

Andrzej Borzymowski, Mohamed Giaziri

GENERALIZED SOLUTIONS
OF A GOURSAT-TYPE PROBLEM
FOR THE POLYWAVE EQUATION IN \mathbb{R}^n -SPACE

Introduction

Generalized solutions of Goursat-type problems in \mathbb{R}^2 -space were defined and studied in papers [1], [2]. Similar results concerning the \mathbb{R}^3 -space were obtained in Chapter II of the unpublished paper [5] (which was based on [4]), and for another Goursat problem in [3]*). In this paper, which contains the results of [5], we examine generalized solutions of a Goursat-type problem in \mathbb{R}^n -space where n is an arbitrary positive integer not less than three. Our argument is based on papers [7] and [8].

1. The problem and assumptions

Let Ω be the parallelepiped

$$\Omega = \{x \in \mathbb{R}^n : 0 \leq x \leq A\}$$

($x = (x_s)$, where $s = 1, 2, \dots, n$) and Y a Banach space with the norm $\|\cdot\|$.

In what follows N denotes the set of all positive integers.

For fixed $p \in N$, we consider the polywave (or polyvibrating) equation of Mangeron (cf [6])

$$(1.1) \quad L^p u(x) = F(x)$$

($x \in \Omega$), where $L = \prod_{\mu=1}^n$ with $D_\mu = \frac{\partial}{\partial x_\mu}$, $L^k = L(L^{k-1})$ for $k = 1, 2, \dots, p$; $L^0 u = u$, and F is a given function.

*) Concerning the classical solutions of Goursat-type problems in \mathbb{R}^n , where $n \geq 3$, see [4], [8] and the references therein

By a solution of equation (1.1) in Ω we mean a function $u : \Omega \rightarrow Y$ such that (cf [8])

$$D_{i_1} \dots D_{i_l} L^k u \in C^{p-k-1} \quad \text{for } k = 0, 1, \dots, p-1$$

$(1 \leq i_1 < \dots < i_l \leq n; l = 1, 2, \dots, n)$ satisfying (1.1) for $x \in \Omega$.

Let $x^{(i)} = (x_s^{(i)})$, where $x_s^{(i)} = x_s$ for $1 \leq s \leq i-1$ ($2 \leq i \leq n$); $x_s^{(i)} = x_{s+1}$ for $i \leq s \leq n-1$ ($1 \leq i \leq n-1$), denote by Ω_i the set of all points $x^{(i)}$ for $x \in \Omega$ (of course $\Omega_i = \bigcup_{\substack{s=1 \\ s \neq i}}^n [0, A_s]$), and consider a system of surfaces S_1, \dots, S_n given by the equations

$$x_i = f_i(x^{(i)})$$

$(x^{(i)} \in \Omega_i)$, respectively, where $f_i : \Omega_i \rightarrow [0, A_i]$ for $i = 1, 2, \dots, n$.

We examine the Goursat-type problem (\mathfrak{G}) that consists in finding a solution of equation (1.1) in Ω , subject to the boundary conditions

$$(1.2) \quad L^r u(x) = N_{i,r}(x^{(i)}) \quad \text{for } x \in S_i$$

$(x^{(i)} \in \Omega_i; i = 1, 2, \dots, n; r = 0, 1, \dots, p-1)$, where $N_{i,r} : \Omega_i \rightarrow Y$ are given functions.

Each function having the said properties is called a classical solution (briefly c.s.) of the (\mathfrak{G})-problem.

Now, we are going to define generalized solutions (briefly g.s.) of the (\mathfrak{G})-problem (our definition originates from those in [1], [2]).

To this end let us consider a sequence $\{(\mathfrak{G}^m)\}$ (where $m \in N; m > m_0$ with m_0 being a sufficiently large positive integer) of Goursat problems which are formulated analogously to (\mathfrak{G}) with the replacement of F , $N_{i,r}$ and S_i by F^m , $N_{i,r}^m$ and S_i^m , respectively (S_i^m denotes a surface of equation $x_i = f_i^m(x^{(i)})$, where

$$F^m : \Omega \rightarrow Y, N_{i,r}^m : \Omega_i \rightarrow Y \text{ and } f_i^m : \Omega_i \rightarrow [0, A_i]$$

$(i = 1, 2, \dots, n; r = 0, 1, \dots, p-1)$ are given functions.

We admit the following definition

DEFINITION 1.1 A function $u : \Omega \rightarrow Y$ is called a g.s. of the (\mathfrak{G})-problem if there is a sequence $\{u^m\}$ of functions $u^m : \Omega \rightarrow Y$ ($m \in N; m > m_0$) such that

1° Each of the functions u^m is a c.s. of the corresponding Goursat problem (\mathfrak{G}^m) in which the given functions satisfy the relations

$$(1.3) \quad F^m \rightrightarrows F; f_i^m \rightrightarrows f_i; N_{i,r}^m \rightrightarrows N_{i,r} \quad \text{when } m \rightarrow \infty$$

($i = 1, 2, \dots, n$; $r = 0, 1, 2, \dots, p-1$ and \Rightarrow denotes the uniform convergence), and

2° The following relation

$$(1.4) \quad u^m \Rightarrow u \quad \text{when } m \rightarrow \infty$$

holds good.

We make the following assumptions:

I. The functions $f_i : \Omega_i \rightarrow [0, A_i]$ ($i = 1, 2, \dots, n$) are Hölder-continuous (exponent $h_f \in (0, 1]$), the surfaces S_i ($i = 1, 2, \dots, n$) do not intersect one another at the points of Ω placed outside the axes of coordinates and the following inequality is satisfied

$$(1.5) \quad f_i(x^{(i)}) \leq K_1 \left[\min_{1 \leq s \leq n-1} x_s^{(i)} \right]^{n-1}$$

($i = 1, 2, \dots, n$), where K_1 is a positive constant such that

$$(1.6) \quad \vartheta := K_1 A^{n-2} < 1$$

with $A = \max_{1 \leq i \leq n} A_i$.

