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Introduction 
Generalized solutions of Goursat-type problems in R2-space were defined 

and studied in papers [1], [2]. Similar results concerning the R3- space were 
obtained in Chapter II of the unpublished paper [5] (which was based on 
[4]), and for another Goursat problem in [3]*). In this paper, which contains 
the results of [5], we examine generalized solutions of a Goursat-type prob-
lem in Rn-space where n is an arbitrary positive integer not less than three. 
Our argument is based on papers [7] and [8]. 

1. The problem and assumptions 
Let Q be the parallelepiped 

f2 = {x e Rn : 0 < x < A) 

(x = (xs), where s — 1 , 2 a n d Y a Banach space with the norm 
I I - I I -

In what follows N denotes the set of all positive integers. 
For fixed p € N, we consider the poly wave (or poly vibrating) equation 

of Mangeron (cf [6]) 

(1.1) Lpu(x) = F(x) 

(x € Q), where L = n j = 1 with = g f - , L k = L(Lk~1) for k = 1,2 
L°u = u, and F is a given function. 

Concerning the classical solutions of Goursat-type problems in , where n > 3, 
see [4], [8] and the references therein 
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By a solution of equation (1.1) in il we mean a function u : Q —> Y such 
that (cf [8]) 

Dh ... Dit Lku € C p _ f c _ 1 for k = 0 ,1 , . . . ,p - 1 

(1 < t'i < ... < ii < n; I = 1 , 2 , . . . , n) s a t i s fy ing (1 .1) fo r x € Q. 

Let *(«'> = (xi 0) , where x(
s
i] = xs for 1 < s < i - 1 (2 < i < n); 

x^ = x s + i for i < s < n — 1 (1 < i < n — 1), denote by Qi the set of all 
, ,v 71 

points for x £ Q (of course = X [0, As]), and consider a system of 
S = 1 
Sjii 

surfaces Si,..., Sn given by the equations 

= fi(*{i)) 

(x^ € i2i), respectively, where fi : i2j —»• [0, Ai\ for i = 1 , 2 , . . . , n. 
We examine the Goursat-type problem ((5) that consists in finding a 

solution of equation (1.1) in SI, subject to the boundary conditions 

(1.2) Lru(x) = i V ( x ( i ) ) for xeSi 

(a^*) € J?,-; i = 1 , 2 , . . . , n; r = 0 ,1 , . . . ,p— 1), where iVt)r : —• Y are given 
functions. 

Each function having the said properties is called a classical solution 
(briefly c.s.) of the (S)-problem. 

Now, we are going to define generalized solutions (briefly g.s.) of the 
(<9)-problem (our definition originates from those in [1], [2]). 

To this end let us consider a sequence {(<9m)} (where m £ N; m > mo 
with mo being a sufficiently large positive integer) of Goursat problems 
which are formulated analogously to (&) with the replacement of F, Ni>r 

and Si by Fm, N™r and 5™, respectively (S™ denotes a surface of equation 
X i = //"(xW), where 

Fm : Q y, : Q{ Y and / f 1 : -»• [O.A,-] 

(i = 1 , 2 , . . . , n; r = 0 ,1 , . . . ,p — 1) are given functions. 
We admit the following definition 

DEFINITION 1.1 A function u: Q —>Y is called a g.s. of the (<5)-problem 
if there is a sequence {um} of functions um : il —> Y (m € N; m > mo) 
such that 

1° Each of the functions um is a c.s. of the corresponding Goursat prob-
lem (<9m) in which the given functions satisfy the relations 

(1.3) Fm zi F; fi1 /<; =t JVt-,r when m oo 
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(i = 1 , 2 , . . . , n ; r = 0 , 1 , 2 , . . . , p — 1 and =4 denotes the uniform conver-
gence), and 

2° The following relation 

(1.4) um =5 u when m -> oo 

holds good. 

