t,x) = A(Av)(t,x) + <p(t,x) (t,x) 6 ]0,T[ x J?, 

with A given real k x k matrix, <p : [0,T] x i? 9 (t,x) —»• <p(t,x) € given 
function and v : [0,T] x Q 3 (t,x) —> v(t,x) € Rfc, unknown function where 
Q = {(xi,x2) : x\ + x\ < a2}. 

The initial condition 

(1.2) r(0,x) = g(x), x G 7?, 

where g : Q 9 x -* g(x) € is a given function and boundary condi-
tion 

(1.3) v(t,x) = 0 on [ 0 , T ] x d f 2 

are considered. This corresponds physically to diffusion of several gases and 
evolution of their concentrations. 

The solution of this problem is represented as a sum of two integrals be-
ing counterparts of the Poisson-Weierstrass integral and potential of plane 
domain. Kerneks of these integrals are represented by the matrix-function 
G introduced in this paper and playing crucial role in a representation of a 
solution v of given Fourier problem (F). 

Similar problems were solved by Majchrowski [3] and by Majchrowski 
and Rogulski [2], but for Q = [0,1] only. 

2. Assumptions 
We make the following assumptions for the functions tp, g and for the 

matrix A: 
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(2.1) <p(t,x) = 0 for (t ,x) G [0,T] x di2 and the function $ : [0,T] x 
[0, a] x [0,27r] -* defined by <p(t,p,7) := </?(£,/> cos 7,/? sin 7) is 
of the class C 1 , of the class C2 in p, of the class C4 in 7, the 
derivatives gy g a <p exist, are continuous, bounded and vanish on 
8Q for / € {1,2}, and besides ^¡p(t,p,0) = ^¡p(t,p,2n) for 
5 € {0,1,2,3}, 

(2.2) g(x) = 0 for x G dQ\ the function g : [0,a] x [0,2tt] Rfc, defined 
by g(p, 7) := ^(pcos 7 , p sin 7) is of the class C2 and of the class C 4 

in 7 , the derivatives a y gp29 exist, are continuous, bounded and van-
ish on dQ for I G {1,2}, and besides ^ r g ( p , 0) = ^ g ( p , 2 i r ) for 
5 G {0,1,2,3}, 

(2.3) all eigenvalues of A have positive real parts. 

3. Matrix-function G(t, r,p, 1?) 

We denote by /¿n,TO the m-th positive real zero of equation Jn(z) — 0, 
where n € {0} U N, m G N, and Jn is the Bessel function of degree n. 

L E M M A 3 . 1 . Under the assumption ( 2 . 3 ) for every T € ] 0 , oo[ there exist 
positive constants C, /?, kg, E such that for every m € N H [E, 00] there 
exists I € N such that for every n G N and for every t G ]0, T[ 

exp ~~ (Pn.mf 2 ^ < C exp - ( n + Z ) 2 ^ ( n + 1 ) 2fco 

P r o o f . In virtue of [2] (p. 1077), there exists a canonical decomposi-
tion = S + N such that SN = NS, where 5 is a semisimple matrix 
and Nko+1 = 0 for k0 < k - 1. Let S = BOB'1, where C is the matrix 
in the Jordana form for the matrix S, whereas B is the matrix of likeness. 
Then 

exp < | |exp[-(//n ,m)2fS]exp[-(/in ,m)2ti\T]| | < 

< ||exp[-(AiWim)ai5]|| || exp[—(/i„tTO)2iiV]|| = 

= | |Bexp[—(/in ) m)2iC]fl_ 1 | | ||exp[-(M„,TO)2iiV]|| < 

< | |P| | • | | i? - 1 | | exp[—(/in)m)2i/3]|| exp[—(/in)m)2iiV]||, 
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where (3 = min(Re A, A is an eigenvalue of the matrix ^j-A). If we take into 
consideration the inequality 

