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Introduction

Generalized solutions of Goursat-type problems in R?-space were defined
and studied in papers [1], [2]. Similar results concerning the R3- space were
obtained in Chapter II of the unpublished paper [5] (which was based on
[4]), and for another Goursat problem in [3]*). In this paper, which contains
the results of [5], we examine generalized solutions of a Goursat-type prob-
lem in R™-space where n is an arbitrary positive integer not less than three.
Our argument is based on papers [7] and [8].

1. The problem and assumptions
Let 2 be the parallelepiped

N={zeR*":0<z < A}

(z = (z5), where s = 1,2,...,n) and Y a Banach space with the norm

Il -4l
In what follows N denotes the set of all positive integers.

For fixed p € N, we consider the polywave (or polyvibrating) equation
of Mangeron (cf [6])

(1.1) LPu(z) = F(z)
(z € 2), where L = [[};_; with D, = 2=, L¥ = L(L* ') for k = 1,2,...,p;
L% = u, and F is a given function.

*) Concerning the classical solutions of Goursat-type problems in R", where n > 3,
see [4), [8] and the references therein
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By a solution of equation (1.1) in 2 we mean a function u : 2 — Y such
that (cf [8])

D;,...D;L*ue CP*1 fork=0,1,...,p—1

1< <...<iy<n;l=1,2,...,n) satisfying (1.1) for z € 2.

Let z() = (:cf,')), where 2z = z, for 1 < s <i-1(2 <1 < n);
=) = o341 fori <s<n—-1(1 <1< n-1), denote by £2; the set of all
points z(¥) for ¢ € £2 (of course £2; = )7&1 [0, A,]), and consider a system of

s=
s#£
surfaces 53,...,5, given by the equations
z; = fi(z1)
(z() € 2;), respectively, where f; : £2; = [0,4;] for i = 1,2,...,n.
We examine the Goursat-type problem (®) that consists in finding a
solution of equation (1.1) in 2, subject to the boundary conditions

(1.2) L™u(z) = N; (1)) forz € §;

(z® € 2;;i=1,2,...,n;7r =0,1,...,p~1), where N;,:; —» Y aregiven
functions.

Each function having the said properties is called a classical solution
(briefly c.s.) of the (&)-problem.

Now, we are going to define generalized solutions (briefly g.s.) of the
(8)-problem (our definition originates from those in [1], [2]).

To this end let us consider a sequence {(8™)} (where m € N; m > my
with mg being a sufficiently large positive integer) of Goursat problems
which are formulated analogously to (&) with the replacement of F, N; ,
and §; by F™, N and ST*, respectively (5" denotes a surface of equation
z; = fr(z(Y), where

F™:02->Y, N7.: ;- Y and f" : 2; - [0, A}]

(i=12,...,n;7=0,1,...,p— 1) are given functions.
We admit the following definition

DEFINITION 1.1 A function »: 2 — Y is called a g.s. of the (&)-problem
if there is a sequence {u™} of functions u™ : 2 =Y (m € N; m > myp)
such that

1° Each of the functions 4™ is a c.s. of the corresponding Goursat prob-
lem (™) in which the given functions satisfy the relations

(1.3) F" 3 F; f* 3 fi; N[, 3 Ni;y whenm — o0
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(¢=1,2,...,n;r = 0,1,2,...,p — 1 and =3 denotes the uniform conver-
gence), and
2° The following relation

(1.4) ™ =3u  when m — oo
holds good.

We make the following assumptions:

I. The functions f; : £2; = [0, A;] (i = 1,2,...,n) are Holder-continuous
(exponent hy € (0,1]), the surfaces S; (¢ = 1,2,...,n) do not intersect one
another at the points of 2 placed outside the axes of coordinates and the
following inequality is satisfied

09 Fa0) < Kol a9

(:=1,2,...,n), where K} is a positive constant such that
(1.6) 9= KA < 1
with A = maxj<i<n A;.

II. The functions N;, : £, - Y (: = 1,2,...,n; r = 0,1,...,p —
1) are Holder-continuous (exponent hy € (0,1]) and satisfy the inequal-
ity

. (N < : (i)e.

(w.7) 12O S Kol min_ 209)
(¢t=1,2,...,mn5r = 0,1,...,p — 1), where K, is a positive constant and
Gr=n+p-r-—1.

ITI. The function F is continuous.