We make the following assumptions: 

1. The functions /,• : f2i [0,;4j] (t = l , 2 , . . . , n ) are Holder-continuous 
(exponent hf € (0,1]), the surfaces (i = 1 , 2 , . . . , ra) do not intersect one 
another at the points of Q placed outside the axes of coordinates and the 
following inequality is satisfied 

(1.5) f i ( x W ) < K x [ min x « ] " " 1 
l<s<n—1 

(t = 1 , 2 , . . . , ra), where K\ is a positive constant such that 

( 1 . 6 ) i? . - KiAn~2 < 1 

with A = maxi<,<n A{. 
II. The functions JVt-)r : i?; -»• Y (i = 1,2, . . . , ra; r = 0,1 , . . . , p -

1) are Holder-continuous (exponent hn G (0,1]) and satisfy the inequal-
ity 

(1.7) | | i V i i r ( ^ ) ) | | < ^ 2 [ min *<;)]* l<s<n—1 

(i = 1,2, . . . , ra; r = 0,1 ,...,p— 1), where K2 is a positive constant and 
c r = ra -f p — r — 1. 

III. The function F is continuous. 

2. Auxiliary theorems 
Set k(n) = (kv), where v = 1,2, . . . , n ; v ^ i] xQ = x^ with K* (7l)tT7l 

si'* = Asr£ for s = 1 , 2 , . . . , ra, s £ i; 

(2.1) î(n)(*(i))=n (?)*(*. - *=n^ 
v=i v ' tl=l 

(t7 ^ i), and consider the Bernstein polynomials 
m 

(2.2) f r ( x ^ ) = B~ m £ (* ( i )) 

(w = 1 , 2 , . . . , n; v ^ i), where i = 1 , 2 , . . . , n; m € iV"; m > ra — 1. 
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L E M M A 2 . 1 . The following relations 

( 2 . 3 ) o < / r ( * ( < ) ) < Ai-, f t e 

(2.4) / f 1 fi when m oo; 
n—1 

(2.5) Dlf?{x(i)) = 0 u>/ien J J = 0; 0 < |i| < n - 2 
S = 1 

hold good, where 

(2.5') = KI = X > ( « # 0 -
V=1 11=1 

P r o o f . Relations (2.3) and (2.5) follow immediately from (2.1) and (2.2). 
In order to prove (2.4), let us observe that by (2.2) we can write 

(2.6) | / r ( z ( i ) ) - fi(x^)I = | / r ( * ( 0 ) - fi(x{i))B-m £ » * < n ) ( * i 0 ) 
kv = 0 

m 

k„=0 
n—1 m n—2 

+ E E E E / • • ( ^ „ „ „ K - . w ^ 0 ) } 
t=0 ki,...,kt= 0 kt+i-0 kt+2,...,kn=n-l 

(kSl,kSi+lt...kS2 = 0 for .si > s2). 
Denote the terms on the right-hand side of (2.6) by e ^ x W ) and e?(XW), 

successively, and let e > 0 be arbitrarily fixed. 
It is well known (cf [9], p. 152) that there is a number m* € N such 

that 

(2.7) e ? ( x M ) < £ -

when m > m*. 
For the term e™(x(')) we have (cf. (1.5)) 

(2.8) < Kx £ E ( ? ) ~ X.)-*- < 
5 = 1 k,= 0 V m / 

n 
< K\{n — 2) n _ 1 ^ A " - 1 m 1 - n < A'i(n - l ) n A B - 1 m 1 - " 

i=i 
(5 ^ t), where A = maxi< t<n A{, and as a consequence we can assert that 
there is a number rh£ 6 N such that 
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( 2 . 9 ) e ? ( x ^ ) < £ -

when m > fhc. 
On joining (2.6), (2.7) and (2.9) we get relation (2.4). Q.E.D. 

L e m m a 2 . 2 . The surfaces S™, of equations i,- = / ¿ " ( x ^ ) , respectively 
(i = 1 , 2 , . . . , n ; m € N; m > n — 1 ) satisfy the following relation 

Sk n Si = {x e ft : xk = xt = 0} 
(k,l = 1 , 2 , . . . , n ; k ^ I). 

