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ON STOCHASTIC D I F F E R E N C E EQUATIONS 
ASSOCIATED W I T H QUASI-DIFFUSION PROCESSES 

We consider a sequence of stochastic difference equations. We define the 
notion "the consistency" of this sequence. This consistent sequence is an 
analogue of consistent sequence of solutions of Kolmogorow type parabolic 
equations. We give relations between coefficients of these parabolic equa-
tions and coefficients of equations considered in the present paper. We find 
solutions when the coefficients are linear. Every difference equation of the 
considered sequence has a form similar as in ARiMA models. 

1. Introduction and formulation of the results 
Let P) be a complete probability space, $ = (3"t, t € [0,T]) an 

increasing family of sub tr-field of W = (Wt,3"t) a Wiener process. 
Let X = (Xt), t € [0,T], be a real-valued continuous stochastic process 

(fo)-adapted such that E(Xt) = 0, E(Xf) < oo. 
For 0 <h <t2 < ... < T we put tn = (*i,i2 , • X " = {Xtl1... 
Xtn) and xn = ( x i , . . . , x n ) € Rn. We suppose that for every n, every 

tn the random variables X t l , . . . , Xtn are linearly independent. 
Let an(tn+iiXn) and 6n(tn+i,x„) be continuous functions. 
For a given probability space (1?, 3", P) and a given Wiener process W, we 

consider a stochastic process X satisfying for every n, every fixed sequence 
ti < tj < < tn and optional \ stochastic difference equations 

tn+l tn+1 
(1.1) Xtn+1 = Xtn + J an(tn,s,Xn)ds+ J bn(tn,s,Xn)dW,= 

i» in 
= f ,„(*n+i,X„,W0, n > 1. 

We shall say that the solutions of system (1.1) are a consistent family (CF) 
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of solutions if for every n the random functionals Fn satisfy the relations 

(1.2) f B ( t n + i , X „ _ i , Fn^(tn, X„_ i , W), W)i 

—Fn-1 (t„_i , tn+i, X n _ i , W). 

By properties of Ito integrals, almost surely, 

(1.3) 

E(xtn+1 I Jin) = Xtn + / o n ( t n , s , X „ ) d s , 
U 

E(Xtn+1 - E(Xtn+1 | foj)2 | ft.) = nfb2
n(tn+1,s,xn)ds. 

If X is a Markov process the functions an, bn of 2n + 1 arguments turn 
into the functions of 3 arguments 

a „ ( t n , 5 , X n ) = ai(tn,s,Xtn), bn(tn,s,Xn) = 6i(i„, s,Xtn). 

Therefore the consistency conditions (1.2) reduce to the one condition: 

(1.2') Fx (t2, i 3 , Fi (h, t2, Xtl >W\W) = F1 ( i i , t3, Xtl, W). 

Formula (1.2') is similar to a property of semigroups operators for Mar-
kov processes. In a non-markovian case for the considered process X we have 
the system of stochastic difference equations (1.1) satisfying (1.2). 

The main aim of this paper is to prove the following Proposition. 

P R O P O S I T I O N 1 . If A n ( t N +I,x n ) € C° are linear functions of x n , 
&n(tn+i,Xn) = 6n(tn+1) are continuous positive functions, then solutions 
of (1.1) are (CF) gaussian solutions. For every n > 1 

in+l 
(1.4) Var „+i — Xtn — J an(tn, s, Xn) ds^j < 

tn 

/ <B
f
+1 \ 

< Var - Xtn - J an-1(t2,...,tn,s,Xt2,...,XK)ds). 
in 

For fixed n equation (1.1) permit to express the state X i n + 1 at the point 
£n+i by W and preceding states of the considered process, i.e. by the states 
at the points ti,...,tn. In this sense we get forecasting at the point tn+1 
depending on W and the preceding states. 

By virtue of (1.4) we can say that such forecasting given by (1.1) for 
n past states is better than for n — 1 past states. The greater number of 
conditions improve the forecasting. 
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The idea of the sequence of stochastic difference equations (1.1) satisfying 
(1.2) refers to various stochastic investigations. We mention some relations. 

