

Wojciech Bartoszek

ON THE CONVOLUTION EQUATION $\check{\mu} * \rho * \mu = \rho$

Introduction

It has been recently proved in [B] that for any probability measure μ on a countable (discrete) group G the existence of nontrivial (i.e. nonzero) solutions ρ of the convolution equation $(\diamond) \check{\mu} * \rho * \mu = \rho$ is equivalent to the concentration (see definition below) of the measure μ . By ${}_*P_*(\mu)$ we denote the convex set of all probabilities ρ on G which solve (\diamond) . Our definitions and notation follow [B]. For the reader's convenience we briefly recall some of them. By the support of a measure μ on G we mean the set $S(\mu) = \{g \in G : \mu(g) > 0\}$. If $S(\mu)$ is finite we say that the measure μ is finitary. The convolution of measures μ, ν is defined

$$(1) \quad \mu * \nu(g) = \sum_{h \in G} \mu(gh^{-1})\nu(h) = \sum_{h \in G} \mu(h)\nu(h^{-1}g).$$

Clearly $\mu * \nu$ belongs to the set $P(G)$ of all probabilities on G if both μ and ν are from $P(G)$. Moreover $(P(G), *)$ is an associative semigroup. It follows from (1) that $S(\mu * \nu) = S(\mu)S(\nu)$. By $\check{\mu}$ we denote the symmetric reflection of a measure μ (i.e. $\check{\mu}(g) = \mu(g^{-1})$) and $\nu_1 \wedge \nu_2$ stands for the minimum of ν_1 and ν_2 . For a fixed probability measure μ on G we define a positive linear operator P_μ acting on real (or complex) functions f on G

$$(2) \quad P_\mu f(g) = \sum_{h \in G} f(gh)\mu(h).$$

1991 *Mathematics Subject Classification*: 22D40, 43A05, 47A35, 60B15, 60J15.

Key words and phrases: random walk, concentration function, stationary distribution.

The author wishes to express his gratitude to the South African Foundation for Research Development for financial support. Most of the results of this paper were presented at the Potchefstroom University of Christian Higher Education in May of 1992. The first draft was also prepared at PUCHE. The author wishes to express his thanks for the hospitality and support shown him by both institutions.

It is well known that each $\mu \in P(G)$ defines a (right) random walk $\{\xi_n\}_{n \geq 0}$ on the group G . The transition probabilities are:

$$(3) \quad \text{Prob}(\xi_{n+1} = g | \xi_n = h) = \mu(h^{-1}g) \quad g, h \in G.$$

Thus for any natural n , $A \subseteq G$ and $h \in G$ we have

$$(4) \quad \text{Prob}(\xi_n \in A | \xi_0 = h) = \mu^{*n}(h^{-1}A).$$

In this note we continue investigations, originated in [B], of the asymptotic behaviour of $\sup\{\mu^{*n}(hA) : h \in G\}$, where A are finite subsets of G .

DEFINITION 1. A concentration function of a probability measure $\mu \in P(G)$ is the set function \mathbb{K}_μ defined

$$\mathbb{K}_\mu(A) = \sup_{h \in G} \mu(hA).$$

We say that a measure $\mu \in P(G)$ is *concentrated* if there exist a finite set $A \subseteq G$ and a sequence $g_n \in G$ such that

$$\mathbb{K}_{\mu^{*n}}(A) = \mu^{*n}(g_n^{-1}A) \equiv 1.$$

We say that a measure $\mu \in P(G)$ is *not scattered* if there exists a finite set $A \subseteq G$ such that

$$\overline{\lim_{n \rightarrow \infty}} \mathbb{K}_{\mu^{*n}}(A) > 0.$$

We say that a measure $\mu \in P(G)$ is *scattered* if for each finite set $A \subseteq G$ we have

$$\lim_{n \rightarrow \infty} \mathbb{K}_{\mu^{*n}}(A) = 0.$$

Concentration functions of random walks have been investigated for almost forty years. Crucial papers for our considerations are [DL] and [B]. In the second paper it is proved that random walks are either concentrated or scattered. Moreover, (see the Theorem below) it is established that the classes of concentrated and non-scattered random walks coincide. Several conditions equivalent to concentration are given there. In this note we add new equivalent conditions in the case when the measure μ is adapted.