P r o o f . Suppose that Sk and Si (k ^ /) intersect at a point x = ( i s ) € i2 
where 0 < xk < Ak or 0 < ¿i < Ai. Then 

( 2 . 1 0 ) i f e = f r ( i ( \ i = J r C x % ) a n d i , = f r ^ X ^ ^ ) -

We are going to prove that 

(2.10') / r ( x ( f c ) | I 1 = / r ( l ( 0 ) ) < ** 

when 0 < xk < Ak. 
To this end let us observe that formula (2.2) and Assumption I yield 

/ r ( * ( i ) ) < A ' i ^ m 1 - " V 
fc„=l5=l W 

(v,s ^ i), whence we get 
n m / \ / \ k, 

fT(xW) < K\m1~n 1 1 ^ E *•(£) ( i ; ) (1 

(s ^ i), and using the well known equality (cf [9], p. 150). 

we have 

(2.11) fP(x(i)) < jfi n « ( . ° ( i = 1 , 2 , . . . , » ) . 
S=1 

Basing on (1.5), (1.6) and (2.11), we obtain 

/r(*< f c> u = / r ( * ( 0 ) ) < Kx n X^mx") < K\ n x w n 4 0 < 
s=l S— 1 r=l 

< (K!An-2)2xk < xk 

(s ^ I; 0 < xk < Ak), as required. 
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It is c lear t h a t i n e q u a l i t y ( 2 . 1 0 ' ) c o n t r a d i c t s r e la t ions ( 2 . 1 0 ) a n d s o 
L e m m a 2 . 2 is va l id . Q . E . D . 

W e h a v e t h e f o l l o w i n g coro l lary w h o s e v a l i d i t y fo l l ows f r o m ( 1 . 5 ) , ( 1 . 6 ) 
a n d ( 2 . 1 1 ) . 

C OROLLARY 2 . 1 . The inequality 
( 2 . 1 2 ) m a x ( / r ( * ( ' ' > ) , / ¿ ( * ( i ) ) ) < ^ m i n x ? 

l<s<n—1 

(i = 1,2,..., n) holds good. 

N o w , l e t u s c o n s i d e r t h e e x p r e s s i o n s aj.'™ : fii —>• R g i v e n b y t h e f o r m u l a e 
(cf . [7], [8]) 

( 2 . 1 3 ) « t ' ? ( z { i ) ) = i * ^ , f a t r ^ i 
V ' r , 3 \ ) \ y m ( x ( 0 ) for r = z 

w h e n i < j; 

( 2 . 1 4 ) a^ix^) = { x ' 3 ) for r j i t - 1 
1 ^ ; \ / r ( x ( , ) ) for r = i — 1 

w h e n i > j(xW G 1 < i , J < n; r = 1 , 2 , . . . , n — 1 ) , a n d t h e s e q u e n c e s 

K p a n d d e f i n e d b y 

( 2 . 1 5 ) = 

(5 = 1 , 2 , . . . , n — 1 ) , w h e r e 

for t = 2 , 3 , . . . , ; s = 1 , 2 , . . . , n — 1 

(2.16) = < E ( * ( W ) ) for , = 1 , 2 , . . . , » - 1 

(k(t) = (£/) where / = 1 , 2 , . . . , t ; t € JV; 1 < A;/ < »; ^ ; = u; 
v = 1 , 2 , . . . , » ) ; 

( 2 . 1 7 ) ul'™ . h ( v ) ) = K ' S . . ( ® ( , , ) ) ) 

(5 = 1 , 2 , . . . , » — 1 ) , w h e r e 

( 2 . 1 8 ) = < r K p ^ ) ) for i = 1 , 2 , . . . , 

( £ ( / ) is u n d e r s t o o d as i n ( 2 . 1 6 ) , kt / j ; j = 1 , 2 , . . . , » ; s = 1 , 2 , . . . , n — 1; 
v = 1 , 2 , . . . , » ) . 

It is eas i ly o b s e r v e d t h a t 

( 2 . 1 9 ) ^ ( x ^ ) = ( z ^ ) 

( v = 1 , 2 , . . . , » ; / = 2 , 3 , . . . ) . 
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Lemma 2.3. For each number rj > 0 there is a positive integer m* = 
m„(77) such that the inequalities 

max max s upb " '^ . ( x ^ ) — zv Jx^)I < in; 
l<ti<n l<s<n—1 n

 s ' f c ( i ) 

(2.20) 
max max m i x sup lu11'^ , . ( x ^ ) - v? t..s . ( x^) | < tri l<v<nl<3<n-n<j<n n y »M*)i3K ' »Mv,Jy n 

{where zv - and uv~ . are given by formulae analogous to (2.16), (2.18), 

respectively, with m being omitted) hold good for t € N and m £ N] 
m > 771,(77). 