(3.1) ||exp[-(Mntm)aitf]|| = 
ko 

E 
j=o 

•N3 < 

< [max{l,(/xn)m)2}] fc° ^ 
j=o •>• 

then we have 

exp-( j i„ ) T n ) ' 4 a az 
< 

fco 

< \\B\\ • ll-S-1 II exp[-(Mn,ro)2f/?](,zn)m)2fc° J 2 Wl'"-
i=0 J 

The last inequality follows from the inequalities /xn,m > 1 and ¿¿„,m > n for 
each (ra, m) £ N x N and from the fact that there exists k € N U {0} such 
that /xo,m € ]&7r + f 7r, kir + |7r[ for each m £ N (see [4] p. 485 and p. 490). 
From Hankel's asymptotic formula for x —oo (see [4] p. 488) 

it follows that cos(fin,m — I j L ) = —). Consequently, there exists a con-
stant 8 > 0 such that 

-6 + + l) + lr< Hn,m < 6 + + 1) + lir 

holds for sufficiently large m € N and for some I € N because of the in-
equality 0 < Hn,m < Mn,m+1 for (n, m) € (N U {0 } ) x N. Hence, for suffi-
ciently large m € N, there exists I € N such that for each n 6 N U {0 } we 
have 

(3.2) 

Finally 

i(n -(- l)ir < fin<m <(n + I)tt. 

exp < C exp - (n + If • - r ß (n + /> 2 fc0 

This ends the proof of Lemma 3.1. 

LEMMA 3.2. Under the assumption (2.3) there exists a constant b € 
such that for each t > 0 the inequality || exp[-(/i„im)24rA]|| < b holds. 
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P r o o f . Observe that (see [2]) 

!k2j < fc2zi-2?' j 3 .-•> 
zJ 

for all j,k,z > 0. 

Then from (3.1) we obtain the inequality 

| |exp[-(/in)TO)2i(5 + JV)]||< 
fco 

^ l l ^ l - I I ^ H ^ e x p 
j=o 

7r" 
-(n+iy^tß 

(n + l)2h2H> 
> < 

I W M I R L F E « . - ' ) 

for sufficiently large m, for instance TO > mo. The methods applied above 
allow us also to show for m < mo that all the functions of the form 

2 I ßn.m ) exp R+ 9 t 

are bounded. The proof of Lemma 3.2 is complete. 

Let us introduce now a matrix-valued function 

G : ]0, oo[ x [0,a] x [0,a] x R-> 

given by the formula 

(3.3) G(t,r,p,0) = 

n=0 n=l 

with 
"2 for n = 0, 

£n[Jn+l{Hn,m)]2 cos nd • exp ( / ^ m ) 
, iA 

"N ~ { L for n > 0, 

which plays the same role for the system (1.1) as the function for a 
single parabolic equation in Cannon's paper [1] or the matrix-function M 
introduced by Majchrowski and Rogulski ([2]). 

Now we shall consider the properties of the matrix-function G. 

T H E O R E M 3.1. Under the assumption (2.3) the matrix-valued function G 
defined by the formula (3.3) is of the class C°° and all its partial derivatives 
can be calculated by term-by-term differentiation of the series (3.3). 
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P r o o f . From the fact that Jn(z) and 7n+/(z), where / € N, have no com-
mon roots (see [4] p. 484), from the inequality 1^(^)1 < 1 for n G N U {0} 
and x € R (see [4] p. 31), and from Hankel's asymptotic formula we obtain 
the inequality 

for all n € N U {0}, m 6 N and r,p € [0,a], where C is a constant indepen-
dent of r, p, m, n. It follows from Lemma 3.1 that the series is uniformly 
convergent on the arbitrary subset 

Ps = {(t,r,p, t?): 6 < t < T;r,p £ [0,a]; tleR} 

of the set ]0, oo[ X [0, a] x [0, a] x R. 
Taking also into consideration Lemma 3.2 we complete the proof of the-

orem. 