DEFINITION 2. A probability measure μ on G is said to be *adapted* if the smallest subgroup $\mathfrak{G}(\mu)$ containing $S(\mu)$ is the whole group G . By $\mathfrak{H}(\mu)$ we denote the smallest normal subgroup H of $\mathfrak{G}(\mu)$ such that for all $g \in S(\mu)$ we have $S(\mu) \subseteq gH$.

It has been discovered in [B] that if μ is concentrated then

$$\mathfrak{H}(\mu) = \bigcup_{n=1}^{\infty} S(\check{\mu}^{*n} * \mu^{*n}) = \bigcup_{n=1}^{\infty} (S(\check{\mu}^{*n} * \mu^{*n}) \cup S(\mu^{*n} * \check{\mu}^{*n}))$$

is a finite subgroup of G . It is even true that for n being large enough we have $\mathfrak{H}(\mu) = S(\check{\mu}^{*n} * \mu^{*n})$. This yields $a^{-1} \mathfrak{H}(\mu) b = \mathfrak{H}(\mu)$ for all $a, b \in S(\mu)$. The above property of concentrated measures brings our attention to the following family of permutations of the group G . Let $\Phi_{x,y}(g) = xgy^{-1}$ where $x, y, g \in G$.

DEFINITION 3. Given a probability measure $\mu \in P(G)$ by $\mathcal{A}(\mu)$ we denote the group of 1-1 and onto transformations of G generated by all $\Phi_{a,b}$ where $a, b \in S(\mu)$. A set $D \subseteq G$ is called *forward-back* (shortly f-b) invariant if $\Phi(D) = D$ for all $\Phi \in \mathcal{A}(\mu)$. A f-b invariant set D is called *forward-back minimal* if there are no f-b invariant sets included in D other than D .

Since $\mathcal{A}(\mu)$ is a group thus there exist f-b minimal sets and all of them have the form $\{\Phi(g) : \Phi \in \mathcal{A}(\mu)\}$, for some $g \in G$. Let $\mathcal{D}(\mu)$ denote the partition of G onto f-b minimal sets.

DEFINITION 4. Given a probability measure $\mu \in P(G)$ by $\mathcal{A}_\dagger(\mu)$ we denote the group of 1-1 and onto transformations of G generated by all $\Phi_{x,y}$ such that $x = a_n^{\varepsilon_n} a_{n-1}^{\varepsilon_{n-1}} \dots a_1^{\varepsilon_1}$, $y = b_n^{\sigma_n} b_{n-1}^{\sigma_{n-1}} \dots b_1^{\sigma_1}$ where $a_j, b_j \in S(\mu)$, $\varepsilon_j, \sigma_j \in \{-1, 1\}$ and $\sum_{j=1}^n \varepsilon_j = \sum_{j=1}^n \sigma_j$. By $\mathcal{D}_\dagger(\mu)$ we denote the partition of G onto minimal sets defined by the group $\mathcal{A}_\dagger(\mu)$ and we call them f-b \dagger minimal.

Since $\mathcal{A}(\mu) \subseteq \mathcal{A}_\dagger(\mu)$ thus the partition $\mathcal{D}_\dagger(\mu)$ should be finer. However for concentrated μ we find the partitions $\mathcal{D}(\mu), \mathcal{D}_\dagger(\mu)$ are same. The existence at least one finite set of the partition $\mathcal{D}(\mu)$ or $\mathcal{D}_\dagger(\mu)$ is equivalent to concentration of μ and this fact is the main point of our *Theorem 1*. The partitions $\mathcal{D}(\mu)$ or $\mathcal{D}_\dagger(\mu)$ are also used to describe the geometry of ${}_*P_*(\mu)$. We find out that either there is only one trivial solution $\rho = 0$ of (\diamond) or if G is infinite and μ is adapted then the set ${}_*P_*(\mu)$ is infinite dimensional. Since solutions of (\diamond) form a Banach sublattice of $\ell^1(G)$ thus in the second case ${}_*P_*(\mu)$ is an affine and isometric copy of $\{(t_n)_{n=1}^\infty : \sum_{n=1}^\infty t_n = 1, t_n \geq 0\}$ (so an affine and isometric copy of $P(G)$). We finish the introductory part with the following *Theorem* which comes from [B].