2. Auxiliary theorems

o — — . -, (D) — () i
Set k(n) = (k,), where v = 1,2,...,n; v # 1; ity = % with

a;gi) =A,§n‘- for s = 1,2,---7'"')3#1:;

i r(m m—
(21) w"‘.‘(ﬂ)(z( )) = H (k )zﬁv(Av —Zy) f, Bi= H Ay

(v # 1), and consider the Bernstein polynomials
(22) @ =B 3 S Jug (@9)
ke=n—-1 nhm

(v=1,2,...,n;v#i),wherei=1,2,....,n; me€ N;m>n-—1.
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LEMMA 2.1. The following relations

(2:3) 0< M) < 4 S e C=();

(2.4) "33 fi when m — oo;
n-1

(2.5) D'fMzD)y=0 when H 2D =0, 0<|l|<n-2
s=1

hold good, where
(2.5) D' =TI D% M=t (w#i).
v=1 v=1

Proof. Relations (2.3) and (2.5) follow immediately from (2.1) and (2.2).
In order to prove (2.4), let us observe that by (2.2) we can write

mmlﬂwhfwmﬂmw)ﬂwWWZwmww

ky=0

{ZUWULHWN%MMH

k,=0

+ Z Z Z Z fi(z(ﬁi-‘)(n)’m)wl?‘(n)(z(i))}

t=0 kl,...,k,=0 k¢+1=0 k¢+2,...,kn =n-1

(k817k31+1,...,k32 = { for s; > 32)-

Denote the terms on the right-hand side of (2.6) by el*(z(¥) and ef*(z(9),
successively, and let £ > 0 be arbitrarily fixed.

It is well known (cf [9], p. 152) that there is a number m?’ € N such
that

(2.7) e (z() < -;—

when m > m}.
For the term e*(z(*)) we have (cf. (1.5))

CORETEOPE 30 3 ([ €5 VAR

s=1 k,=0

< Ky(n—-2)""! Z APl < Ky (n— 1) A Iml-
s=1
(s # 1), where A = max;<i<n Ai, and as a consequence we can assert that
there is a number m, € N such that
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(2.9) ez < g

when m > m,.
On joining (2.6), (2.7) and (2.9) we get relation (2.4). Q.E.D.

LEMMA 2.2. The surfaces S, of equations z; = f™(z()), respectively
(1=12,...,n; m € N; m > n — 1) satisfy the following relation
SinNSi={z€N:z=2,=0}
(k,1=1,2,...,n; k #£1).
Proof. Suppose that Si and S; (k # I) intersect at a point Z = (z,) € 2
where 0 < £ < A; or 0 < #; < A;. Then

(2.10) = fP@0, o) and di= G0 o).

=1z
We are going to prove tha.t
(2.10) I @Dy griay) < 2

when 0 < zj < Ag.
To this end let us observe that formula (2.2) and Assumption I yield

(=) < Ky B ™m! " E HA ks ( ) (A, —z,)mh

k,=1s=1

(v, s # %), whence we get

f(z®) < Kym!- "HA Z ( )(fi)k’(l—x,)"‘”"

(s # 1), and using the well known equahty (cf [9], p. 150).

a = mg} iﬂ(?) aP(1 - o)™

p=1
we have
. n—l -
(2.11) e <k [[0 (G=12...,n).
s=1

Basing on (1.5), (1.6) and (2.11), we obtain
Ji4 (a:( )lz, fm(z(,))) < K, H a:(")fl(z(’)) < K? H z(k) H 0 <
=1 r=1
< (KlAn 2)2.’Bk < Ty
(s #1;0 < zx < Ay), as required.
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It is clear that inequality (2.10') contradicts relations (2.10) and so
Lemma 2.2 is valid. Q.E.D.

We have the following corollary whose validity follows from (1.5), (1.6)
and (2.11).

COROLILARY 2.1. The tnequality

(2.12) max(f(z1), fi(z)) < 191<m<1n ()

(1=1,2,...,n) holds good.