4. Auxiliary theorems 

LEMMA 4 .1 . If 

2° the functions fn<m : [ 0 , T ] R , where ( n , m ) € J = ( N U { 0 } ) X N , have 
the properties 

£n[«/n+l(/*n,m)]2 < c 

oo oo 
1° Cn'm i s convergent, 

n=0 m=l 

(n ,m)eJ 

(<0 A A ( ( /n+l l m(0</n,m(0)A(/„ ,m+l(0</» .m(<)) ) , 
tS[0,T] (n,m)€J 

then 
oo oo 

¿6[0,T] n=0 m=l 

2) there exists 

oo oo oo oo 

S S C«.m/n,m(f) = E E n=0 m=l n=0 m=l n=0 m=l 



212 T. Jagodziiiski 

P r o o f . At first we shall prove that for every e > 0 there exists po 6 N, 
such that for all k > po and r > po and all p, q 6 N such that p > k and 
q > r the following inequality holds 

p q k-1 r - 1 

| E C*,mfn,m(t) ~ E £ cn,m/n,m(i)| < £ 

n=0 m=1 n=0 m=l 

which we can rewrite as 
p q V r-1 

| ̂  Cn,mfn,m(t) + E £ en,mfn,m(t)\ < £• 
n=0 m=r n=k m=l 

Let us denote 
p q p r-1 

•SlCO = Xv X/ Cn,mfn,m(t), S2(t) '•= ^ ^ Cn,m/n,m(i)> 
n=0 m=r n=k m=l 

w w w 

3=1 3 = 0 S=0 

where 

. c r ^ , - ^ , ^ , . . . , ^ ) f o r i < r < 9 f 

for r = 1, and for s 6 N, 

. . „ a « ) for 1 < r < g, 

( s ) imax(a< s ) , . . . ,< 
r 1 t (») 

m i n K 
• t («) •J ' ) for r = 1, and for s € N U {0} , 

, , i max(/io,r» • • • i Ak-ltr, -Ak-ltr, ¿k,r, • • • , Ap,r) fa 0 < k < p, 
k ' \ max( A>,r, • • •, APtr) for k = 0, 

f min(£oir,---,£fc-l(r,-£fc-l1r,£ifc,r, • • •, ¿p,r) for 0 < k < p, 
k ' \ min(^o,r, • • •, for k = 0. 

Next, using the Abel transformation, we get the inequality 

q q-r 
] T Cn,mfn,m(t) = £ / n , r + , W ( C T r + S ~ <>i+ s - l ) = 
m=r s=0 

q—l—r 
= " *ln2ifnA*) + E i i ( / n , r + 5 W - / n , r + J + l ( i ) ) + 

s=0 

+ ^ n ) /n, , ( i ) < 2M<">/n,r(i) 
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and analogously 
9 

E Cn,m/n,m(0 > 2 m ^ / n , r ( i ) 
m=r 

which imply 

Sl(t) < ¿ ( 2 m i " ) / n f r ( i ) ) = 2 { - ¿ . - i , r ) / . , r ( 0 + ¿O.r/o.rW} = 
n=0 s=l 

= 2 { ¿ ^ - 1 , r ( / . - i , r ( t ) - /.,,(<)) + ^.r/p,r(<)}-
3 = 1 

Finally, we have 

\Si(t)\ < 2Dkfo,r(t) < 2Dk%{r\ 

where D* = max(|Mfc|, |mjt|). The last inequality holds independently of 
t e [¿,T] and for all 6 e ]0,T]. 

Using the Abel transformation, we have 

E Cn,mfn,m(t) = + B * ^ ~ = 
m=l s=2 

= i > S n ) ( / » t . w - w + * i - U . - i ( o 
S = 1 

and, by the assumptions, we obtain the inequalities 
r—1 
E C»,m/»,m(i) < ^ i n ) / n , l ( 0 < M<w>/n>1(i), 
m=l 
r—1 
E C»,m/»,m(i) > 4 n ) / n , l ( 0 > ^ / n . l W -
m=l 

Next, the Abel transformation gives 

E M < n > / n i l ( f ) = - -d J f c_ 1 , r /M( i )+ 
71= fc 

P - 1 

+ E A - A f n , l ( t ) - / „ + 1 , i ( 0 ) + 4p ,r/P ll(<), 
n—k 

and from the assumptions we have 2mkfk,\{t) < ^ ( i ) < 2Mkfk,i(t) or 
I ft (01 ^ 2Z?fc/fc,i(0 and then 

