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Agnieszka Pluciniska, Edmund Plucinski

ON STOCHASTIC DIFFERENCE EQUATIONS
ASSOCIATED WITH QUASI-DIFFUSION PROCESSES

We consider a sequence of stochastic difference equations. We define the
notion “the consistency” of this sequence. This consistent sequence is an
analogue of consistent sequence of solutions of Kolmogorow type parabolic
equations. We give relations between coefficients of these parabolic equa-
tions and coeflicients of equations considered in the present paper. We find
solutions when the coefficients are linear. Every difference equation of the
considered sequence has a form similar as in ARIMA models.

1. Introduction and formulation of the results

Let (£2,F, P) be a complete probability space, §F = (F:, t € [0,T]) an
increasing family of sub o-field of §, W = (W}, §:) a Wiener process.

Let X = (Xy), t € [0,T), be a real-valued continuous stochastic process
(F¢)-adapted such that E(X;) = 0, E(X?) < co.

For0 <t <t <:..<T weputt, = (t,t2,...,t,), Xpn = (Xz,,. ..
...y Xt,) and x,, = (21,...,2,) € R". We suppose that for every n, every
t, the random variables X;,,..., X;, are linearly independent.

Let an(tn+1,Xn) and b,(t,41,X%,) be continuous functions.

For a given probability space (12, F, P) and a given Wiener process W, we
consider a stochastic process X satisfying for every n, every fixed sequence
t1 <t <...<t, and optional ¢,4; stochastic difference equations

tnt1 ta41
(11) Xepy, = Xeo + [ an(tn,5,Xn)ds+ [ bu(tn,s,Xn)dW, =
ty tn

= Fn(tn+1’ xn, W)1 n2 1.

We shall say that the solutions of system (1.1) are a consistent family (CF)
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of solutions if for every n the random functionals F,, satisfy the relations
d
(1~2) Fn(tn+laxn-—17Fn—l(tn7 x'n—laW)’W)=
d
=Fn-1 (tn—l ’ tn+1, Xn-—l ) W)

By properties of Ito integrals, almost surely,

tu +1

E(th+1 lgt,.) = th + f an(tm 8, Xn) ds,
(1.3) tn fosn
E(Xt,y ~ E(Xtyyy |50,)) | 8e,) = f b3 (tnt1, 8, Xn) ds.
tn

If X is a Markov process the functions a,, b, of 2n + 1 arguments turn
into the functions of 3 arguments

an(tn’s>xn) = al(tnastt,.)y bn(trusaxn) = bl(t'msaXt,.)-

Therefore the consistency conditions (1.2) reduce to the one condition:
d
(12,) Fl(t27 i3, Fl(thtZ,tha W)a W) = Fl(th ta, th, W)

Formula (1.2') is similar to a property of semigroups operators for Mar-
kov processes. In a non-markovian case for the considered process X we have
the system of stochastic difference equations (1.1) satisfying (1.2).

The main aim of this paper is to prove the following Proposition.

PROPOSITION 1. If an(tn41,X.) € C° are linear functions of Xy,
bn(tnt1,Xn) = bp(tyy1) are continuous positive functions, then solutions
of (1.1) are (CF) gaussian solutions. For every n > 1

tn41
(14) Var (th“ - X, - f an(tn,s,X,) ds) <
tn
tat1
< Var (Xtm ~ X - | an_l(tg,...,tn,s,th,...,th)ds).
ln

For fixed n equation (1.1) permit to express the state X;_,, at the point
tn+1 by W and preceding states of the considered process, i.e. by the states
at the points t;,...,t,. In this sense we get forecasting at the point t,4+1
depending on W and the preceding states.

By virtue of (1.4) we can say that such forecasting given by (1.1) for
n past states is better than for n — 1 past states. The greater number of
conditions improve the forecasting.



Stochastic difference equations 199

The idea of the sequence of stochastic difference equations (1.1) satisfying
(1.2) refers to various stochastic investigations. We mention some relations.

De Haan and Karandicar [2] have considered stochastic difference equa-
tion of the form

X: = A{ X, + B}
with the random functionals satisfying almost surely
(i) A = AJAY, B =A!B,+B for0<s<u<t

and some further conditions (ii), (iii). For fixed n relation (1.1) is a stochastic
difference equation with memory depending on the preceding states.

Relations (1.2) have similar character to (i). Relations (1.2) for linear
coefficients a,, b, have a strict connection with (i). The essential difference
consists on the dependence of functionals F), on the precedings states.