II. The functions $N_{i,r} : \Omega_i \rightarrow Y$ ($i = 1, 2, \dots, n$; $r = 0, 1, \dots, p-1$) are Hölder-continuous (exponent $h_N \in (0, 1]$) and satisfy the inequality

$$(1.7) \quad \|N_{i,r}(x^{(i)})\| \leq K_2 \left[\min_{1 \leq s \leq n-1} x_s^{(i)} \right]^{c_r}$$

($i = 1, 2, \dots, n$; $r = 0, 1, \dots, p-1$), where K_2 is a positive constant and $c_r = n + p - r - 1$.

III. The function F is continuous.

2. Auxiliary theorems

Set $\vec{k}(n) = (k_v)$, where $v = 1, 2, \dots, n$; $v \neq i$; $x_{\vec{k}(n),m}^{(i)} = x^{(i)}$ with $x_s^{(i)} = A_s \frac{k_s}{m}$ for $s = 1, 2, \dots, n$, $s \neq i$;

$$(2.1) \quad w_{\vec{k}(n)}(x^{(i)}) = \prod_{v=i}^n \binom{m}{k_v} x_v^{k_v} (A_v - x_v)^{m-k_v}; \quad B_i = \prod_{v=1}^n A_v$$

($v \neq i$), and consider the Bernstein polynomials

$$(2.2) \quad f_i^m(x^{(i)}) = B_i^{-m} \sum_{k_v=n-1}^m f_i(x_{\vec{k}(n),m}^{(i)}) w_{\vec{k}(n)}(x^{(i)})$$

($v = 1, 2, \dots, n$; $v \neq i$), where $i = 1, 2, \dots, n$; $m \in N$; $m \geq n-1$.

LEMMA 2.1. *The following relations*

$$(2.3) \quad 0 \leq f_i^m(x^{(i)}) \leq A_i; \quad f_i^m \in C^\infty(\Omega_i);$$

$$(2.4) \quad f_i^m \rightrightarrows f_i \quad \text{when } m \rightarrow \infty;$$

$$(2.5) \quad D^l f_i^m(x^{(i)}) = 0 \quad \text{when } \prod_{s=1}^{n-1} x_s^{(i)} = 0; \quad 0 \leq |l| \leq n-2$$

hold good, where

$$(2.5') \quad D^l = \prod_{v=1}^n D_v^{l_v}; \quad |l| = \sum_{v=1}^n l_v \quad (v \neq i).$$

Proof. Relations (2.3) and (2.5) follow immediately from (2.1) and (2.2). In order to prove (2.4), let us observe that by (2.2) we can write

$$(2.6) \quad |f_i^m(x^{(i)}) - f_i(x^{(i)})| = \left| f_i^m(x^{(i)}) - f_i(x^{(i)}) B_i^{-m} \sum_{k_v=0}^m w_{\vec{k}^i(n)}(x^{(i)}) \right| \leq$$

$$\leq B_i^{-m} \left\{ \sum_{k_v=0}^m |f_i(x^{(i)}) - f_i(x_{\vec{k}^i(n),m}^{(i)})| w_{\vec{k}^i(n)}(x^{(i)}) + \right.$$

$$+ \sum_{t=0}^{n-1} \sum_{k_1, \dots, k_t=0}^m \sum_{k_{t+1}=0}^{n-2} \sum_{k_{t+2}, \dots, k_n=n-1}^m f_i(x_{\vec{k}^i(n),m}^{(i)}) w_{\vec{k}^i(n)}(x^{(i)}) \left. \right\}$$

$(k_{s_1}, k_{s_1+1}, \dots, k_{s_2} = \emptyset \text{ for } s_1 > s_2).$

Denote the terms on the right-hand side of (2.6) by $e_1^m(x^{(i)})$ and $e_2^m(x^{(i)})$, successively, and let $\varepsilon > 0$ be arbitrarily fixed.

It is well known (cf [9], p. 152) that there is a number $m_\varepsilon^* \in N$ such that

$$(2.7) \quad e_1^m(x^{(i)}) < \frac{\varepsilon}{2}$$

when $m > m_\varepsilon^*$.

For the term $e_2^m(x^{(i)})$ we have (cf. (1.5))

$$(2.8) \quad e_2^m(x^{(i)}) \leq K_1 \sum_{s=1}^n \sum_{k_s=0}^{n-2} \binom{m}{k_s} \left(A_s \frac{k_s}{m} \right)^{n-1} x_s^{k_s} (A_s - x_s)^{m-k_s} \leq$$

$$\leq K_1 (n-2)^{n-1} \sum_{s=1}^n A_s^{n-1} m^{1-n} \leq K_1 (n-1)^n A^{n-1} m^{1-n}$$

$(s \neq i)$, where $A = \max_{1 \leq i \leq n} A_i$, and as a consequence we can assert that there is a number $\tilde{m}_\varepsilon \in N$ such that

$$(2.9) \quad e_2^m(x^{(i)}) < \frac{\varepsilon}{2}$$

when $m > \tilde{m}_\varepsilon$.

On joining (2.6), (2.7) and (2.9) we get relation (2.4). Q.E.D.

LEMMA 2.2. *The surfaces S_i^m , of equations $x_i = f_i^m(x^{(i)})$, respectively ($i = 1, 2, \dots, n$; $m \in N$; $m \geq n - 1$) satisfy the following relation*

$$S_k \cap S_l = \{x \in \Omega : x_k = x_l = 0\}$$

$(k, l = 1, 2, \dots, n; k \neq l)$.