Now, let us consider the expressions a : $2; — R given by the formulae
(ct. [7), [8])
. . (4) ;
2.13 ime (i)Y {xr  forr#i
( ) ar,] ((D ) f'»m(z(;)) fOl' r= 1’
when i < j;
. . (4) ;
2.14 img, (i) ={a:,- . forr#£i-1
( ) ar,J (1} ) f;m(z(,)) fOT r= l _ 1
when ¢ > j(z(‘) € 2;1<4,j<n;r=12,...,n—1), and the sequences
k(t)) and (uk(t) .) defined by
(2'15) Zic.(t) (z(v)) = (2 k(t)(.’l?(v)))

(s=1,2,...,n — 1), where

ko1,
s k(t)(z(v)) =ay " (7 1)(x(v)))
fort=2,3,...;8=12,...,n—-1

(2.16) k(l)(z(”)) = a"m(z(")) fors=1,2,...,n-1

(E(t) = (k;) where l = 1,2,...,t; t € N; 1 < ki < n; ki # ki—1; ko = v;
v=12,...,n);

(v) , (v)
(2‘17) k(t) )((l? ) (Us E(t) J(IE ))
(s=1,2,...,n—1), where

Yy = knm (v) - .
(2.18) u’ E(t) ](a: ) =a; (zk( )(a: )) fort=1,2,...,
(E(t) is understood as in (2.16), k; # 7; 7 = 1,2,...,n; s =1,2,...,n— 1;
v=1,2,...,n).
It is easily observed that

()Y = z(¥

(2.19) k(t)(a: )= uk(t ), k‘( )

(v=1,2,...,n;t=2,3,...).
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LEMMA 2.3. For each number 1 > 0 there is a positive integer m, =
m.(n) such that the inequalities

(v) (v) .
lrsnvag(n 15?33( 1 PlZ k(t)(z ) 2 k(t)(z )l < tn;

(2.20) % )
v - v
1<3<xn 1<IP<32(—1 1I?Ja'<xn Sg |us (1) J(z ) us K(2),5 (&) <tn
(where 2V . = and u? are given by formulae analogous to (2.16), (2.18),

2,k(t) s,k(1),
respectwely, with m being omitted) hold good for t € N and m € N;

m > m.(n).

Proof of Lemma 2.3 is similar to that of Lemma 7 in [2].
Now, let us consider the following truncated Bernstein polynomials (cf.

(1.7) and (2.1))

m
(2°21) Ni'.’:'(x(1)) =B z Ni’r(zgi)(n),m)wﬁ‘(n)(z(t))

ky=cy
(v=1,2,...,n; v # ¢), where i = 1,2,...,n; r = 0,1,...,p— 1; m € N;
m 2 n+p.

LEMMA 2.4. The following relations hold good
(2.22) NL: ;- Y; N eC™();

(2.23) N. =3 Niy when m — oo;

n—-1
(2.24) D'Ni,’",(z(")) =0 when H D=0, 0<|j<n-r+p-1
s=1
(D! is understood as in (2.5'));
n—1
(2.25) V2@l < C(m) [
s=1

when !l = n+ p—r — 2, C(m) being a positive constant dependent on m.
Above, ||| -]||i denotes the norm in the space of l-linear continuous functions
from R*"1 into Y.

Proof. The proof of (2.23) is analogous to that of (2.4), and (2.24) fol-
lows from (2.1) and (2.21). It is also clear that N[ € C'*°($2;). Thus, it
suffices to prove (2.25). To this end let us observe that by (1.7) an (2.21)
we have (cf. (2.5"))

| D'N(zD)]| < const B™ Z H( )[min (AU%)]crx

v =Cp s=1
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2 Is ks' (m - kS)' ky—l,4a, m—k,—a,
X (a) (ks — 1y + )l (m—Fy—ag)l"® (4, = =s)

a,=0
(vys # t; My = min(l;,m — k) and |[| = n+ p— r — 2), whence
ID' N (=) <

< C( m)H g Z E ( )( )k,—cr-l'aa (1 ) Z—z)m—k’_a’

ky=c, a,=0

(s # i and C(m) is a positive constant dependent on m), and as a conse-
quence we obtain

NNTO @l < C(m) H z{,

as required.
LEMMA 2.5. The following inequality is valid
(2.26) INZ (D))} < KaCul_min 2o
' 1<s<n-1

where C. = (c,)r L.
Proof. By (1.7) and (2 21) we can write
ks \1°
(9) <K B-m Ry k, _ m—k,
IV O] < K kE_:c H [ (1) [min (207)] "ot:04s =2
(v,s # ©), whence

”Nm (z('))” < sz—crAcr in: m kc" zyo k"o 1— zvo m—kvo
i,r = v, kvo Yo Avo Avo

kvo =c¢r

where vy is an arbitrarily fixed positive integer such that 1 < vy < n;
Vo ;é 1.