On the other hand by (1.3) equations (1.1) can be written in the following
form

tn4a

(1.5) Xepor — EXtyy 180) = [ ba(tn,,X0)dW,, 21,
t

n

Every equation of system (1.5) can be treated as a version of Clark’s
formula with a special form of the functional under the integral sign. Clark’s
formula was considered for example by Karatzas, Ocone and Jinlu Li [3].

It seems also interesting to mention that under the assumptions of Propo-
sition 1 relations (1.1) are a continuous analogue of ARIMA models (see e.g.
Box, Jenkins [1], Priestley [7]).

The most essential connection of the sequence (1.1) is with the quasi-
diffusion processes (the definition is quoted in pargraph 2)

The main idea of quasi-diffusion processes is to give a tool for finding con-
ditional distributions. This tool is a sequence of Kolmogorov type parabolic
equations. If we have the initial condition and we solve first n equations
of this sequence we get n-dimensionals distributions. For a Markov process
the solution of Kolmogorov equation determines all multi-dimensionsl dis-
tributions. For non-markovian process the n-dimesional distributions (for
finite n) give only some partial information; when n increases we get more
informations. Now we propose a method to express the state of the process
at the moment ¢, 4; by the preceding states of the process at the moments
t1,t2,...,t, plus some functional of the Wiener process. This method is
based on stochastic difference equations (1.1). The coefficients of equations
(1.1) have the strict connection with the coefficients of Kolmogorov type
parabolic equation (see chapter 2). When n increases we get better infor-
mation in the sense of relation (1.4).
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Therefore we extend the idea of qugsi-diffusion processes permitting to
find conditional distributons (conditioning by preceding states) to the idea
of expressing the state of the process by some preceding states plus some
functionals. The idea of quasi-diffusion processes is based on infinitesimal
moments (some limits of conditional moments). The idea of the present
paper is based on conditional moments.

2. Quasi-diffusion processes

Solutions of (1.1) have a strict connection with quasi-diffusion processes.
For quasi-diffusion processes conconsidered by Plucifiska [4], [5] there exist
limits

3 1 -~
(2.1) Ah_r-r'})+ A E(Xi,+a, — Xt,) | Xn =Xp) = @n(tn,xn),
n n

. 1 ~
(2'2) A’I.l_%+ Z:E(th+4,. - Xt,. )2 | X, = xn) = bn(tmxn)-

The conditional densities f, of quasi-diffusion processes satisfy (under
some additional regularity assumptions) the Kolmogorov type equations
a a Cand
(2.3) b‘t—fn(tn—l 2y Xn—1;tn, zn) + aT an(tm xn)fn(tn—l »Xn—1;tn, zn)] =
n

n

19% ~
= Ew‘[bn(tn,xn)fn(tn—laxn—l;t'mx‘n)]’ n>1

It is obvious that for solutions of (1.1) there exist limits (2.1) and (2.2)
and the following relations hold:

{an(tnaxn) = an(tn,tnyxn)
bn(tn,xn) = b%(tnatna xn)-

For Markov processes, for n = 2, equation (2.3) with some initial condi-
tions determines all finite dimensional distributions. In the non-markovian
case we have the sequence of equations (2.3). These equations give a par-
tial information about multi-dimensional distributions. If we consider these
equations for n < N, then we can find the N-dimensional distributions.

Similarly, if we consider equations (1.1) for n < N with given ay, by,
then by (2.4) and (2.3) we can find conditional densities f, and next N-
dimensional densities.

On the other hand, for given n, equation (1.1) provides a forecasting for
Xt,,, as a functional of n past states X;,,...,X;, and a Wiener process
W. A forecasting given by (1.1) for n past states is better than for n — 1
past states in the sense of (1.4). '

(2.4)
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3. Auxiliary results
We shall use the following lemmas.

LEMMA 1. Let X = (X¢), t € [0,T] be a zero mean stochastic process with
E(X}) < 00 and with a continuous covariance function k;; = E(Xy, Xy,).