THEOREM (see [B]). *Let μ be a probability measure on a countable group G . Then the following conditions are equivalent:*

- (i) μ is concentrated
- (ii) μ is not scattered
- (iii) there exists a function $f \in \ell^2(G)$ such that $\lim_{n \rightarrow \infty} \|P_\mu^n f\|_2 > 0$

- (iv) there exists a probability measure ρ on G such that $\tilde{\mu} * \rho * \mu = \rho$
- (v) $\lim_{n \rightarrow \infty} \text{card}(S(\mu^{*n})) < \infty$
- (vi) $\mathfrak{H}(\mu)$ is finite.

Results

The above *Theorem* gives us a convenient tool in investigating of random walks on discrete groups. Let us notice that the question whether a probability measure μ on countable G is concentrated may be studied using computers. By [B] nonfinitary measures may be excluded since they are scattered. For a concrete discrete group G and a finitary measure $\mu \in P(G)$ we may build an algorithm describing the sequence $S(\tilde{\mu}^{*n})S(\mu^{*n}) = \mathfrak{H}_n(\mu)$. If at some moment $n+1$ the sets $\mathfrak{H}_{n+1}(\mu)$ and $\mathfrak{H}_n(\mu)$ coincide then the procedure may be stopped with the conclusion that μ is concentrated. Moreover in this case the group $\mathfrak{H}(\mu)$ is exactly $\mathfrak{H}_n(\mu)$. To prove *Theorem 1* we need

LEMMA 1. *If μ is adapted and concentrated then $\mathcal{D}(\mu)$ and $\mathcal{D}_\dagger(\mu)$ coincide with the family of cosets of $\mathfrak{H}(\mu)$.*

P r o o f. Since for concentrated μ the subgroup $\mathfrak{H}(\mu)$ may be represented as $\bigcup_{n=1}^{\infty} S(\mu)^{-n}S(\mu)^n = S(\mu)^{-n_\mu}S(\mu)^{n_\mu}$ for some natural n_μ thus $\mathfrak{H}(\mu)$ is f-b invariant set. It is also a normal subgroup, so for any $a, a_1, \dots, a_n \in S(\mu)$

$\sum_{i=1}^n \varepsilon_i$

and $\varepsilon_1, \dots, \varepsilon_n \in \{-1, 1\}$ we have $a_n^{\varepsilon_n} \dots a_1^{\varepsilon_1} \mathfrak{H}(\mu) = a^{\sum_{i=1}^n \varepsilon_i} \mathfrak{H}(\mu)$. In particular $\mathfrak{H}(\mu)$ is f-b \dagger invariant. Clearly it is f-b minimal since $\mathfrak{H}(\mu) = \{\Phi(e) : \Phi \in \mathcal{A}(\mu)\}$ where e denotes the neutral element of G . This implies that the subgroup $\mathfrak{H}(\mu)$ is f-b \dagger minimal. Since μ is assumed to be adapted on the same way we may prove f-b or f-b \dagger minimality of any coset $g\mathfrak{H}(\mu)$. It follows that the partitions $\mathcal{D}(\mu)$ and $\mathcal{D}_\dagger(\mu)$ coincide with classes $\{g\mathfrak{H}(\mu)\}_{g \in G}$ and the proof of lemma is completed. ■

Now we are in a position to prove:

THEOREM 1. *Let μ be an adapted measure on a countable group G . Then the following conditions are equivalent:*

- (i) μ is concentrated
- (vii) there exists a finite f-b \dagger invariant set
- (viii) there exists a finite f-b invariant set
- (ix) all sets of the partition $\mathcal{D}_\dagger(\mu)$ are finite and coincide with classes of $\mathfrak{H}(\mu)$
- (x) all sets of the partition $\mathcal{D}(\mu)$ are finite and coincide with classes of $\mathfrak{H}(\mu)$.