De Haan and Karandicar [2] have considered stochastic difference equa-
tion of the form 

Xt = A\X, + B3
t 

with the random functionals satisfying almost surely 

(i) A* = A^Af, Bs
t = A^B'U + Bt

u for 0 < s < u < t 

and some further conditions (ii), (iii). For fixed n relation (1.1) is a stochastic 
difference equation with memory depending on the preceding states. 

Relations (1.2) have similar character to (i). Relations (1.2) for linear 
coefficients an, bn have a strict connection with (i). The essential difference 
consists on the dependence of functionals Fn on the precedings states. 

On the other hand by (1.3) equations (1.1) can be written in the following 
form 

( 1 . 5 ) Xtn+1 - E(Xtn+1 | = / bn(tn,s,Xn)dWs, n> 1. 

t„ 
Every equation of system (1.5) can be treated as a version of Clark's 

formula with a special form of the functional under the integral sign. Clark's 
formula was considered for example by Karatzas, Ocone and Jinlu Li [3]. 

It seems also interesting to mention that under the assumptions of Propo-
sition 1 relations (1.1) are a continuous analogue of ARIMA models (see e.g. 
Box, Jenkins [1], Priestley [7]). 

The most essential connection of the sequence (1.1) is with the quasi-
diffusion processes (the definition is quoted in pargraph 2) 

The main idea of quasi-diffusion processes is to give a tool for finding con-
ditional distributions. This tool is a sequence of Kolmogorov type parabolic 
equations. If we have the initial condition and we solve first n equations 
of this sequence we get n-dimensionals distributions. For a Markov process 
the solution of Kolmogorov equation determines all multi-dimensionsl dis-
tributions. For non-markovian process the ra-dimesional distributions (for 
finite n) give only some partial information; when n increases we get more 
informations. Now we propose a method to express the state of the process 
at the moment tn+i by the preceding states of the process at the moments 
h,t2,... ,tn plus some functional of the Wiener process. This method is 
based on stochastic difference equations (1.1). The coefficients of equations 
(1.1) have the strict connection with the coefficients of Kolmogorov type 
parabolic equation (see chapter 2). When n increases we get better infor-
mation in the sense of relation (1.4). 
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Therefore we extend the idea of quqsi-diffusion processes permitting to 
find conditional distributons (conditioning by preceding states) to the idea 
of expressing the state of the process by some preceding states plus some 
functionals. The idea of quasi-diffusion processes is based on infinitesimal 
moments (some limits of conditional moments). The idea of the present 
paper is based on conditional moments. 

2. Quasi-diffusion processes 
Solutions of (1.1) have a strict connection with quasi-diffusion processes. 

For quasi-diffusion processes conconsidered by Plucinska [4], [5] there exist 
limits 

(2.1) lim -}-E(Xtn+An - Xtn) | X n = x B ) = a B ( t „ , x B ) , 
¿„-<•0+ A n 

J_ 
/C-0+ An 

(2.2) k , —E(Xtn+An -Xtnf | X n = X B ) = bn( t B , X n ) . 

The conditional densities fn of quasi-diffusion processes satisfy (under 
some additional regularity assumptions) the Kolmogorov type equations 

d d 
q . /n(tn—1 > xn—1 j ̂ ni xn) "t" [an(t»n xn)/n(^n—1 y xn—l! ^ni ^-n)] = 
dtn dxn 

= - ^ ^ - [ ¿ n ( t n , X n ) / n ( t n - l , X n - i ; i n , a ; n ) ] , » > 1. 

It is obvious that for solutions of (1.1) there exist limits (2.1) and (2.2) 
and the following relations hold: 

I ^n(tn>xn) = ^nt xn)-

For Markov processes, for n = 2, equation (2.3) with some initial condi-
tions determines all finite dimensional distributions. In the non-markovian 
case we have the sequence of equations (2.3). These equations give a par-
tial information about multi-dimensional distributions. If we consider these 
equations for n < N, then we can find the iV-dimensional distributions. 