1 ^ ( 0 + 5 2 (0I < 2K f c(gi r ) + flfrf1)) < e 
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for A; > ko, r > ro, where ko and ro ate sufficiently large non-negative 
integers, qo € ]0,1[ and there exists po = max(fco, >"o)-

This ends the proof of part 1). Part 2) follows immediately from the 
equality 

00 oo oo oo 
E E Cn,m/n,m(i) = E E Cn,mfn,m(0). • 
n=0 m=1 n=0 m=1 

L E M M A 4.2. The functions of the form fn,m{t) = exp[—(fj,n>m)2at], where 
a > 0, t 6 [0,T], (n,m ) £ J fulfil assumptions of Lemma 4.1. 

P r o o f . The inequality (a) of Lemma 4.1 follows immediately from (3.2). 
Continuity of the functions /„ j m is evident. From [4] (p. 479) it follows 
that the positive zeros of Jn(x) are interlaced with those of Jn+i(x), i.e. 
0 < . . . < Hntm < Hn+I,m < Vn,m+1 < Hn+i,m+i what implies that for every 
t G [0,T] the functions fn>m satisfy 2°(c). 

LEMMA 4 . 3 . If 

1° S is a semisimple real matrix k x k with eigenvalues A such that Re A > 
0, 
oo oo 

2° E E cn<m is convergent, 
n=0 m=1 

3° /? is a positive constant, 

then At>0 E^Lo Em=i cn,m e x p ( - ( f i n t m ) 2 f 3 t S ) is convergent and there ex-
ists the limit 

oo oo oo oo 
(4.1) Km E c».™ e xP l - (»n,m)20tS] = ( E E 

n=0 m=l n=0m=l 

where I is the unit matrix k x k. 

P r o o f . In view of the relation ||exp(—c5)|| < Z)exp(—ca), with a = 
min{ReA : det(5 — XI) = 0} and c,D positive constants (see [2]), we 
have 

||exp[-(,inim)2/?iS]|| < \\M\\ | |M - 1 | | exp[—(|z„)m)2a/?/]||, 

where M is the matrix of likeness. From the assumptions and from Lem-
mas 4.1, 4.2 the convergence of considered series follows. From the first part 
of Lemma 4.3 we obtain (4.1), because the series is uniformly convergent on 
[¿>,T] for all « € ] 0 , r [ . 
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Let us introduce now some denotations which will be used in the next 
theorem: 

F : [0, T] x [0,1] X [0, 2tt] B (r), p, 7 ) - F(V, p, 7 ) € R, 

. x 2 Jo pF(r},p,j)Jn(n 
71,771 p)dp OnMV'V- (Jn+1(^im)y 
1 2 

hn<m(T},r,/3) := Jn(nn,mr)[cosnl3hntm(r}) + smn(3hnim(r})], 

where 

1 2 2ir r 1 1 hn,m{v)'-=Tj 7- J J P COS nl Jn{^n,mp)F{rf, p, 7) dpldf, \J n+l\H>n,m)) 0 1 0 J 

2 2 2tt 1 
hn,m(v)-=Tj 7- J J psinnjJn(finitnp)F(T],p,j)dp\dy, \,Jn+l\H'n,m)) 0 0 

Cn,m{r},l,P) ••= P>l,mhn,m(V,r,l3), 
(r, /?) G [0,1] x [0,2?r] and (n, m) G J. 

T H E O R E M 4.1. 7/1 the function F fulfils the same assumptions (2.1) as 
<p with a = 1 and k = 1, then the series Xl^Lo cn,m(Tl-l ri P)-> 
S^Lo Sm=i hn,m(ViriP) are uniformly convergent in T} on every interval 
[6,T - ¿x], where 0 < S < T - ¿i <T,for all (r,0) G [0,1] x [0,2ir]. 