Proof. Suppose that S_k and S_l ($k \neq l$) intersect at a point $\dot{x} = (\dot{x}_s) \in \Omega$ where $0 < \dot{x}_k \leq A_k$ or $0 < \dot{x}_l \leq A_l$. Then

$$(2.10) \quad \dot{x}_k = f_k^m(\dot{x}^{(k)}|_{x_l=f_l^m(\dot{x}^{(l)})}) \quad \text{and} \quad \dot{x}_l = f_l^m(\dot{x}^{(l)}|_{x_k=f_k^m(\dot{x}^{(k)})}).$$

We are going to prove that

$$(2.10') \quad f_k^m(x^{(k)}|_{x_l=f_l^m(x^{(l)})}) < x_k$$

when $0 < x_k \leq A_k$.

To this end let us observe that formula (2.2) and Assumption I yield

$$f_i^m(x^{(i)}) \leq K_1 B_i^{-m} m^{1-n} \sum_{k_v=1}^m \prod_{s=1}^n A_s k_s \binom{m}{k_s} x_s^{k_s} (A_s - x_s)^{m-k_s}$$

$(v, s \neq i)$, whence we get

$$f_i^m(x^{(i)}) \leq K_1 m^{1-n} \prod_{s=1}^n A_s \sum_{k_s=1}^m k_s \binom{m}{k_s} \left(\frac{x_s}{A_s}\right)^{k_s} (1 - x_s)^{m-k_s}$$

$(s \neq i)$, and using the well known equality (cf [9], p. 150).

$$\alpha = m_\beta^{-1} \sum_{\beta=1}^m \beta \binom{m}{\beta} \alpha^\beta (1 - \alpha)^{m-\beta}$$

we have

$$(2.11) \quad f_i^m(x^{(i)}) \leq K_1 \prod_{s=1}^{n-1} x_s^{(i)} \quad (i = 1, 2, \dots, n).$$

Basing on (1.5), (1.6) and (2.11), we obtain

$$\begin{aligned} f_k^m(x^{(k)}|_{x_l=f_l^m(x^{(l)})}) &\leq K_1 \prod_{s=1}^{n-1} x_s^{(k)} f_l(x^{(l)}) \leq K_1^2 \prod_{s=1}^{n-1} x_s^{(k)} \prod_{r=1}^{n-1} x_r^{(l)} \leq \\ &\leq (K_1 A^{n-2})^2 x_k < x_k \end{aligned}$$

$(s \neq l; 0 < x_k \leq A_k)$, as required.

It is clear that inequality (2.10') contradicts relations (2.10) and so Lemma 2.2 is valid. Q.E.D.

We have the following corollary whose validity follows from (1.5), (1.6) and (2.11).

COROLLARY 2.1. *The inequality*

$$(2.12) \quad \max(f_i^m(x^{(i)}), f_i(x^{(i)})) \leq \vartheta \min_{1 \leq s \leq n-1} x_s^{(i)}$$

$(i = 1, 2, \dots, n)$ holds good.

Now, let us consider the expressions $a_{r,j}^{i,m} : \Omega_i \rightarrow \mathbb{R}$ given by the formulae (cf. [7], [8])

$$(2.13) \quad a_{r,j}^{i,m}(x^{(i)}) = \begin{cases} x_r^{(j)} & \text{for } r \neq i \\ f_i^m(x^{(i)}) & \text{for } r = i \end{cases}$$

when $i < j$;

$$(2.14) \quad a_{r,j}^{i,m}(x^{(i)}) = \begin{cases} x_r^{(j)} & \text{for } r \neq i-1 \\ f_i^m(x^{(i)}) & \text{for } r = i-1 \end{cases}$$

when $i > j$ ($x^{(i)} \in \Omega_i$; $1 \leq i, j \leq n$; $r = 1, 2, \dots, n-1$), and the sequences $(z_{\vec{k}(t)}^{v,m})$ and $(u_{\vec{k}(t),j}^{v,m})$ defined by

$$(2.15) \quad z_{\vec{k}(t)}^{v,m}(x^{(v)}) = (z_{s,\vec{k}(t)}^{v,m}(x^{(v)}))$$

$(s = 1, 2, \dots, n-1)$, where

$$z_{s,\vec{k}(t)}^{v,m}(x^{(v)}) = a_{s,k_t}^{k_{t-1},m}(z_{\vec{k}(t-1)}^{v,m}(x^{(v)}))$$

for $t = 2, 3, \dots$; $s = 1, 2, \dots, n-1$

$$(2.16) \quad z_{s,\vec{k}(1)}^{v,m}(x^{(v)}) = a_{s,k_1}^{v,m}(x^{(v)}) \quad \text{for } s = 1, 2, \dots, n-1$$

$(\vec{k}(t) = (k_l)$ where $l = 1, 2, \dots, t$; $t \in N$; $1 \leq k_l \leq n$; $k_l \neq k_{l-1}$; $k_0 = v$; $v = 1, 2, \dots, n$);

$$(2.17) \quad u_{\vec{k}(t),j}^{v,m}(x^{(v)}) = (u_{s,\vec{k}(t),j}^{v,m}(x^{(v)}))$$

$(s = 1, 2, \dots, n-1)$, where

$$(2.18) \quad u_{s,\vec{k}(t),j}^{v,m}(x^{(v)}) = a_{s,j}^{k_t,m}(z_{\vec{k}(t)}^{v,m}(x^{(v)})) \quad \text{for } t = 1, 2, \dots,$$

$(\vec{k}(t)$ is understood as in (2.16), $k_t \neq j$; $j = 1, 2, \dots, n$; $s = 1, 2, \dots, n-1$; $v = 1, 2, \dots, n$).

It is easily observed that

$$(2.19) \quad z_{\vec{k}(t)}^{v,m}(x^{(v)}) = u_{\vec{k}(t-1),k_t}^{v,m}(x^{(v)})$$

$(v = 1, 2, \dots, n$; $t = 2, 3, \dots$).