Similarly, if we consider equations (1.1) for n < N with given an, bn, 
then by (2.4) and (2.3) we can find conditional densities fn and next N-
dimensional densities. 

On the other hand, for given n, equation (1.1) provides a forecasting for 
X t n + 1 as a functional of n past states Xtl,..., Xtn and a Wiener process 
W. A forecasting given by (1.1) for n past states is better than for n — 1 
past states in the sense of (1.4). 
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3. Auxiliary results 
We shall use the following lemmas. 

LEMMA 1 . LetX = ( X t ) , t € [0, T] be a zero mean stochastic process with 
E ( X f ) < oo and with a continuous covariance function k,j = E(XtiXti). 

If for every n, t\ < t<i < . . . < T, the random variables 

(3.1) Xtl, Xt2,. • •, Xtn are linearly independent, 
(3.2) nn = E(Xtn | Xtl,..., Xtn_x) is a linear function of Xh,..., X t l l_1, 
(3.3) = Var(Xt„ | X t l , . . . ,X t „_J = £[(X t„ - Mn)2 I X t l , . . . ,X t n _J 

is a deterministic function 
(3.4) E[(Xtn-fin)4 | < o(tn - iB_!) 

then X is a gaussian process. Moreover 
n—1 

(3.5) ¿¿„ = ]>^C i n ( t n )X t j , 
»=1 
E--(n) 

( 3 . 6 ) < -
Ann 

where 

(3.7) c in = - A' (n) 
m 

i f ( n - l ) ' 

fc.j = E{XtiXtj), is the cofactor of k{n in the matrix 

1, K ^ = d e t f o j ] ^ (i.e. K ^ = K™). 

Evidently for every i the coefficients c,„ are functions of n arguments: i i , . . . 

We omit the proof of Lemma 1 because it is analogous to the proof of 
Theorem 1 given by Plucinska [6]. In that paper the conditions of type (3.2), 
(3.3) are assumed for all the point (t\,..., tn) (not necesserity ordered). In 
the present paper conditions (3.2), (3.3) must be satisfied only for <i < ¿2 < 
... < tn. But in the present paper we have the additional condition (3.4). 

LEMMA 2. If conditions (3.1), (3.2) and (3.3) hold then 

( 3 . 8 ) C i ) n + 1 ( t n + i ) + C n , n + l ( t n + l ) C i , n ( t n ) = C , > ( t n _ i , ¿ n + l ) , 

(3-9) < n + 1 ( t n + 1 ) V a r ( X t n \Xti,...,Xu_1)+ 
+ Var(Xt„+1 \Xtl,...,Xtn) = Var(X<n+1 | X t l , . . . , ) . 
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P r o o f of L e m m a 2. We shall use the following formula for deter-
minants of symmetric matrices 

(3.10) = " A f n ^ A l ^ V . 

By virtue of (3.7) and (3.10) we have 

(3.11) tf(n+1>ciin+1(tn+1) = 

- _ '>+* trAn+l) ^(n+1) _ , K(n+\) -.2i 
K ( n ) K ( n ~ x ) n n + l , n + l l A n , n + l / J' 

K(n+\) K(n+\) 

(3.12) cn ,„+ 1(tn + i )c t i n(tn) - K ( n ) + 1 ) 

n , n , n + l , n + l 

_ nn,n+1 r („+!) („+!) ( n + i ) ( n + i ) . 
"l-^in n + l , n + l — A i , n + 1 -"•n.n+l.b K(n-\) K(n)]((n+l)\ 

K. 
( n + l ) 
i ,n ,n ,n+l 

( 3 . 1 3 ) C « n ( t n - l , < n + l ) = ~ „ ( n + l ) 
n,n,n-f l,n+l 

^(n+1) ^(n+1) 
i,n+l + Kin An,n+l 

K(n-l)K(n+l) 

Formula (3.8) follows immediately from (3.11), (3.12) and (3.13). 
Taking into account (3.6), (3.7) and (3.8) we have 