Now, it suffices to repeat the argument used in paper [2], p. 636 (with
the replacement of 2p by ¢,) to obtain the inequality
(2.27) (N (eD)|| < K2Czly.

As vg (1 < vp < n; vy # i) has been arbltrarlly fixed, (2.27) yields the
thesis (2.26). Q.E.D.

We shall end this section with the examination of the Bernstein polyno-
mials

(2.28) F™(z)=B™" kEO F(5a)m ) 0in) ()
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(v =2,3,...,n) where k(n) = (k,) with s = 1,2,...,7; Tinym = T With

Ty = As%;
o~ — - m k, — m_ks . — :
(2.29) By (2) = ];[1 (k) 5 (A, ~ k)™ %; B= EA,.
It is evident that F™ € C'*°(£2), and well known that

(2.30) F™ =3 F  when m — oo,

as a consequence of which the function

23)  Rp@=[e-01" [ ... [ [[@-m)yF(m)dn
0 0 v=1

tends uniformly in {2 to the limit
) Ty TN

232 R@=Ip-11" [ ... [ [[(@0— )" Fin)dn
0 0 v=1

when m tends to infinity.

3. The (8™)-problems

It follows from the results of Section 2 (cf. Lemmas 2.1, 2.2, 2.4 and 2.5,
and the properties of F™ ) that the functions fI*, N and F™ given by (2.2),
(2.21) and (2.28), respectively satisfy the assumptions of paper [8] (cf. [8]],
pp. 492, 493), and so, for each (&™)-problem, i.e. the (&)-problem gener-
ated by the said functions f*, N7, and F™ where m > mg with mg € N
being sufficiently large, Theorem 2 of [8] concerning the existence of c.s. of
this problem can be applied.

According to the said theorem, for each m € N, m > mq the correspond-
ing (™)-problem has a c.s. given by the formula

(3-1) u™(z) = R’"(w)+ZZ(z A C0))

ij=1i=1
(z € 12), where
(32) (=) = {(p = NMp-j- I

(') E..ll n-1

f f H(x(') - n('))P Jj- 1¢ m J(’]{i) 7771;. l)d’r] () dn(')
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for j=1,2,...,p- 1; ¥ = ¢7 with ¢T",_. defined by

(3.3) Oy i(z) = W, _i(=) + 2 Vit (=)
(¢t=12,...,n;7=1,2,...,p). Above,
(3.4) Wi_i(a) = No_i(a) - R, ;(=9);

)\ t .
(3.5) P J(z( ) =(-1) E kep=ilzg i (@)

k(t)

(3.6) R; ;(z) = R, ;(2)l2i= (2t
with*)

Jj-1 Lid
(3.7) EP(z)= RP(2)+ Y AG -G - r = D"}z
r=1 k=1

(k) )
n—l n—1

f f H(z(k)_n(k))a 14, (n("))dn(") Ldn®..

This solution is unique in the set of all solutions of equation (1.1) (with F
replaced by F™) in §2, which (cf. Lemma 1 in [8]) are given by formula (3.1),
such that the functions ¢77,_; (i=1,2,...,n; 5 =1,2,...,p) appearing in
(3.2) satisfy the condition

PO (2 (i)yj+n-r-1
|”¢ tp= J(xi )l“l <C(l<m<1n T ))J n—r—

(C is a positive constant depending in general on (. j) forl=0,1,...,5+
n -2,

4. Generalized solutions of the (&)-problem
We shall prove the following theorem

THEOREM 4.1. If Assumptions I-1II are satisfied, then there is a g.s. of
the (®)-problem given by the following formula

(4.1) u(z) = p(l‘)+ZZz” Tip-i(=)

j=1i=

*) The functions R*(z) (j =1,2,...,p) are given by formula (2.31) with p replaced
by ;.
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(z € 2;20) € 2;;i=1,2,...,n) in which R,(z) is defined by (2.32) and the
functions v; ,—; (1 = 1,2,...,n; j = 1,2,...,p) are given by the relations
(3.2)~(3.7) with m being omitted.