LEMMA 2.3. For each number $\eta > 0$ there is a positive integer $m_* = m_*(\eta)$ such that the inequalities

$$(2.20) \quad \begin{aligned} & \max_{1 \leq v \leq n} \max_{1 \leq s \leq n-1} \sup_{\Omega_v} |z_{s, \tilde{k}(t)}^{v, m}(x^{(v)}) - z_{s, \tilde{k}(t)}^v(x^{(v)})| < t\eta; \\ & \max_{1 \leq v \leq n} \max_{1 \leq s \leq n-1} \max_{1 \leq j \leq n} \sup_{\Omega_v} |u_{s, \tilde{k}(t), j}^{v, m}(x^{(v)}) - u_{s, \tilde{k}(t), j}^v(x^{(v)})| < t\eta \end{aligned}$$

(where $z_{s, \tilde{k}(t)}^v$ and $u_{s, \tilde{k}(t), j}^v$ are given by formulae analogous to (2.16), (2.18), respectively, with m being omitted) hold good for $t \in N$ and $m \in N$; $m > m_*(\eta)$.

Proof of Lemma 2.3 is similar to that of Lemma 7 in [2].

Now, let us consider the following truncated Bernstein polynomials (cf. (1.7) and (2.1))

$$(2.21) \quad N_{i, r}^m(x^{(i)}) = B_i^{-m} \sum_{k_v=c_r}^m N_{i, r}(x_{\tilde{k}^i(n), m}^{(i)}) w_{\tilde{k}^i(n)}(x^{(i)})$$

($v = 1, 2, \dots, n$; $v \neq i$), where $i = 1, 2, \dots, n$; $r = 0, 1, \dots, p-1$; $m \in N$; $m \geq n+p$.

LEMMA 2.4. The following relations hold good

$$(2.22) \quad N_{i, r}^m : \Omega_i \rightarrow Y; \quad N_i^m \in C^\infty(\Omega_i);$$

$$(2.23) \quad N_{i, r}^m \Rightarrow N_{i, r} \quad \text{when } m \rightarrow \infty;$$

$$(2.24) \quad D^l N_{i, r}^m(x^{(i)}) = 0 \quad \text{when } \prod_{s=1}^{n-1} x_s^{(i)} = 0; \quad 0 \leq |l| \leq n-r+p-1$$

(D^l is understood as in (2.5'));

$$(2.25) \quad |||N_{i, r}^{m(l)}(x^{(i)})|||_l \leq C(m) \prod_{s=1}^{n-1} x_s^{(i)}$$

when $l = n+p-r-2$, $C(m)$ being a positive constant dependent on m . Above, $||| \cdot |||_l$ denotes the norm in the space of l -linear continuous functions from \mathbb{R}^{n-1} into Y .

Proof. The proof of (2.23) is analogous to that of (2.4), and (2.24) follows from (2.1) and (2.21). It is also clear that $N_{i, r}^m \in C^\infty(\Omega_i)$. Thus, it suffices to prove (2.25). To this end let us observe that by (1.7) and (2.21) we have (cf. (2.5'))

$$\|D^l N_{i, r}^m(x^{(i)})\| \leq \text{const } B_i^{-m} \sum_{k_v=c_r}^m \prod_{s=1}^n \binom{m}{k_s} \left[\min \left(A_v \frac{k_v}{m} \right) \right]^{c_r} \times$$

$$\begin{aligned}
& \times \sum_{\alpha_s=0}^{\tilde{m}_s} \binom{l_s}{\alpha_s} \frac{k_s!}{(k_s - l_s + \alpha_s)!} \frac{(m - k_s)!}{(m - k_s - \alpha_s)!} x_s^{k_s - l_s + \alpha_s} (A_s - x_s)^{m - k_s - \alpha_s} \\
& (v, s \neq i; \tilde{m}_s = \min(l_s, m - k_s) \text{ and } |l| = n + p - r - 2), \text{ whence} \\
& \|D^l N_{i,r}^m(x^{(i)})\| \leq \\
& \leq \tilde{C}(m) \prod_{s=1}^n x_s^{c_r - l_s} \sum_{k_s=c_r}^m \sum_{\alpha_s=0}^{\tilde{m}_s} \binom{m}{k_s} \left(\frac{x_s}{A_s}\right)^{k_s - c_r + \alpha_s} \left(1 - \frac{x_s}{A_s}\right)^{m - k_s - \alpha_s} \\
& (s \neq i \text{ and } \tilde{C}(m) \text{ is a positive constant dependent on } m), \text{ and as a consequence we obtain}
\end{aligned}$$

$$\|N_{i,r}^{m(l)}(x^{(i)})\|_l \leq C(m) \prod_{s=1}^{n-1} x_s^{(i)},$$

as required.

LEMMA 2.5. *The following inequality is valid*

$$(2.26) \quad \|N_{i,r}^m(x^{(i)})\| \leq K_2 C_* \left[\min_{1 \leq s \leq n-1} x_s^{(i)} \right]^{c_r}$$

where $C_* = (c_r)^{c_r - 1}$.

Proof. By (1.7) and (2.21) we can write

$$\|N_{i,r}^m(x^{(i)})\| \leq K_2 B_i^{-m} \sum_{k_v=c_r}^m \prod_{s=1}^n \binom{m}{k_s} \left[\min \left(A_v \frac{k_v}{m} \right) \right]^{c_r} x_s^{k_s} (A_s - x_s)^{m - k_s}$$

($v, s \neq i$), whence

$$\|N_{i,r}^m(x^{(i)})\| \leq K_2 m^{-c_r} A_{v_0}^{c_r} \sum_{k_{v_0}=c_r}^m \binom{m}{k_{v_0}} k_{v_0}^{c_r} \left(\frac{x_{v_0}}{A_{v_0}} \right)^{k_{v_0}} \left(1 - \frac{x_{v_0}}{A_{v_0}} \right)^{m - k_{v_0}}$$

where v_0 is an arbitrarily fixed positive integer such that $1 \leq v_0 \leq n$; $v_0 \neq i$.