(3-14) < n + 1 ( t n + 1 ) V a r ( X t n | X t l , . . . , X f n _ 1 ) = 

__ [ K ^ t l l ? 
-t 2 An,n+1 

(3.15) V a r ( X t „ + i \ X t i t . . . , X t u ) = 

K(n+1) K(n-l) ^ ( n ) ^ ( n - l ) ' 

K ( ^ ) [ l d l + 1 ) K j \ \ ] l + l - { K ^ l l f ) 

K(n)K(n-\)K{n+l) 

(3.16) 
K(n+1) 

V a r (XiM+1 \ X h , . . . , X u _ 1 ) = j ^ j -

Formula (3.9) follows immediately from (3.14), (3.15) and (3.16). Thus 
Lemma 2 is proved. 

4. Proof of Proposition 1 
First we are going to show that conditions (1.2) hold. It follows from the 
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properties of the Ito integral and the linearity of an that 
tn+i n 

( 4 . 1 ) E(Xtn+1 | 3"tn) = Xtn + J an(tn,s,Xn)ds = ^2ai}n+iXtn 

t„ »=i 
in other words the conditional expectation is a linear function of the states 
with some coefficients cti,n+i. Then by Lemma 1 
(4.2) ai,n+i = c,•,„+!. 

By the properties of functions bn and Ito integrals we have 

( 4 . 3 ) E{[Xtn+1 - E(Xtn+t | & J ] 2 | 3 U = J bl(tn,s) ds = 
tn 

= E[Xtn+1 - E(XU+1 | y t J ] 2 > 0. 

It follows from (4.1), (4.3) that X t 1 , . . . ,X<n+1 are linearly independent i.e. 

(4.4) A'<n + 1>>0, n = 1,2, 

Therefore assumptions (3.1), (3.2) and (3.3) are satisfied and in virtue of 
Lemma 1 we have 

K) 
(n+l ) 

(4-5) Ci , n + i ( t n + i ) = - "¿"+1 , 

(i d „2 

KM 

8 o d K(n+1> 
(4.6) • 

By virtue of formula (3.8) and (4.5) 
n—1 

Fn[tn+1, Xn_i, Fn_X C,',n+l(tn+l)Xfi + 
•=1 

n-1 i„ 
' + + Cn,n+l(tn+l)[X^C'>(tn)Xi. + / &»-l(t»_l,s) 

»=1 t»-i 
t„+l n-1 

+ f b n ( t n , s )dW 3 = J2CUtn-utn+l)Xti + 
tn «=1 

tn tn+1 
+ c „ , „ + i ( t n + 1 ) f bn-1(tn-1)dW3+ f bn(tn,s)dW3 = h + I2 

t»-l tn 
For fixed t \ , . . . , the sum 

h = c n > n + 1 ( t n + i ) / ¿ „ ^ ( t « . ^ ^ ^ ^ J bn(tn,s)dWa 
tn-l t„ 
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is the sum of two independent gaussian random variables. Then this sum has 
a gaussian distribution with the mean value equal to zero and by formula 
(3.9) the variance is equal to 

(4 .7) E{ll) = < n + 1 ( t n + 1 ) / b2
n_1(tn.1,s)ds + j f b2

n(tn,s)ds = 
t» - l in 

= 4,n+i(tn+i)Var(X t n | X f l , . . . , X t n _ 1 ) + 

+ Var(X t i i+1 | X t l , . . . , X t n ) = Var(X tn+1 | X t l , . . . , X i „ _ 1 ) = 

in *n+l 2 
= / f bn.1(tn.1,s)dWaJ . 

*n-l *n-l 

On the other hand 
n—1 

• f n - l ( t n - l , i n + l , X n _ i , W) = ^ C,-n(tn- i , fn + 1)X f | .+ 
i=l 

tn+l 
+ f &n-l(tn- l , S) dWs = / l + /3. 

<n-l 

It is evident that for fixed t\,..., i n + i the integral I3 has a mean zero 
gaussian distribution and by (4.7) I2 = I3. It follows from the indepedence 
of Ji, I2 and the indepedence of Ii, I3 that Ii + I2 = I\ + I3. Thus (1.2) is 
proved. 