Proof. Let N 3 m > mg, mg € N being sufficiently large, and consider
the sequences of functions {f/*}, { N[} and {F™} given by (2.2), (2.21) and
(2.28), respectively, and the sequnce of Goursat problems {(™)} generated
by these functions (i.e. such that, for each N 3 m > my, the said functions

™, N and F™ are the given functions appearing in (&™)).

We know from Lemmas 2.1 and 2.4, and formula (2.28), that the aforesaid
functions f*, N and F™ (i = 1,2,...,n; r = 0,1,...,) satisfy relations
(1.3), respectively.

We also know from Section 3 that each of the (&™)-problems has a
solution u™ given by formula (3.1) together with (3.2)—(3.7).

Thus, in order to prove Theorem 4.1 it is sufficient to show that rela-
tion (1.4) is satisfied, where u™ and u are given by (3.1) and (4.1), respec-
tively.

Let ¢ > 0 be a given positive number and observe that (cf. (3.1) and

(4.1))

(4.2) lu™(z) — u(z)|l £ ET*(z) + E3*(z)

where

(4.3) Ef' (=) =[(p-1)7" f f I (& = 5)?"1F™(n) = F(n)l| dn;
0 0 r=1

(@8 EPE) =33 el ) — i)l

(z € 2).

It is evident (cf. (2.30)) that there is a number N 3 m; = m;(e) > my
such that

(4.5) EMz) < %

forz € 2; N >m > m,.

In order to estimate the expression EJ*(z) we apply the method of math-
ematical induction.

Set j = 1. In this case (cf. (3.4)—(3.7))

W‘-";_l(x(")) = Ni’;’;)_l(z(i)) —_ R;n(z)l:r.-=f:"(:s(‘));

(4.6) : .
Wip-1(z) = Nip1(2D) = Ri(2)lz,= 1,(0)-
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Let € (0,1). Basing on (4.6), and using Assumptions I-III and inequal-
ity (2.11), we get

47 W1 (29) = Wipo1(sD)|| < const pf (| _min_ 2()*1=4)
1<s<n-1

where p, is given by

(48)  pm = max max{sup [ F™(2) = F(@)l|, sup |f"(=) - fil=),
<ign n 0
sup [IN75-1(=9) = Nipmr ()]}

Let us observe that, by (4.6) and Assumptions I-III, we have
(49)  Wipa(s?) = Wiy (FO)] < const], max 50 - (I ]

Jmax( min z{), min 21~
1<s<n~-1 1<s<n~-1

(ha = min(hy, hy), where 2(), () € ;5§ =1,2,...,n
Using (4.7) and (4.9), we get

W32 s (27 (29)) = Wi poa (2 (20D <
<WE et (zkm(z ) = Wi - 1<zk( (= Oil+

< z(VY))2(1-9)
°°nst{ﬂm[f;1*:;<1<ﬂ2 3 # o ) +[f,§g;a<lzl<a,z<_u<,.3§1

Sllp |Z k(t)(z 1)) - Z k(t (I 1))l]k"

-[max max(

z() (i)yy)1-9
E(t) 1<r <2 1 Tk(t)( ) 1< <n 1 rk(t)(z ))] }’

whence, and by inequality (2.12), Corollary 1 in [7] and Lemma 2.3 above,
we obtain

(4.10) {Wil,— 1(2,,“)(&'3 ©)) = Wi p-1(z5 (&)l < const(8)"1~ = "

(0 is a positive integer to be chosen later — cf. (4.19)), on condition that
N5 m>m® = m(e, ).
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As ¥ € (0,1), formulas (3.5) and (4.10) yield
- m (i i €
(4.11) S IV @9) = Vipa (6] < const =
t=1

and as a consequence of (3.3), (4.7) and (4.11) we obtain the inequal-
ity '

(4.12) 1675-1=?) = $ipa (D)l < Cr
whence (cf. (3.2))

o - —~ e
(4.13) ||?/}:?p-—1(3’(')) - ¢i,p-—1(z('))|| < Clx_o

(N 5>m >m), C; and C} being positive constant.
Now, let jo € N be arbitrarily fixed so that 1 < j5 < p — 1 and assume
that

m 1 [ €
(4.14) 17, _;(z) = i p—i (D] < Cj;g

for j = 1,2,...,50 when N > m > maxjcucjo Y, m(¥) = m{¥) (e, )
(v = 1,2,...,jo) being sufficiently large positive integers and Cjy,...,Cj,
positive constants.