Proof. Implications (vii) \Rightarrow (viii), (ix) \Rightarrow (x) \Rightarrow (viii) and (ix) \Rightarrow (vii) are obvious. (i) \Rightarrow (ix) and (i) \Rightarrow (x) follow *Lemma 1*. So we only have to prove that (viii) implies (i). To show this we prove that existence of a finite f-b invariant set $D \subseteq G$ implies nontrivial solutions of (\diamond) . For this let us take τ_D , the uniform distribution on D . We have

$$\begin{aligned}\check{\mu} * \tau_D * \mu(g) &= \sum_{a,b \in S(\mu)} \tau_D(agb^{-1})\mu(a)\mu(b) \\ &= \begin{cases} 0 & \text{if } g \notin D \\ \sum_{a,b \in S(\mu)} \frac{1}{\text{card}(D)}\mu(a)\mu(b) & \text{otherwise} \end{cases} \\ &= \begin{cases} 0 & \text{if } g \notin D \\ \frac{1}{\text{card}(D)} & \text{otherwise} \end{cases} = \tau_D(g).\end{aligned}$$

Thus $\tau_D \in {}_*P_*(\mu)$ and the proof of the *Theorem 1* is completed. ■

Remark 1. Notice that by the same arguments $\tau_D \in {}_*P_*(\check{\mu})$.

Given a probability measure μ on G let $\{\xi_n\}_{n=1}^\infty$ denote the random walk generated by μ and $\{\tilde{\xi}_n\}_{n=1}^\infty$ its independent copy. Consider a Markov process $\{\eta_n\}_{n=1}^\infty$ on G defined as

$$(5) \quad \eta_n = \tilde{\xi}_n^{-1} \cdot \eta_0 \cdot \xi_n$$

where η_0 is independent of $\tilde{\xi}$ and ξ . If ρ_0 is a distribution of η_0 then the distribution of η_n is $\check{\mu}^{*n} * \rho_0 * \mu^{*n}$. For symmetric μ processes like (5) belong to the class of so called bilateral random walks. In this note we obtain a satisfactory description of their asymptotic distributions. We begin with:

THEOREM 2. *Let μ be an adapted probability measure on a countable group G . Then the convex set ${}_*P_*(\mu)$ is either empty (if μ is scattered) or consists of all probabilities $\rho \in P(G)$ having the representation*

$$(6) \quad \rho = \sum_{D \in \mathcal{D}(\mu)} \alpha_D \tau_D$$

(if μ is concentrated) where $\alpha_D \geq 0$, $\sum_{D \in \mathcal{D}(\mu)} \alpha_D = 1$ and $\tau_D(\cdot) = \frac{\text{card}(\cdot \cap D)}{\text{card}(\mathfrak{h}(\mu))}$ is the uniform distribution on the set $D \in \mathcal{D}(\mu)$. Moreover extreme points of ${}_*P_*(\mu)$ coincide with measures τ_D .

Proof. We may assume that μ is concentrated. It is noticed in the proof of *Theorem 1* that $\tau_D \in {}_*P_*(\mu)$. First we prove (6). For $\rho \in {}_*P_*(\mu)$ we set $E_1 = \{g_1 \in G : \rho(g_1) = \alpha_1\}$ where $\alpha_1 = \sup\{\rho(g) : g \in G\}$. Clearly E_1 is

nonempty and finite. If $g_1 \in E_1$ then

$$\rho(g_1) = \check{\mu} \star \rho \star \mu(g_1) = \sum_{a,b \in S(\mu)} \rho(ag_1b^{-1})\mu(a)\mu(b),$$

so for all $a, b \in S(\mu)$ the points ag_1b^{-1} belong to E_1 . It implies E_1 is f-b invariant, so may be decomposed on finite many sets of the partition $\mathcal{D}(\mu)$. Since ρ is uniformly distributed on E_1 thus $\rho|_{E_1} = \sum_{D \subseteq E_1} \alpha_D \tau_D$, where $\alpha_D \equiv \alpha_1 \text{card}(\mathfrak{H}(\mu))$ does not depend on $D \subseteq E_1$.