Now, it suffices to repeat the argument used in paper [2], p. 636 (with the replacement of $2p$ by c_r) to obtain the inequality

$$(2.27) \quad \|N_{i,r}^m(x^{(i)})\| \leq K_2 C_* x_{v_0}^{c_r}.$$

As v_0 ($1 \leq v_0 \leq n$; $v_0 \neq i$) has been arbitrarily fixed, (2.27) yields the thesis (2.26). Q.E.D.

We shall end this section with the examination of the Bernstein polynomials

$$(2.28) \quad F^m(x) = B^{-m} \sum_{k_v=0}^m F(x_{\vec{k}(n),m}) \tilde{w}_{\vec{k}(n)}(x)$$

($v = 2, 3, \dots, n$) where $\vec{k}(n) = (k_s)$ with $s = 1, 2, \dots, n$; $x_{\vec{k}(n), m} = x$ with $x_s = A_s \frac{k_s}{m}$;

$$(2.29) \quad \tilde{w}_{\vec{k}(n)}(x) = \prod_{s=1}^n \binom{m}{k_s} x_s^{k_s} (A_s - k_s)^{m-k_s}; \quad B = \prod_{s=1}^n A_s.$$

It is evident that $F^m \in C^\infty(\Omega)$, and well known that

$$(2.30) \quad F^m \rightrightarrows F \quad \text{when } m \rightarrow \infty,$$

as a consequence of which the function

$$(2.31) \quad R_p^m(x) = [(p-1)!]^{-n} \int_0^{x_1} \dots \int_0^{x_n} \prod_{v=1}^n (x_v - \eta_v)^{p-1} F(\eta) d\eta$$

tends uniformly in Ω to the limit

$$(2.32) \quad R_p(x) = [(p-1)!]^{-n} \int_0^{x_1} \dots \int_0^{x_n} \prod_{v=1}^n (x_v - \eta_v)^{p-1} F(\eta) d\eta$$

when m tends to infinity.

3. The (\mathfrak{G}^m) -problems

It follows from the results of Section 2 (cf. Lemmas 2.1, 2.2, 2.4 and 2.5, and the properties of F^m) that the functions f_i^m , $N_{i,r}^m$ and F^m given by (2.2), (2.21) and (2.28), respectively satisfy the assumptions of paper [8] (cf. [8]), pp. 492, 493), and so, for each (\mathfrak{G}^m) -problem, i.e. the (\mathfrak{G}) -problem generated by the said functions f_i^m , $N_{i,r}^m$ and F^m where $m > m_0$ with $m_0 \in N$ being sufficiently large, Theorem 2 of [8] concerning the existence of c.s. of this problem can be applied.

According to the said theorem, for each $m \in N$, $m > m_0$ the corresponding (\mathfrak{G}^m) -problem has a c.s. given by the formula

$$(3.1) \quad u^m(x) = R_p^m(x) + \sum_{j=1}^p \sum_{i=1}^n (x_i)^{p-j} \psi_{i,p-j}^m(x^{(i)})$$

$(x \in \Omega)$, where

$$(3.2) \quad \psi_{i,p-j}^m(x^{(i)}) = \{(p-j)![p-j-1]!^{n-1}\}^{-1}.$$

$$\cdot \int_0^{x_1^{(i)}} \dots \int_0^{x_{n-1}^{(i)}} \prod_{s=1}^{n-1} (x_s^{(i)} - \eta_s^{(i)})^{p-j-1} \phi_{i,p-j}^m(\eta_1^{(i)}, \dots, \eta_{n-1}^{(i)}) d\eta_1^{(i)} \dots d\eta_{n-1}^{(i)}$$

for $j = 1, 2, \dots, p-1$; $\psi_{i,0}^m = \phi_{i,0}^m$ with $\phi_{i,p-j}^m$ defined by

$$(3.3) \quad \phi_{i,p-j}^m(x^{(i)}) = W_{i,p-j}^m(x^{(i)}) + \sum_{t=1}^{\alpha} V_{i,p-j}^{t,m}(x^{(i)})$$

$(i = 1, 2, \dots, n; j = 1, 2, \dots, p)$. Above,

$$(3.4) \quad W_{i,p-j}^m(x^{(i)}) = N_{i,p-j}^m(x^{(i)}) - \bar{R}_{i,j}^{*m}(x^{(i)});$$

$$(3.5) \quad V_{i,p-j}^{t,m}(x^{(i)}) = (-1)^t \sum_{\vec{k}(t)} W_{k_t, p-j[z_{\vec{k}(t)}^{i,m}(x^{(i)})]}^m;$$

$$(3.6) \quad \bar{R}_{i,j}^{*m}(x^{(i)}) = \bar{R}_{i,j}^{*m}(x)|_{x_i=f_i(x^{(i)})}$$

with*)

$$(3.7) \quad \bar{R}_j^{*m}(x) = R_j^m(x) + \sum_{r=1}^{j-1} \{(j-r)![(j-r-1)!]^{n-1}\}^{-1} \sum_{k=1}^n (x_k)^{j-r} \cdot$$

$$\cdot \int_0^{x_1^{(k)}} \dots \int_0^{x_{n-1}^{(k)}} \prod_{s=1}^{n-1} (x_s^{(k)} - \eta_s^{(k)})^{j-r-1} \phi_{k,p-r}(\eta^{(k)}) d\eta_1^{(k)} \dots d\eta_{n-1}^{(k)}.$$

This solution is unique in the set of all solutions of equation (1.1) (with F replaced by F^m) in Ω , which (cf. Lemma 1 in [8]) are given by formula (3.1), such that the functions $\phi_{i,p-j}^m$ ($i = 1, 2, \dots, n; j = 1, 2, \dots, p$) appearing in (3.2) satisfy the condition

$$|||\phi_{i,p-j}^{m(l)}(x^{(i)})|||_l \leq C \left(\min_{1 \leq s \leq n-1} x_s^{(i)} \right)^{j+n-r-1}$$

(C is a positive constant depending in general on $\phi_{i,p-j}^m$) for $l = 0, 1, \dots, j+n-2$.