Proof of Lemma 2.3 is similar to that of Lemma 7 in [2]. 
Now, let us consider the following truncated Bernstein polynomials (cf. 

(1.7) and (2.1)) 
m 

(2.21) = B r £ W ^ 0 ) 
kv = cr 

(v = 1 , 2 , . . . , n ; v / i), where i = 1 , 2 , . . . , n ; r = 0 , 1 , . . . , p — 1; m 6 iV; 
m > n + p. 

Lemma 2.4. The following relations hold good 

(2.22) : tf,- Y; N™ € C°°(i?i); 

(2.23) iV,™ JV t> u>/ien m 00; 

n—1 
(2.24) D'N%.(z(i)) = 0 u)/ien J J z™ = 0 ; 0 < | / | < n - r + p - l 

3=1 

(Dl is understood as in (2.5')); 

(2.25) l l l ^ 0 ( * W ) l l l » < C - ( m ) n x « 
S=1 

when I = n + p — r — 2, C(m) being a positive constant dependent on m. 
Above, HI • |||; denotes the norm in the space ofl-linear continuous functions 
from Rn_1 into Y. 

P r o o f . The proof of (2.23) is analogous to that of (2.4), and (2.24) fol-
lows from (2.1) and (2.21). It is also clear that NQ € C°°(f2i). Thus, it 
suffices to prove (2.25). To this end let us observe that by (1.7) an (2.21) 
we have (cf. (2.5')) 

| | ^ r ( x C ) ) | | < c o n s t 5 r £ nGObK^m) Cr 
X 
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(k* ~ l° + a*) ! (m-~ks- a«)! 

(v, s ^ i; fh3 = min(/s, m — A;s) and |Z| = n + p — r — 2), whence 

n m m , / \ / \ k,-cr+a, , sm-ks-as 

( i - i ) 

(5 t and C(m) is a positive constant dependent on m), and as a conse-
quence we obtain 

I l l C r V ^ I I I / < C ( m ) n * ? ) , 
3=1 

as required. 

LEMMA 2.5 . The following inequality is valid 

( 2 . 2 6 ) I M ? r ( * ( l ) ) l l < K2CJ wm x 

where C» = (c r ) C r - 1 . 
P r o o f . By (1.7) and (2.21) we can write 

kv — Cf 5—1 
xk

3'(As-xs)m~k> 

(v,s ^ i), whence 
772 — kv 

*V0—CT 
where t;0 is an arbitrarily fixed positive integer such that 1 < VQ < n; 
vo ^ 

Now, it suffices to repeat the argument used in paper [2], p. 636 (with 
the replacement of 2p by cr) to obtain the inequality 
(2.27) ITO(* ( 0)II < 

As VQ (1 < VQ < n; VQ i) has been arbitrarily fixed, (2.27) yields the 
thesis (2.26). Q.E.D. 

We shall end this section with the examination of the Bernstein polyno-
mials 

m 
(2.28) F» (x ) = £ F ( x k n h J w k n ) ( x ) 

*„=0 
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(v = 2 , 3 , . . . , n ) where k(n) = (k 3 ) with s — l , 2 , . . . , ra ; ®£(n) m = ® with 

(2 .29) wkn){x) = f [ - ksr~k>; 5 = J ] 

It is evident that Fm € C°°(i2), and well known that 

(2.30) Fm =t F when TO -+ oo, 

as a consequence of which the function 

(2.31) R?(x) = [(p- I ) ! ] " " J ... f JJixv-^y-'FitfdT, 
0 0 v— 1 

tends uniformly in Q to the limit 

(2.32) RP(x) = [(p- l ) ! ] " n f ... f flixv-rjvY-'FWdr) 
0 0 v— 1 

when TO tends to infinity. 