Assume that there are pairwise disjoint sets E_1, \dots, E_{k-1} each of them is a finite union of elements of the partition $\mathcal{D}(\mu)$, and that for any $g_j \in E_j$ ($1 \leq j \leq k-1$) we have

$$\rho(g_j) = \sup_{g \in G \setminus (E_1 \cup \dots \cup E_{j-1})} \rho(g) = \alpha_j.$$

This implies $\rho|_{E_1 \cup \dots \cup E_{k-1}} = \sum_{D \subseteq E_1 \cup \dots \cup E_{k-1}} \alpha_D \tau_D$, where $\alpha_D = \alpha_j \text{card}(\mathfrak{H}(\mu))$

for $D \subseteq E_j$. Now we set $\alpha_k = \sup_{g \in G \setminus (E_1 \cup \dots \cup E_{k-1})} \rho(g) < \alpha_{k-1}$ and define

$E_k = \{g \in G : \rho(g) = \alpha_k\}$. If $\alpha_k = 0$ our procedure may be stopped. If not, we show that again E_k is a finite union of f-b minimal sets disjoint from E_1, \dots, E_{k-1} . Since the last sets are f-b invariant thus $\Phi(E_k) \subseteq G \setminus (E_1 \cup \dots \cup E_{k-1})$ for all $\Phi \in \mathcal{A}(\mu)$. On the other hand if $g_k \in E_k$ then we have $\rho(g_k) = \sum_{a,b \in S(\mu)} \rho(ag_kb^{-1})\mu(a)\mu(b)$ so $\rho(\Phi_{a,b}(g_k)) \equiv \alpha_k$. This implies $\Phi_{a,b}(E_k) \subseteq E_k$

for all $a, b \in S(\mu)$. Since the set E_k is finite and the transformations Φ are 1-1, thus E_k is f-b invariant. The same arguments as before lead us to the representation $\rho|_{E_k} = \sum_{D \subseteq E_k} \alpha_D \tau_D$ where $\alpha_D = \alpha_k \text{card}(\mathfrak{H}(\mu))$. Now by induction the decomposition (6) is easily seen.

In order to prove that extreme points of ${}_*P_*(\mu)$ are exactly measures τ_D it is sufficient to show that the support $S(\rho)$ of extremal $\rho \in \text{ex } {}_*P_*(\mu)$ is f-b minimal, and that two distinct extremal solutions of (\diamond) have disjoint supports. If $S(\rho)$ is not f-b minimal then by the decomposition (6) $\rho = \sum_{D \in \mathcal{A}(\mu)} \alpha_D \tau_D$ has at least two nonzero coefficients α_D . Clearly such ρ is not extremal. Now let $\rho_1 \neq \rho_2$ be from $\text{ex } {}_*P_*(\mu)$. Since

$$\check{\mu} \star (\rho_1 \wedge \rho_2) \star \mu \leq (\check{\mu} \star \rho_1 \star \mu) \wedge (\check{\mu} \star \rho_2 \star \mu) = \rho_1 \wedge \rho_2$$

and

$$\sum_{g \in G} \check{\mu} \star (\rho_1 \wedge \rho_2) \star \mu(g) = \sum_{g \in G} \rho_1 \wedge \rho_2(g) = \beta$$

thus $\rho_1 \wedge \rho_2 = 0$ (it holds if $\beta = 0$ and then $S(\rho_1) \cap S(\rho_2) = \emptyset$ or $\beta > 0$ and

then $\frac{\rho_1 \wedge \rho_2}{\beta} \in_* P_*(\mu)$. Clearly $\beta < 1$ since $\rho_1 \neq \rho_2$. But $0 < \beta < 1$ gives

$$\rho_j = \beta \frac{\rho_1 \wedge \rho_2}{\beta} + (1 - \beta) \frac{\rho_j - \rho_1 \wedge \rho_2}{1 - \beta}.$$

For extreme ρ_1 and ρ_2 the above is possible only if $\rho_1 = \rho_2$. As a result we get that different extremal solutions ρ_1 and ρ_2 of (\diamond) satisfy $S(\rho_1) \cap S(\rho_2) = \emptyset$, and the proof of *Theorem 2* is completed. ■

COROLLARY 1. *Let μ be an adapted probability measure on a countable group G . If μ is concentrated then ${}_*P_*(\mu)$ is an affine and isometric copy of $\{(t_j)_{j=1}^N : \sum_{j=1}^N t_j = 1, t_j \geq 0\}$ where $N = \frac{\text{card}(G)}{\text{card}(\mathcal{H}(\mu))}$ if G is finite and $N = \infty$ if G is infinite.*

COROLLARY 2. *For any adapted probability measure μ on a countable group G we have ${}_*P_*(\mu) =_* P_*(\check{\mu})$.*