4. Generalized solutions of the (\mathfrak{G}) -problem

We shall prove the following theorem

THEOREM 4.1. *If Assumptions I-III are satisfied, then there is a g.s. of the (\mathfrak{G}) -problem given by the following formula*

$$(4.1) \quad u(x) = R_p(x) + \sum_{j=1}^p \sum_{i=1}^n x_i^{p-j} \psi_{i,p-j}(x^{(i)})$$

*) The functions $R_j^m(x)$ ($j = 1, 2, \dots, p$) are given by formula (2.31) with p replaced by j .

$(x \in \Omega; x^{(i)} \in \Omega_i; i = 1, 2, \dots, n)$ in which $R_p(x)$ is defined by (2.32) and the functions $\psi_{i,p-j}$ ($i = 1, 2, \dots, n$; $j = 1, 2, \dots, p$) are given by the relations (3.2)–(3.7) with m being omitted.

Proof. Let $N \ni m > m_0$, $m_0 \in N$ being sufficiently large, and consider the sequences of functions $\{f_i^m\}$, $\{N_{i,r}^m\}$ and $\{F^m\}$ given by (2.2), (2.21) and (2.28), respectively, and the sequence of Goursat problems $\{(\mathfrak{G}^m)\}$ generated by these functions (i.e. such that, for each $N \ni m > m_0$, the said functions f_i^m , $N_{i,r}^m$ and F^m are the given functions appearing in (\mathfrak{G}^m)).

We know from Lemmas 2.1 and 2.4, and formula (2.28), that the aforesaid functions f_i^m , $N_{i,r}^m$ and F^m ($i = 1, 2, \dots, n$; $r = 0, 1, \dots$) satisfy relations (1.3), respectively.

We also know from Section 3 that each of the (\mathfrak{G}^m) -problems has a solution u^m given by formula (3.1) together with (3.2)–(3.7).

Thus, in order to prove Theorem 4.1 it is sufficient to show that relation (1.4) is satisfied, where u^m and u are given by (3.1) and (4.1), respectively.

Let $\varepsilon > 0$ be a given positive number and observe that (cf. (3.1) and (4.1))

$$(4.2) \quad \|u^m(x) - u(x)\| \leq E_1^m(x) + E_2^m(x)$$

where

$$(4.3) \quad E_1^m(x) = [(p-1)!]^{-n} \int_0^{x_1} \dots \int_0^{x_n} \prod_{r=1}^n (x_r - \eta_r)^{p-1} \|F^m(\eta) - F(\eta)\| d\eta;$$

$$(4.4) \quad E_2^m(x) = \sum_{j=1}^p \sum_{i=1}^n x_i^{p-j} \|\psi_{i,p-j}^m(x^{(i)}) - \psi_{i,p-j}(x^{(i)})\|$$

$(x \in \Omega)$.

It is evident (cf. (2.30)) that there is a number $N \ni m_1 = m_1(\varepsilon) > m_0$ such that

$$(4.5) \quad E_1^m(x) < \frac{\varepsilon}{2}$$

for $x \in \Omega$; $N \ni m > m_1$.

In order to estimate the expression $E_2^m(x)$ we apply the method of mathematical induction.

Set $j = 1$. In this case (cf. (3.4)–(3.7))

$$(4.6) \quad \begin{aligned} W_{i,p-1}^m(x^{(i)}) &= N_{i,p-1}^m(x^{(i)}) - R_1^m(x)|_{x_i=f_i^m(x^{(i)})}; \\ W_{i,p-1}(x^{(i)}) &= N_{i,p-1}(x^{(i)}) - R_1(x)|_{x_i=f_i(x^{(i)})}. \end{aligned}$$

Let $\theta \in (0, 1)$. Basing on (4.6), and using Assumptions I-III and inequality (2.11), we get

$$(4.7) \quad \|W_{i,p-1}^m(x^{(i)}) - W_{i,p-1}(x^{(i)})\| \leq \text{const} \rho_m^\theta (\min_{1 \leq s \leq n-1} x_s^{(i)})^{2(1-\theta)}$$

where ρ_m is given by

$$(4.8) \quad \rho_m = \max_{1 \leq i \leq n} \max \{ \sup_{\Omega} \|F^m(x) - F(x)\|, \sup_{\Omega_i} |f_i^m(x^{(i)}) - f_i(x^{(i)})|, \\ \sup_{\Omega_i} \|N_{i,p-1}^m(x^{(i)}) - N_{i,p-1}(x^{(i)})\| \}.$$

Let us observe that, by (4.6) and Assumptions I-III, we have

$$(4.9) \quad \|W_{i,p-1}(x^{(i)}) - W_{i,p-1}(\bar{x}^{(i)})\| \leq \text{const} [\max_{1 \leq s \leq n-1} |\bar{x}_s^{(i)} - x_s^{(i)}|]^{h_* \theta} \cdot \\ \cdot [\max(\min_{1 \leq s \leq n-1} \bar{x}_s^{(i)}, \min_{1 \leq s \leq n-1} x_s^{(i)})]^{1-\theta}$$

($h_* = \min(h_f, h_N)$, where $x^{(i)}, \bar{x}^{(i)} \in \Omega_i$; $i = 1, 2, \dots, n$).