If for every n, t; < t3 < ...< T, the random variables
(3.1) X,,Xt,,...,X:, are linearly independent,
(3.2) pn=E(X:, | Xtyy...,Xs,_,) is a linear function of Xy ,..., X, _,,
(3.3) v2=Var(Xe, | Xty or Xtu_y) = E[(Xt, = 12)’ | Xtyy- - Xt_y)

is a deterministic function

(34) E[(th - /‘l’n)4 ' an s ’th—I] < O(t'ﬂ - tﬂ—l)

then X is a gaussian process. Moreover

n—1
(35) Hn = Z cin(tn)Xt.-,

i=1

K®

2 _
(3'6) ’U‘n - ’(::l) b
where
K

(3.7) Cin = Km0

ki; = E(Xy, Xy;), Kf:) is the cofactor of ki, in the matriz

(ki}P o1, KD = detlk; 772, (e K7D = K()).

i,5=1
Evidently for every ¢ the coefficients ¢;,, are functions of n arguments: ¢y, ...

oyt

We omit the proof of Lemma 1 because it is analogous to the proof of
Theorem 1 given by Plucifiska [6]. In that paper the conditions of type (3.2),
(3.3) are assumed for all the point (¢,...,%,) (not necesserity ordered). In
the present paper conditions (3.2), (3.3) must be satisfied only for ¢; < t; <

.. < t,. But in the present paper we have the additional condition (3.4).

LEMMA 2. If conditions (3.1), (3.2) and (3.3) hold then

(3.8) Cin+1(tns1) + Cnnt1(tng1)Cin(tn) = cin(tn-1,tn41),

(3.9) A np1(tngr) Var(Xe, | Xey,. o, X, )+
+Var(Xg"+1 I th,...,Xt") = Va.r(th_H I th,. “’th-l)‘
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Proof of Lemma 2. We shall use the following formula for deter-
minants of symmetric matrices

310)  KOOED = gEHOREED) - kEVEY.

By virtue of (3.7) and (3.10) we have

(3.11) K¢ 1(tpg1) =
A(n+1)
_— i,'n.+1 [
K@K (-1
(n+1) 7-(n+1)

1 +1 '7 ] +17 +1
(3.12) Cn,n+1(tn+1)ci,n(tn) = I:;(‘r;) K(zn?l-"ll) n =

+1 +1
KGO gD (kT

nnn+1l,n+1
K("'H'l)

_ n,n+1 [I((n+1)K(n+1) _ (n+1)K(n+1)]
- K("—I)K(")K(’H'l) in n+1,n+1 i,n+l Fn,ntlls

(n+1)

in,n,n4+l

(3.13) cin(tn—-lat'n-{-l) = _('n.+—1)+— =
n,n,n+1,n+1
_ KGR KR + KGR

K(n-1) g(n+1)

Formula (3.8) follows immediately from (3.11), (3.12) and (3.13).
Taking into account (3.6), (3.7) and (3.8) we have

(314) ci,n+l(t’n+1) V&T(th ' th, ey Xt,,_l) =
[KS,‘::%]"’ K™ (KO

T B | KeD T KW EG-)
K (n+1)
(3.15)  Var(Xi,,, | Xtyy...r Xe,) = O
(n 1) z-(n+1 1
_ KGRI, - (KR
= K™ K (=1 g (ntD) ’
KGR
(3.16) Var(X:,,, | Xey-o o Xto_y) = Kn-1)"

Formula (3.9) follows immediately from (3.14), (3.15) and (3.16). Thus
Lemma 2 is proved.

4. Proof of Proposition 1
First we are going to show that conditions (1.2) hold. It follows from the
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properties of the Ito integral and the linearity of a, that

tnt1
(41) E(Xtu-n ( "St,;) - Xt,, + f an(tnys X )dS - za‘l n+1Xt [
tn i=1

in other words the conditional expectation is a linear function of the states
with some coefficients a; »4+1. Then by Lemma 1

(4.2) Qint1 = Cintl.

By the properties of functions b, and Ito integrals we have
tat1

(43)  E{[Xtnys = B(Xtaus | T 150} = [ Bh(tn,s)ds =
tn

= E[an-n - E(th+1 I stn)]? > 0.
It follows from (4.1), (4.3) that X ,..., X;,,, are linearly independent i.e.
(4.4) K"t 50, n=1,2,....

Therefore assumptions (3.1), (3.2) and (3.3) are satisfied and in virtue of
Lemma 1 we have

(n+1)
ini1
(4.5) Cint1(tntr) = — K(:) )
] o KD
2 =9 2 _-_9 &
(4'6) bn(tn-H) = 6tn+1 Un41 3tn+1 K@)
By virtue of formula (3.8) and (4.5)
n-1
Fultny1, Xno1, Foc1(tn, X, W)W] = E Cint1(tns1)Xe, +
i=1
n-1
+cn n+l(tn+1)[zct n(tn)Xt + f bn l(tn—-hs) dW]+
=1 tn—1
| Y n-1
+ f bn(tn, 3) dWa = Z cin(tn—l,tn+l)Xt.-+
tn i=1
ta41
+Cn n+l n+1) f bn—l(tn-l)dW + f bn(tn,s)dW - Il +I2
tn 1 tn