3. The (0 m ) -problems 

It follows from the results of Section 2 (cf. Lemmas 2.1, 2.2, 2.4 and 2.5, 
and the properties of Fm) that the functions / f 1 , N™. and Fm given by (2.2), 
(2.21) and (2.28), respectively satisfy the assumptions of paper [8] (cf. [8]], 
pp. 492, 493), and so, for each (®m)-problem, i.e. the (®)-problem gener-
ated by the said functions / / " , iV,™ and Fm where TO > mo with too € N 
being sufficiently large, Theorem 2 of [8] concerning the existence of c.s. of 
this problem can be applied. 

According to the said theorem, for each m € N, m > too the correspond-
ing (<9m)-problem has a c.s. given by the formula 

(3 .1 ) « « ( * ) = r ? ( X ) + £ 
j=i «=i 

(x € fl), where 

(3.2) C P - ; ( * ( i ) ) = {(p-m(p-j - I ) ! ] " " 1 } " 1 -

x(i) J.CO _ 

7 - J 1 n c - s 0 - v r p - i C ^ i 0 , • - • > ^ i ) - - -
0 0 5=1 
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for j = 1 ,2 , . . . - 1; Vft = <t>™b with <Kv-i d e f i n e d 

(3.3) = + £ K'P
m-j(xii)) 

t=1 

(i = 1 ,2 , . . . , n; j = l , 2 , . . . , p ) . Above, 

(3.4) w T j - j i x « ) = -

(3-5) = 

*T7l t .v *TO 

(3 .6 ) « i t j ( « ( , ) ) = ^¿ , j ( a ; ) l i i =/ i (x ( ' ) ) 

with*) 

(3.7) = + £ { ( j - r)![(i - r - l)!]""1}"1 ¿ ( * * > 
r= l fc=l 

^ xn*-l n—1 

0 0 s=l 
This solution is unique in the set of all solutions of equation (1.1) (with F 

replaced by Fm) in 12, which (cf. Lemma 1 in [8]) are given by formula (3.1), 
such that the functions 4>T,p-i (* = 1» 2 , . . . , n ; j = 1,2, appearing in 
(3.2) satisfy the condition 

( C is a positive constant depending in general on <f>™p-j) for 1 = 0,1,.. . , j + 

n - 2. 

4. Generalized solutions of the (<5)-problem 
We shall prove the following theorem 

T H E O R E M 4 .1 . If Assumptions 7 - / 7 7 are satisfied, then there is a g.s. of 

the ((5)-problem given by the following formula 

( 4 . 1 ) „ ( * ) = Rp{x) + £ £ V>t>-;(*(,)) 

j=11=1 

The functions Rjl(x) ( j = 1 , 2 , . . . ,p) are given by formula (2.31) with p replaced 
by j . 
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(x G i2; x^ 6 i = 1 , 2 , . . . , n) in which Rp(x) is defined by (2.32) and the 
functions if>i,p-j (i = 1 ,2, . . . , n ; j = 1,2 ,...,p) are given by the relations 
(3.2)-(3.7) with m being omitted. 

P r o o f . Let N 3 m > tuq, mo € N being sufficiently large, and consider 
the sequences of functions {/•"}, {-/V,™} and { F m } given by (2.2), (2.21) and 
(2.28), respectively, and the sequnce of Goursat problems {((3m)} generated 
by these functions (i.e. such that, for each N 3 m > mo, the said functions 
//"•, N™t and Fm are the given functions appearing in (0 m ) ) . 

We know from Lemmas 2.1 and 2.4, and formula (2.28), that the aforesaid 
functions / /" , jV,™ and Fm (i = 1 , 2 , . . . , n ; r = 0 ,1 , . . . , ) satisfy relations 
(1.3), respectively. 

We also know from Section 3 that each of the (0m)-problems has a 
solution um given by formula (3.1) together with (3.2)-(3.7). 

Thus, in order to prove Theorem 4.1 it is sufficient to show that rela-
tion (1.4) is satisfied, where um and u are given by (3.1) and (4.1), respec-
tively. 