P r o o f . If we denote am := an,m(jl,l) for fixed 77, 7 and n G { 0 } U N, 
then 

00 
^ <lmJn{Vn,mT) 
m=1 

is the Fourier-Bessel series of the function F with respect to p. By as-
sumptions, for / = 0 and / = 1 the derivatives -Ĵ -F(rj,r,(3) have limited 
total fluctuation in [e, 1 — e] for all e G ]0, and there exist the integrals 
fiVp&F(V,p,f3)dp, ¡¿p^f^p-^F^p^^dp, n G NU {0}, and 
the limits lim,.^,^ ^ - F ^ r , / ? ) = 0, l i m ^ - '̂TF(r),r,f3) = 0. Hence the 
series E m = i a ™ i i n , m ^ ( / i n , m ) ( s e e [4] P- 6 0 5 ) i s convergent to -§;F(rj,r, f3) 
for fixed 77, fi and n. From the recurrence formulae 

zJh(z) + nJn(z) = z 7 „ _ i ( z ) , zJ'n(z) - nJn(z) = -zJn+1(z), 
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for n € {0} U N, it follows immediately that 

K{z) = (^Jn{Z) - Jn+l{z)} = 

z z 

= ^Jn+lW - Jn(z) - ^Jn(z) + j ^/„W ~ Jn+l(z)j = 

z> z 
By assumptions on F, the series 

oo 2 2 00 

E n — T 2 T / \ _ n n
 r / X 

2^,2 an,mJn\lln,m'!') — ~2 0 m ) 
m+1 m=l 

is the Fourier-Bessel expansion of the function F. Analogously, the series 
r 5Tm=i amfin,mJn+i(^n,mr) is the Dini expansion of the form 
E m = i bmJn+i(\n+lfmp), where 

bm = 2X2
n+hm J ti^F(t,,t,i3)-jF(fj,t,0))jn+1(\n+1,mt)dtx 

o ^ ' 

n+l ,m 
where A n + i i m denotes m-th positive real zero of the function {zJ'n+l{z) + 
(n + l )J n +i(z)} . Taking advantage of the recurrence formulae for the Bessel 
function, we see that An+i)T7l = fin<m and, in virtue of assumptions, bm = 
OmMn.m- The assumptions are sufficient to the uniformly convergence of the 
Fourier-Bessel series and of the Dini series (see [4] p. 593 and p. 601) with 
respect to the variable r on all intevrals [£, 1 — e], where 0 < e < 1. 

Taking into consideration the recurrence formulae since furthermore the 
series £ m = i a m i i n , r a 4( / i n i i n r ) is convergent to the function ^F(r),r,/3), 
(see [4] p. 605) and the series STO=i am^n,mJ'n(fln,mr) is uniformly con-
vergent to t/,r,/?), with respect to r, the series Y^.=icn,m(r)->r,fi) is 
convergent in rj for n € {0} U N. 

Next, applying [4] (p. 583 and p. 598), we can represent the partial 
sum of a Fourier-Bessel series and of a Dini series as a sum of residues 
of one function of complex variable having poles at the points fin,m in 
the case of Fourier-Bessel series and at the points /in,m a n d Xn,m in the 
case of Dini series. Therefore, the function which is the sum of the series 
S m = i cn,m{'n^ r iP) is continuous with respect to the parameters r) and /? 
for all n € {0} U N. It follows from the definition of residue and from the 
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compactness of the contour on which we calculate integrals. This means 
that the functions whose variables are parameters of integrals are continu-
ous. 

Let us denote £„(7?, r,/3) := cn,m{r}iTi/?)• Making use of the math-
ematical induction with respect to p € N and integrating by parts, one can 
prove that 

2~ 1 2n 82 P 

(4.2) J cos717^(77,p,7)d7 = ( - l ) P — J c o s n j - ^ F ( T ) , p , f ) d f , 

by assumption 

d24-1 d2*'1 

for s € N n [l,p], (77,p) e [0,T] x [0,1], and that 
2 rr | 2ir Qiv 

(4.3) f sinnjF(7j,p,j)dj = f sin 717 ̂ - ^ ( 7 7 , ¿>,7) <¿7, 
0 0 ' by assumption 

—G(v,p,0) = ——nF(ri,p,2x) 

for s 6 N D [ l , p ] , ( 7 7 , p ) € [0,T]x [0,1]. Applying the equalities (4.2) and (4.3) 
for p = 2, we obtain the uniformly convergence of the series Yl^Lo ^n(J?> t , /3), 
by assumptions on F. Observe that the series hn,m(il,r,(3) is a Four-
ier-Bessel series which is uniformly convergent on 1 - ¿1], with respect to 
the variable r . So, by proceeding as before, we prove the convergence of the 
series £ ~ 0 ( £ m = i ¿Bl«(i?,r,/3)). 