For fixed t;,...,tn41 the sum
tatl
I =c¢c, .,,,+1(tn+1) f b _1(t _1,8)dW + f n(tn,s)dW

ta-1 ty



204 A. Plucinska, E. Pluciniski

is the sum of two independent gaussian random variables. Then this sum has
a gaussian distribution with the mean value equal to zero and by formula
(3.9) the variance is equal to

tn 41
(47) E() = pp1(tnsr) [ 05 1(tnoy,s)ds+ [ bi(ta,s)ds=
tn—l tn

= ci,n+1(tn+1) V&T(Xtu I th, eee 1Xt,,_1)+

+ Va,l‘(Xt"_H I th, oo ,th) = ‘/a,l’(.Xt"_"1 | th, ves ,th_l) =
ty, tn+1 2
= f bi-l(tn—l, S) ds = E( f bn—l(tn—l, 3) dW,) .
tn—l tn—l
On the other hand
n—1
Foci(tn-1,tn41, X0, W) = }: Cin(tn-1,tn41)Xe;+
i=1
tn-l-l
+ f ba_1(tn-1,8)dW, = I, + I.
ta—1

It is evident that for fixed ¢,...,2,41 the integral I3 has a mean zero
gaussian distribution and by (4.7) I, 4 I;. It follows from the indepedence

of I, I, and the indepedence of Iy, I3 that I} + I, 4 I + I. Thus (1.2) is
proved.

Now we are going to show, by Lemma 1, that the solutions of (1.1) are
gaussian. Conditions (3.1)—(3.3) follows from (4.1), (4.3) and (4.4). For § = 2
by virtue of properties of stochastic integrals and the continuity of functions
b, we have

tn1 4
E{(Xinn - E(thn l %’tn-}-l))‘l l 3'1‘"} = E( f bn(tn’s) dS) <
tn
tat1
< 86(tngr — tn) [ bA(tns)ds = o(tns1 — tn).
tn
Thus (3.4) holds. Therefore by virtue of Lemma 1 solutions of (1.1) are
gaussian.

Now we are going to show (1.4). Taking into account (3.10),fori = j =1,

we have

(48) KRR = KPR - (kTH)



Stochastic difference equations 205

It follows from (3.6) and (4.8) that

th41
K(n+1)
Var (Xt,.+1 - th - f an(tn, S,Xn) ds = __K("-) =
tn

n+1
e e
K  KPE® T KD
th41

=Var(Xt“+l—Xt,_— i a,._l(tg,...,tn,s,th,...,Xt")ds).

tn

Formula (1.4) is thus shown. Therefore Proposition 1 is proved.

5. Examples

ExAMPLE 1. Let assumptions of Proposition 1 be satisfied and k(¢,,%2) =
E(X:,X:,) = exp[—(t2 — t1)?]. Then the coefficients are given by formulas

c12(t1,t2) = exp[—(t2 — 1)°],

exp[—(ta — t2)*] — exp[—(t2 — 11)* — (t3 — t2)*]
1 — exp[—2(t; — t1)?]

exp[—(t3 — 13)?] — exp[—(t2 — t1)* — (t3 — 11)?]
1 — exp[-2(t — t1)?]

B(ta) = {1 - expl-2(tz — 1))

c13(ts) =

ca3(ts) =

B(ts) = e {1+ 2expl—(t2 — 1) — (13 — )" = (1 — )]~
— exp[—2(t3 — t1)] — exp[—2(¢3 — t2)?] — exp[-2(t2 — t1)?]) x
X (1 - exp[-2(t; — )21
Formula (1.2) for n = 3 has, in virtue of (1.5), the following form
X:, = F2(t1,t2,t3, Xey, Fi(ta, 2, W), W) =

ta
= e1g(ta)Xe, + ena(ta)[ena(ta)Xey + [ ba(tr,5) W]+
t1

i3 t3
+ fb2(tl,t293)dWsgch(tlatS)th+ fbl(t,s)dWs=

tz t

= Fl(tl,ta, W)
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Evidently we have

> »(3
R 2) — -(2)°

Therefore formula (1.4) is satisfied.

ExAMPLE 2. An example of a stochastic process satisfying (1.1) is Orn-

stein-Uhlenbeck [8] process

(1]
2]
(3}
4
(5]
[6]
[7]
(8]

t
X =e " Xo + f e~ Pt=¥) gy, .
0
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