Let e > 0 be a given positive number and observe that (cf. (3.1) and 
(4-1)) 

(4.2) | K ( x ) - «(ar)ll < E?{x) + E?{x) 

where 

(4.3) £ r W = [ ( P " i r n J . . . J J J ( x r - Vr)p~1\\Fm(r]) - F(t7)|| drj; 
0 0 r=l 

(4.4) ET(z}= ¿¿xrilCp-iC^0) -
j=l 1=1 

(x 6 i2). 
It is evident (cf. (2.30)) that there is a number N 3 mi = mi(e) > mo 

such that 

(4.5) E?{x) < | 

for x € f2; N 3 m > m j . 
In order to estimate the expression E™(x) we apply the method of math-

ematical induction. 
Set j = 1. In this case (cf. (3.4)-(3.7)) 

= - i ? r ( x ) | X j = / r ( l ( o ) ; 
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Let 6 e ( 0 , 1 ) . Basing on (4 .6 ) , and using Assumptions I—III and inequal-
ity (2 .11 ) , we get 

(4-7) I T C - ! ^ « ) - W ^ - i O r « ) « < const ^ ( min x ^ 1 " * ) 
l<a<n—1 

where pm is given by 

( 4 . 8 ) pm = m a x m a x { s u p | | F m ( x ) - F(x)||, sup | f?{x^) - U(x^)\, 
*<*<n n n¡ 

{Ji 

Let us observe t h a t , by ( 4 . 6 ) and Assumptions I—III, we have 

( 4 . 9 ) W-.p-xOcW) - W i ^ i ^ W < consti m a x - x « ! ] ' 1 - 9 . 
l<s<n—1 

•fmax( min min x ^ l 1 - ® 
1 l < s < n - l a l < s < n - l 3 J 

(hm = min(fe/,hx), where x^), x^) € i = 1 , 2 , . . . , » . 
Using ( 4 . 7 ) and (4 .9 ) , we get 

i i ^ - i i ^ T ) ^ 0 ) ) - w ^ i i ^ i ^ m < 

< const {pi, [max min z®'^ + [max m a x m a x 
~~ k(t) l<r<n-l r,k(tr n fc(t) l < t < n - l l<r<n—1 

whence, and by inequality ( 2 . 1 2 ) , Corollary 1 in [7] and L e m m a 2 .3 above, 
we obtain 

(4-10) H W ^ - i ^ C * « ) ) " ^ W i K 1 ^ ) ) ! ! < c o n r t ^ 1 " ' ) ^ 

(xo is a positive integer t o b e chosen later — cf. ( 4 . 1 9 ) ) , on condition that 
N 9 m > m ^ = m ^ e , x0). 
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As € (0,1), formulas (3.5) and (4.10) yield 

(4-11) £ - ^ P - i ( * ( i ) ) l l < const 
t=i 0 

and as a consequence of (3.3), (4.7) and (4.11) we obtain the inequal-
ity 

(4-12) | IC P - i (* ( i ) ) - ^ P - i ( z ( 0 ) l l < c A 

whence (cf. (3.2)) 

(4-13) I IVC-xO^) " ^ , P - i (* ( i ) ) | | < Cx f 

(N 3 m > m^), C\ and C\ being positive constant. 
Now, let jo € N be arbitrarily fixed so that 1 < jo < p — 1 and assume 

that 

(4.14) IICp-i(* ( i )) - <k,P-;(*(i))ll < c A 
Xo 

for j = 1 ,2 , . . . , jo when N 3 m > maxi<„<j0 rr^v\ m^ = o) 
(v = 1 ,2 , . . . , jo ) being sufficiently large positive integers and C\,...,Cj0 

positive constants. 
Evidently (cf. relation (3.2) satisfied by the functions and V>t\p-j), 

the said assumption yields 

(4.15) HC P - ; (* ( i ) ) - V><,P-;(*(,))I| < c A 

(m as above, j = 1 ,2 , . . . ,jo), where C i , . . . , Cj0 are positive constants. 
Basing on (3.3)-(3.7) and (4.14), and using an argument similar to that 

in the proof of (4.12), we get 

(4-16) IICP-Oo+i)(* ( i )) - ¿ , - ( * + i , ( * ( i ) ) | | < C ^ A XQ 

when 

N 3 m> max m ( u W j o + 1 ) = m(jo+1)(E, x0) 
1<V< jo + 1 

is a sufficiently large positive integer), whence and by (3.2) we obtain 

(4-17) IICP-Oo+i)(* ( i )) " ^.P-(io+i)(*(i))ll < C j 0 + A •>fo 

(Cj0+1 and CjQ+i are positive constant). 
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Thus, by (4.13), (4.15), (4.17) and the induction principle, we can as-
sert that the inequality (4.15) holds good for j — 1 , 2 , . . . , p when N 9 
m > maxi<t,<p = xo); v = 1 ,2 , . . . ,p are sufficiently large 
positive integers, with C\,..., Cp being positive constants. 