Using (4.7) and (4.9), we get

$$\begin{aligned} & \|W_{k_i,p-1}^m(z_{\tilde{k}(t)}^{i,m}(x^{(i)})) - W_{k_i,p-1}(z_{\tilde{k}(t)}^i(x^{(i)}))\| \leq \\ & \leq \|W_{k_i,p-1}^m(z_{\tilde{k}(t)}^{i,m}(x^{(i)})) - W_{k_i,p-1}(z_{\tilde{k}(t)}^{i,m}(x^{(i)}))\| + \\ & + \|W_{k_i,p-1}^m(z_{\tilde{k}(t)}^{i,m}(x^{(i)})) - W_{k_i,p-1}(z_{\tilde{k}(t)}^i(x^{(i)}))\| \leq \\ & \leq \text{const} \{ \rho_m^\theta [\max_{\tilde{k}(t)} \min_{1 \leq r \leq n-1} z_{r,\tilde{k}(t)}^{i,m}(x^{(i)})]^{2(1-\theta)} + [\max_{\tilde{k}(t)} \max_{1 \leq i \leq n-1} \max_{1 \leq r \leq n-1} \\ & \quad \sup_{\Omega_i} |z_{r,\tilde{k}(t)}^{i,m}(x^{(i)}) - z_{r,\tilde{k}(t)}^i(x^{(i)})|]^{h_* \theta} \cdot \\ & \quad \cdot [\max_{\tilde{k}(t)} \max_{1 \leq r \leq n-1} z_{r,\tilde{k}(t)}^{i,m}(x^{(i)}), \min_{1 \leq r \leq n-1} z_{r,\tilde{k}(t)}^i(x^{(i)})]^{1-\theta} \}, \end{aligned}$$

whence, and by inequality (2.12), Corollary 1 in [7] and Lemma 2.3 above, we obtain

$$(4.10) \quad \|W_{k_i,p-1}^m(z_{\tilde{k}(t)}^{i,m}(x^{(i)})) - W_{k_i,p-1}(z_{\tilde{k}(t)}^i(x^{(i)}))\| \leq \text{const} (\vartheta)^{t(1-\theta)} t \frac{\varepsilon}{\kappa_0}$$

(κ_0 is a positive integer to be chosen later — cf. (4.19)), on condition that $N \ni m > m^{(1)} = m^{(1)}(\varepsilon, \kappa_0)$.

As $\vartheta \in (0, 1)$, formulas (3.5) and (4.10) yield

$$(4.11) \quad \sum_{t=1}^{\infty} \|V_{i,p-1}^{t,m}(x^{(i)}) - V_{i,p-1}^t(x^{(i)})\| \leq \text{const} \frac{\varepsilon}{\kappa_0}$$

and as a consequence of (3.3), (4.7) and (4.11) we obtain the inequality

$$(4.12) \quad \|\phi_{i,p-1}^m(x^{(i)}) - \phi_{i,p-1}(x^{(i)})\| \leq C_1 \frac{\varepsilon}{\kappa_0}$$

whence (cf. (3.2))

$$(4.13) \quad \|\psi_{i,p-1}^m(x^{(i)}) - \psi_{i,p-1}(x^{(i)})\| \leq \tilde{C}_1 \frac{\varepsilon}{\kappa_0}$$

($N \ni m > m^{(1)}$), C_1 and \tilde{C}_1 being positive constant.

Now, let $j_0 \in N$ be arbitrarily fixed so that $1 \leq j_0 \leq p-1$ and assume that

$$(4.14) \quad \|\phi_{i,p-j}^m(x^{(i)}) - \phi_{i,p-j}(x^{(i)})\| \leq C_j \frac{\varepsilon}{\kappa_0}$$

for $j = 1, 2, \dots, j_0$ when $N \ni m > \max_{1 \leq v \leq j_0} m^{(v)}$, $m^{(v)} = m^{(v)}(\varepsilon, \kappa_0)$ ($v = 1, 2, \dots, j_0$) being sufficiently large positive integers and C_1, \dots, C_{j_0} positive constants.

Evidently (cf. relation (3.2) satisfied by the functions $\psi_{i,p-j}^m$ and $\psi_{i,p-j}$), the said assumption yields

$$(4.15) \quad \|\psi_{i,p-j}^m(x^{(i)}) - \psi_{i,p-j}(x^{(i)})\| \leq \tilde{C}_j \frac{\varepsilon}{\kappa_0}$$

(m as above, $j = 1, 2, \dots, j_0$), where $\tilde{C}_1, \dots, \tilde{C}_{j_0}$ are positive constants.

Basing on (3.3)–(3.7) and (4.14), and using an argument similar to that in the proof of (4.12), we get

$$(4.16) \quad \|\phi_{i,p-(j_0+1)}^m(x^{(i)}) - \phi_{i,p-(j_0+1)}(x^{(i)})\| \leq C_{j_0+1} \frac{\varepsilon}{\kappa_0}$$

when

$$N \ni m > \max_{1 \leq v \leq j_0+1} m^{(v)} = m^{(j_0+1)}(\varepsilon, \kappa_0)$$

is a sufficiently large positive integer), whence and by (3.2) we obtain

$$(4.17) \quad \|\psi_{i,p-(j_0+1)}^m(x^{(i)}) - \psi_{i,p-(j_0+1)}(x^{(i)})\| \leq \tilde{C}_{j_0+1} \frac{\varepsilon}{\kappa_0}$$

(C_{j_0+1} and \tilde{C}_{j_0+1} are positive constant).

Thus, by (4.13), (4.15), (4.17) and the induction principle, we can assert that the inequality (4.15) holds good for $j = 1, 2, \dots, p$ when $N \ni m > \max_{1 \leq v \leq p} m^{(v)}(m^{(v)} = m^{(v)}(\varepsilon, \kappa_0); v = 1, 2, \dots, p)$ are sufficiently large positive integers, with $\tilde{C}_1, \dots, \tilde{C}_p$ being positive constants.

As a consequence of the aforesaid result and equality (4.4), we have

$$(4.18) \quad E_2^m(x) \leq \tilde{C} \frac{\varepsilon}{\kappa_0}$$

(where \tilde{C} is a positive constant) when $N \ni m > \tilde{m}_2 = m_2(\varepsilon, \kappa_0)$.

Choosing $\kappa_0 \in N$ so that $\frac{\tilde{C}}{\kappa_0} < \frac{1}{2}$, we can conclude that there is a number $N \ni m_2 = m_2(\varepsilon) > m_0$ such that

$$(4.19) \quad E_2^m(x) < \frac{\varepsilon}{2}$$

for $x \in \Omega$; $N \ni m > m_2$.