5 . T h e s o l u t i o n o f t h e p r o b l e m ( F ) 

In order to construct a solution of the problem (F) given by (1.1)—(1.3) 
we shall prove two existence theorems. 

Denote 

(5.1) v i ( t ,x) = vi(i, rcos/3, rsin/3) = Vi (i,r,/3) = 

2 a r 2* i 
= / [ / G ( i , r , p , / 3 - 7 ) s ( p , 7 ) d 7 j p d p , 

0 0 
where g(p,7) = </(pcos7,psin7) = g(y), y € fi, (rcos/?,rsin/3) = a: e fi, 
t 6 ]0,T[, the function g occurs in (1.2) and G is given by (3.3). 
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THEOREM 5 . 1 . If the function g fulfils the assumptions ( 2 . 2 ) , then the 
function v\ given by the formula (5.1) is a solution of the problem (F) with 
<p = 0. 

ity 
P r o o f . Making use of the properties of the function G and of the equal-

Jn{lln,m j)<Ai(Mn,mf ) r*(4 „ „ v ^ V^ '/n\H'n,m a )"n\H"n,m X 

X (cos n/3 cos n 7 + sin n/3 sin n 7 ) exp 

(see (3.3) and defining An,m, Cn<m — the Revalued coefficients of the 
Fourier-Bessel expansion of the function g by formulas 

Cn,m — 

enir a2[Jn+i(fin>m]2 

£nna2[Jn+i(Hn,m)]2 

a / \ 
/ pJn ( ^n,m ~ ) [ J COS Wyg(p, 7) d7] dp, 
0 ^ a ' 0 

f pJn( Mn.mM [ jf sin njg(p, 7) <¿7] dp, 
n V ' ft 

where (n, m) € J , we can represent the function Vi in the form 

vi (t,r,(3) = ^ exp 

n=0 m=l 
(/¿n.m) 

t / r \ 
'n 1 Mn.m J 

V « / 
X 

x{cosra/L4n)jrv + smn/JCn,™}. 

Next, we are going to prove that the function v\ fulfils the equation 

( 5 . 3 ) ^(t,r,f3) = AAv1(t,r,f3). 

Calculating derivatives of v\, we have 

71=0 771=1 X ' 
exp — (Mn.m)2-^^ 

X I Jn ^ cos n(3An<m + Jn ^/z„,m 0 sin 7i/3Cn,m I , 

1 dvi 1 d2v\ 
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+ 

+ 

cos nßAn>m + 

+ 

n=0 m=l L J ^ ' 

1 ± J ( l \ _ ± r ( r \ 
r dr y n,m

 a J a)_ 

d r ^ J n { f l n ' m ^ ) + r d 7 J n ( / i n , m a ) 

- ^ - / n ^ M n . m ^ j sin n/?Cn,m | = 

0 0 0 0 r < 1 
= - £ 5 > x p - ( / z n > m ) 2 - A x 

n=0m=l L J 

X j ( j ^ ^ j Jn n,m ̂  (cos n(3An,m + sin n/?C„iTn) j 

Since W — Jn{^n,m~) is a solution of the Bessel equation 

d2W 1 dW n 

dr2 ^ r dr ^ r2 ^ ^ 

Thus the function v\ is a solution of the equation (5.3). 
Now we can observe that 

00 00 f / r \ 1 
wi(0,r,/?) = 11 «M Mn,m- ) ( c o s nPAn,m +s in nf3Cn,m) > = 

n=Om=l V a / J 

where I is the unit matrix k x k. It follows from the definitions of v\ and 
/xn>m that lim,.^,,- v\(t,r,/3) = 0 € Rfc. The proof of Theorem 5.1 is now 
complete. 