Now we are going to show, by Lemma 1, that the solutions of (1.1) are 
gaussian. Conditions (3.1)-(3.3) follows from (4.1), (4.3) and (4.4). For 6 = 2 
by virtue of properties of stochastic integrals and the continuity of functions 
bn we have 

£{(Xtn+1 - E(Xtm+l | tftn+1))4 | ft.} = E[ j \ n ( t n , s ) d , y < 

< 3 6 ( i n + 1 - < n ) f b4
n(tns)ds = o(tn+1-tn). 

tn 
Thus (3.4) holds. Therefore by virtue of Lemma 1 solutions of (1.1) are 
gaussian. 

Now we are going to show (1.4). Taking into account (3.10), for i = j — 1, 
we have 

(4.8) K ^ K f f = K [ 1 + 1 ) K W - ( K ^ l ) 2 . 
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I t fo l lows f r o m ( 3 . 6 ) a n d (4 .8 ) t h a t 

/ V \ K(n+V 
Var (Xin+1 -Xtn- J an(tn,s,xnJ ds = = 

t„ 

( V \ = Var\Xt%+1 - Xtn - J an-i(t2,...,in,s,Xt2,...,Xtit)ds). 
t„ 

F o r m u l a (1 .4 ) is t h u s s h o w n . T h e r e f o r e P r o p o s i t i o n 1 is p r o v e d . 

5 . E x a m p l e s 

EXAMPLE 1. L e t a s s u m p t i o n s of P r o p o s i t i o n 1 b e sa t i s f i ed a n d A;(ii, ¿2) = 
E ( X t 1 X t 3 ) = exp[—(¿2 — i i ) 2 ] . T h e n t h e coeff ic ien ts a r e g iven b y f o r m u l a s 

c i 2 ( i i , i 2 ) = e x p [ - ( f 2 - i i ) 2 ] , 

C l 3 ( t 3 ) = e x P h ( * 3 ~ i 2 ) 2 ] ~ e x p [ - ( i 2 - h f - ( i 3 - t 2 ) 2 } 

C 2 3 ( t 3 ) = 

1 — exp[—2(<2 — i i ) 2 ] 

e x p [ - ( t 3 - i 2 ) 2 ] ~ e x p [ - ( f 2 - f j ) 2 - ( i 3 - h ) 2 ] 

1 — exp[—2(i 2 — i i ) 2 ] 

6 ? ( t 2 ) = ^ { l - e x p [ - 2 ( i 2 - i 1 ) 2 ] } 

* l ( t 3 ) = ^ { ( 1 + 2 e x p [ - ( i 2 - h)2 - (t3 - i 2 ) 2 - ( i 3 - i i ) 2 ] -

- e x p [ — 2 ( i 3 - h ) ] - e x p [ - 2 ( i 3 - i 2 ) 2 ] - e x p [ - 2 ( i 2 - i x ) 2 ] ) x 

x a - e x p f ^ - i x ) 2 ] ) - 1 } . 

F o r m u l a ( 1 . 2 ) f o r n = 3 h a s , in v i r t u e of ( 1 . 5 ) , t h e fo l lowing f o r m 

Xt3 = F2(t1,t2,t3,Xtl,F1(t1,t2,W),W) = 

= cl3(t3)Xh + c 2 3 ( t 3 ) [ c 1 2 ( t 2 ) X t l + / & i ( t i , a ) ( W , ] + 
ti 

+ f b2(t1,t2,s)dWs = c12(tut3)Xtl + Jb1(t,s)dW3 = 
t2 h 

= / l ( i l , i 3 , ^ ) . 
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Evidently we have 

KW ~ A f r 
Therefore formula (1.4) is satisfied. 

EXAMPLE 2. An example of a stochastic process satisfying (1.1) is Orn-
stein-Uhlenbeck [8] process 

t 
Xt = €-ptXo + f e-**-») dWu. 

o 
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