Inequalities (4.2), (4.5) and (4.19) yield

$$(4.20) \quad \|u^m(x) - u(x)\| < \varepsilon$$

for $x \in \Omega$; $N \ni m > \max(m_1, m_2)$, which ends the proof of Theorem 4.1.

Now, we shall prove the following theorem

THEOREM 4.2. *Let us assume that for $N \ni m > m_0$ (cf. the proof of Theorem 4.1) the following conditions concerning the (\mathfrak{G}^m) -problems are fulfilled*

1°. *The functions $f_i^m : \Omega_i \rightarrow [0, A_i]$ ($i = 1, 2, \dots, n$) have the properties expressed by Lemmas 2.1–2.5;*

2°. *The functions $N_{i,r}^m : \Omega_i \rightarrow Y$ ($i = 1, 2, \dots, n$; $r = 0, 1, \dots, p-1$) have the properties expressed by Lemmas 2.4, 2.5 (with C_* in (2.26) replaced by any positive constant independent of m);*

3°. *The functions $F^m : \Omega \rightarrow Y$ have the properties mentioned on p. 11 and are equibounded together with their first-order partial derivatives;*

4°. *The functions $\psi_{i,p-j}^m$ ($i = 1, 2, \dots, n$; $j = 1, 2, \dots, p$) appearing in formula (3.1) for c.s. of the (\mathfrak{G}^m) -problems satisfy the inequality*

$$(4.21) \quad \|\psi_{i,p-j}^{m(v)}(x^{(i)})\| \leq C_v \left(\min_{1 \leq s \leq n-1} x_s^{(i)} \right)^{n+p-v-1}$$

$(i = 1, 2, \dots, n; j = 1, 2, \dots, p; v = 0, 1, \dots, p+n-2)$, where C_v are positive constants independent of m .

Then, there is at most one g.s. of the (\mathfrak{G}) -problem

P r o o f. It is our aim to show that if $\{f_i^{\mu,m}\}$, $\{N_{i,r}^{\mu,m}\}$, $\{F^{\mu,m}\}$ and $\{u_{\mu}^m\}$ ($\mu = 1, 2$,) satisfy the conditions of Definition 1.1 and the assumptions of Theorem 4.2, then the corresponding generalized solutions u_{μ} ($\mu = 1, 2$) of the (\mathfrak{G}) -problem are identical in Ω .

To this end let us observe that

$$(4.22) \quad \|u_2(x) - u_1(x)\| \leq \|u_2(x) - u_2^m(x)\| + \|u_1(x) - u_1^m(x)\| + \|u_2^m(x) - u_1^m(x)\|$$

($x \in \Omega$) and that, for an arbitrary $\varepsilon > 0$ there is a sufficiently large number $N \ni m'_0 = m'_0(\varepsilon)$ such that $N \ni m > m'_0$ implies

$$(4.23) \quad \|u_2(x) - u_2^m(x)\| + \|u_1(x) - u_1^m(x)\| < \frac{\varepsilon}{2}.$$

Furthermore, due to the present assumptions and Theorem in [8], we can assert that the functions u_{μ}^m ($\mu = 1, 2$) are of the form (3.1), where R_p^m and $\psi_{i,p-j}^m$ are as on p. 12.

Basing on (1.3) and using an argument analogous to that applied in the proof of (4.20), we get

$$(4.24) \quad \|u_2^m(x) - u_1^m(x)\| \leq \frac{\varepsilon}{2}$$

for $N \ni m > n''_0$, n''_0 ($n''_0 = n''_0(\varepsilon)$) being a sufficiently large positive integer.

On joining (4.22)–(4.24) we can conclude that $u_1 = u_2$ in Ω . Q.E.D.

Finally, we have the following theorem

THEOREM 4.3. *If Assumptions I–III of the present paper are replaced by those in paper [8], then the g.s. of the (\mathfrak{G}) -problem given by Theorem 4.1 is a c.s. of this problem.*

The validity of this theorem follows from the results obtained in [8].

References

- [1] A. Borzymowski, *Generalized solutions of a Goursat problem for some partial differential equation of order $2p$* , Bull. Acad. Polon.: Sci. Sér. Sci. Math. Astronom. Phys. 33 (1985) 260–266.
- [2] A. Borzymowski, *Generalized solutions of a Goursat problem for a polyvibrating equation of D. Mangeron*, Demonstratio Math. 18 (1985) 621–648.
- [3] A. Borzymowski, *A contribution to the study of Mangeron polyvibrating equations*, Memoirs of the Romanian Academy 10 (1987) 41–56.

- [4] A. Borzymowski, A. Sadowski, *A Goursat problem for Mangeron's polyvibrating equation in \mathbb{R}^3* , Appl. Anal. (23) (1987) 319–332.
- [5] M. Giaziri, *Study of boundary value problems for the polyvibrating equations in \mathbb{R}^3 -space*, Doctoral Thesis, Warsaw University of Technology 1988.
- [6] D. Mangeron, *Problèmes à la frontière concernant les équations polyvibrantes*, C. R. Acad. Sci. Paris Ser A–B, 266 (1968) 870–873, 976–979, 1050–1052, 1103–1106, 1121–1124.
- [7] A. Sadowski, *Concerning some sequences of iterates in \mathbb{R}^n -space*, Demonstratio Math. 23 (1990) 605–615.
- [8] A. Sadowski, *A Goursat problem for Mangeron polyvibrating equation in \mathbb{R}^n -space ($n \geq 3$)*, ibidem 491–505.
- [9] R. Sikorski, *Functions of a real variable*, vol I (in Polish), Warszawa 1957.

Andrzej Borzymowski

INSTITUTE OF MATHEMATICS, WARSAW UNIVERSITY OF TECHNOLOGY,
Pl. Politechniki 1, 00-661 WARSZAWA;

Mohamed Giaziri

DEPARTMENT OF MATHEMATICS, AL. FATEH UNIVERSITY,
TRIPOLI, LIBYA

Received July 8, 1993.