Next, let us denote 

(5.4) v2(t, x) — v2{t, reos f3,r sin /?) = v2(t, r,(3) = 
2 t 2n a 

f [ / [ / TTr'P>P-l)<p(V,P,l)dp] d f ] drj, iraí 

o o 

where <p(t,r,ß) = <p(t, r e o s ß , r s i n ß ) = <p(t,x), (rcosß,rsmß) - x G ß , 
t € ]0,T[. 
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THEOREM 5.2. If the function tp fulfils the assumptions (2.1), then the 
function V2 given by the formula (5.4) is a solution of the problem (F) with 
<7 = 0 . 

P r o o f . Analogously as the function g in the proof of Theorem 5.1 
we can represent the function <p for the fixed t in the form of the se-
ries 

°° / T \ oo oo / ^ s 
<fi(t,r,P)= 5 3 «M/^O.m- Mo,m(i) + 5 3 5 3 

m=1 ^ ' n = l m = l ^ ' 
X 

x{cos n/3A„,m(i) -(- sin n/?Cn,m(/)} 

where Antm(t), Cn,m{t) are the following Revalued coefficients of the Four-
ier-Bessel expansion of the R*-valued function <p (for fixed t) 

2 
enira2[Jn+i(/in,m)]2 

X J pJn ( fin,rn ^ J [ f <p(t, p, f ) cos rry d*f\ dp, (n, m) € «7, 
n V / n 

Cn,m(0 — £n7ra2[Jn+i(/xn,m)]2 

° / \ r 
X / M>( /in,m-J [ / £(*,/>, 7) sin «7^7] d/>, (n,m) € J. 

o ^ a ' o 
Making use of the properties of G, we can represent the function t>2 in the 
form 

OO OO f / \ t 
= S S 1 COS n/? J n ( //n,m ~~ J / 

n=0m=l V / 0 
exp (Î—77)A 

+ s i n n / ? J exp - ( i -7 / )A C n i m ( i )d i? | . 

Calculating derivatives of V2 we obtain 

d_ 
dt 

i / \ 

n=0m=l \ 

+ sin n/3 Jn 0 Cn ,m(0 j + 
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+ë êjn m 0 ( " (»n>m I) a) x 

c o s nß F (t - TJ)A Anim(t)dt]+ 

nß f e x p J - ^ M n . m ^ ( t - v ) A C n t m ( t ) d r ) 

+ s i n 

Äv2(t,r,ß) = 

= E E + - (7) 
n = O m = l L N ' v / \ / \ / J 

X c o s nß J e x p - ^ 0 - î?)aJ A n , m ( i ) d i ? + 

X 

+ s i n nß Cn,m(t) dr1 

+ 

+ 

f e x p - f / i „ , m - j (t-Tj)A 

0 L \ a / 

= { ( / V m - ) COS nßJn(ftn,m-jX 

n = 0 m = l L V a ' \ 

X f exp - ( t - V ) A 

/ e x p - ( i - i?)A ^ ^ ( O d ^ l J , 

s i n c e t h e f u n c t i o n J „ ( / i n , m f ) i s a s o l u t i o n o f t h e B e s s e l e q u a t i o n , a n a l o g o u s l y 

a s i n t h e p r o o f o f T h e o r e m 5 . 1 . T h u s , w e o b t a i n 

—v2 ( t , r , /?) = A Av2(t, r , /?) + !p(t, r , (3). 

F r o m ( 5 . 4 ) i t f o l l o w s t h a t r 2 ( 0 , r , / ? ) = 0 G R f c a n d l i m r _ a - v2(t,r,/3) = 0 6 

R * . 
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COROLLARY 5.1. Suppose that the functions g and, y fulfil the assump-
tions (2 .2 ) and (2 .1 ) , respectively. Then the function v — V1 + V2 is a solution 
of the problem (F). 
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