Evidently (cf. relation (3.2) satisfied by the functions 7%, _; and ¥; ,—;),
the said assumption yields

m 1 1 ~ €
(4.15) ||'/’i,p—j(1‘( D) = i p (2| < Cj%_o

(m as above, j = 1,2,...,j0), where Cu,.. .,5’jo are positive constants.
Basing on (3.3)-(3.7) and (4.14), and using an argument similar to that
in the proof of (4.12), we get

. i e
(4.16) 67— (o41) (2D = Biip— (i 1) (2] < Ciot1

when

1<v<jo+1 ’

is a sufficiently large positive integer), whence and by (3.2) we obtain
. . ~ £
(4.17) ”'/)i’?p—(joﬂ)(z(t)) - ¢i,p—(jo+1)(z(l))“ < Cjo+1x—0

(Cjo+1 and Cj, 41 are positive constant).
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Thus, by (4.13), (4.15), (4.17) and the induction principle, we can as-
sert that the inequality (4.15) holds good for j = 1,2,...,p when N 3
m > maxi<y<p M (M) = m¥) (e, 0); v = 1,2, ..., p are sufficiently large
positive integers, with 51, ceey 5,, being positive constants.

As a consequence of the aforesaid result and equality (4.4), we have

(4.18) Er(z)< C=
»o

(where C is a positive constant) when N 3 m > mq = my(e, 7).

Choosing s € N so that ;—% < %, we can conclude that there is a number

N 5 mg = ma(€) > mp such that
(4.19) Ef(=)< £

forz € 2; N 3 m > ms.
Inequalities (4.2), (4.5) and (4.19) yield

(4.20) |le™(z) - u(z)|| < €

for z € £2; N 3 m > max(mq, m2), which ends the proof of Theorem 4.1.
Now, we shall prove the following theorem

THEOREM 4.2. Let us assume that for N 3 m > my (cf. the proof of
Theorem 4.1) the following conditions concerning the (™ )-problems are

fulfilled

1°. The functions f* : 2; — [0, A;] (1 = 1,2,...,n) have the properties
ezpressed by Lemmas 2.1-2.5;

2°. The functions NI : §2; - Y (i=1,2,...,n7 =0,1,...,p—1) have
the properties expressed by Lemmas 2.4, 2.5 (with C, in (2.26) replaced by
any positive constant independent of m);

3°. The functions F™ : {2 — Y have the properties mentioned on
p. 11 and are eqmbounded together with their first-order partial derwa-
twes,

. The functions ¢, _; (i = 1,2,...,m; j = 1,2,..., p) appearing in

formula (3.1) for c.s. of the (™ )-problems satisfy the znequalzty
(421) 197525 )l < ol min_ 0)m+e=t
(:i=12,...,n7=1,2,...,p;v=0,1,...,p+n—2), where C, are positive
constants independent of m.
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Then, there is at most one g.s. of the (&)-problem
Proof. It is our aim to show that if {f{*™}, {N/2"}, {F*™} and {u]'}

(1 = 1,2,) satisfy the conditions of Definition 1.1 and the assumptions of
Theorem 4.2, then the corresponding generalized solutions u, (# = 1.2) of
the (®)-problem are identical in 2.

To this end let us observe that
(4.22)  |lua(z) — wa(@)l < flua(z) — w3 (2)|| + l|ua(z) — 7" (z)+
+ (lug*(z) — v ()|l

(z € 2) and that, for an arbitrary € > 0 there is a sufficiently large number
N 3 m{ = m{(¢c) such that N 3 m > m{, implies

(4.23) luz () = w3 @) + s (2) - w7 ()] < 5.

Furthermore, due to the present assumptions and Theorem in (8], we can
assert that the functions u}} (u = 1,2) are of the form (3.1), where R* and
¥i,~; are as on p. 12.

Basing on (1.3) and using an argument analogous to that applied in the
proof of (4.20), we get

(424) luf (@) - w2l < 5

for N 3 m > ng, ng (ng = ng(e)) being a sufficiently large positive inte-
ger.
On joining (4.22)—(4.24) we can conclude that u; = u; in 2. Q.E.D.

Finally, we have the following theorem

THEOREM 4.3. If Assumptions I-111 of the present paper are replaced by
those in paper (8], then the g.s. of the (8)-problem given by Theorem 4.1 is
a c.s of this problem.

The validity of this theorem follows from the results obtained in [8].
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