As a consequence of the aforesaid result and equality (4.4), we have 

(4.18) E?(x) < C— 

(where C is a positive constant) when N 9 m> rfi2 = m2(5, xo). 
Choosing xq € N so that — < j , we can conclude that there is a number 

JV 9 TO2 = rri2{e) > mo such that 

(4.19) E?(x) < £ 

for x G Q; N 9 m > m2-
Inequalities (4.2), (4.5) and (4.19) yield 

(4.20) | |um(z) - tt(x)|| < £ 

for x e Q\ N 9 m > max(mi, 7TO2), which ends the proof of Theorem 4.1. 
Now, we shall prove the following theorem 

THEOREM 4.2. Let us assume that for N 9 m > m 0 (cf. the proof of 
Theorem 4.1) the following conditions concerning the ((5m)-problems are 
fulfilled 

1°. The functions f™ : /?,• —* [0, A{] (i = 1,2, ...,n) have the properties 
expressed by Lemmas 2.1-2.5; 

2°. The functions : fii Y (i = 1 , 2 , . . . , n; r = 0 , 1 , . . . ,p- 1) have 
the properties expressed by Lemmas 2.4, 2.5 (with C* in (2.26) replaced by 
any positive constant independent of m); 

3°. The functions Fm : Q —• Y have the properties mentioned on 
p. 11 and are equibounded together with their first-order partial deriva-
tives; 

4°. The functions (i = 1,2, . . . , n ; j — 1,2 , . . . , p ) appearing in 
formula (3.1) for c.s. of the ((5m)-problems satisfy the inequality 

(4.21) | |CP
(-i(* ( i ))l l < Cv{i min «(;))«+!•—1 

, y J l<s<n—1 

(t = 1 , 2 , . . . , rc; j = 1 , 2 , . . . v = 0 , 1 , . . . ,p + n - 2), where Cv are positive 
constants independent of m. 
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Then, there is at most one g.s. of the (®)-problem 

P r o o f . It is our aim to show that if { / f , r a } , {N?'rm}y {F^m} and {u™} 
(fi = 1 ,2 , ) satisfy the conditions of Definition 1.1 and the assumptions of 
Theorem 4.2, then the corresponding generalized solutions u^ (fi = 1.2) of 
the (<5)-problem are identical in Q. 

To this end let us observe that 

(4.22) | M x ) - U l (x) | | < | M * ) - u?{x)\\ + | | U l (z) - u?(x)+ 

+ | K ( x ) - < ( x ) | | 

(x € i?) and that, for an arbitrary s > 0 there is a sufficiently large number 
N 9 rap = rn'0(e) such that N $ m > m'0 implies 

(4.23) | M x ) - < ( x ) | | + | |U l (x) - < ( * ) l l < £~. 

Furthermore, due to the present assumptions and Theorem in [8], we can 
assert that the functions u™ (/z = 1,2) are of the form (3.1), where R™ and 

p-j are as on p. 12. 
Basing on (1.3) and using an argument analogous to that applied in the 

proof of (4.20), we get 

(4.24) | | < ( x ) - < ( x ) | | < | 

for N 9 m > n'0', n'0' (ntf = n'0'(£)) being a sufficiently large positive inte-
ger. 

On joining (4.22)-(4.24) we can conclude that u\ = 112 in Q. Q.E.D. 

Finally, we have the following theorem 
THEOREM 4.3. If Assumptions I—III of the present paper are replaced by 

those in paper [8], then the g.s. of the (<S)-problem given by Theorem 4.1 is 
a c.s of this problem. 

The validity of this theorem follows from the results obtained in [8]. 
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