Proof. By *Theorem* from [B] μ is concentrated if and only if $\check{\mu}$ is concentrated. Since $\mathcal{A}(\mu) = \mathcal{A}(\check{\mu})$ thus $\mathcal{D}(\mu) = \mathcal{D}(\check{\mu})$, so for concentrated μ the decomposition (6) gives ${}_*P_*(\mu) =_* P_*(\check{\mu})$. ■

Now we will study asymptotic behaviour of distributions of η_n . Obviously we may drop the case of scattered μ . In fact, for such measures we have:

$$\begin{aligned} \sup_{\nu \in P(G)} \sup_{g \in G} \check{\mu}^{*n} * \nu * \mu^{*n}(gA) &= \\ \sup_{\nu \in P(G)} \sup_{g \in G} \sum_{a, c \in G} \mu^{*n}(c^{-1}agA) \nu(c) \mu^{*n}(a) &\leq \\ \sup_{\nu \in P(G)} \sum_{a, c \in G} (\sup_{g \in G} \mu^{*n}(gA)) \nu(c) \mu^{*n}(a) &= \\ \sup_{g \in G} \mu^{*n}(gA) &\xrightarrow{n \rightarrow \infty} 0 \end{aligned}$$

for any finite set $A \subseteq G$ and $\nu \in P(G)$. Thus the process η_n is scattered as well. On the other hand if μ is concentrated and adapted the situation is different. For any initial distribution ν the distribution of η_n becomes exponentially stationary. Namely, we have

THEOREM 3. *Let μ be an adapted and concentrated measure on a countable discrete group G . Then for some $C > 0$ and $\gamma > 0$ the following estimation*

$$(7) \quad \sup_{\nu \in P(G)} \|\check{\mu}^{*n} * \nu * \mu^{*n} - \sum_{D \in \mathcal{D}(\mu)} \nu(D) \tau_D\| \leq C e^{-\gamma n}$$

holds, where $\|\cdot\|$ stands for $\ell^1(G)$ (or equivalently variation) norm.

Proof. For an element $D = g\mathfrak{H}(\mu)$ of the partition $\mathcal{D}(\mu)$ let $\{\eta_{n,D}\}_{n \geq 0}$ denote the restriction of the Markov chain to the f-b invariant set D . Now $\{\eta_{n,D}\}_{n \geq 0}$ is a finite Markov chain with transition probabilities

$$p_{g_1, g_2}^D = \sum_{a^{-1}g_1b = g_2} \mu(a)\mu(b).$$

It is proved in *Theorem 1* that the measure τ_D is a stationary probabilistic vector for this transition matrix. Let $h_\mu = \text{card}(D) = \text{card}(\mathfrak{H}(\mu))$. With this notation $[p_{g_1, g_2}^D]_{h_\mu \times h_\mu}$ is a $h_\mu \times h_\mu$ doubly stochastic. We show that the family $\{P(D)\}_{D \in \mathcal{D}(\mu)}$ is "uniformly irreducible". Let us fix for a while $D \in \mathcal{D}(\mu)$. For any $g \in D$ the states which may be reached in time n starting from g are exactly $S(\mu^{*n})gS(\mu^{*n}) = D_{g,n} \subseteq D$. Let $g = a_m^{\varepsilon_m} \dots a_1^{\varepsilon_1}$ for some $a_m, \dots, a_1 \in S(\mu)$ and $\varepsilon_m, \dots, \varepsilon_1 \in \{-1, 1\}$. By the same arguments as in the proof of *Theorem* in [B] we get

$$S(\mu^{*n})gS(\mu^{*n}) = S(\mu^{*n})S(\mu^{(n+\sum_{j=1}^m \varepsilon_j)}) = \mathfrak{H}(\mu)g = D$$

if n is large enough. Thus $D_{g,n} = D$ for all $n \geq L(g)$. Let $L(D) = \sup_{g \in D} L(g)$ and $L = \sup_{D \in \mathcal{D}(\mu)} L(D)$. We show that $L < \infty$. Firstly we notice that for any fixed $D \in \mathcal{D}(\mu)$ and arbitrary $g \in D$ if $D_{g,n} = D_{g,k}$ for some $k > n$ then $D_{g,n} = D$. In fact, for any $j > n$ we have

$$D_{g,j} = S(\mu^{*(j-n)})D_{g,n}S(\mu^{*(j-n)}),$$

so $D_{g,n} = D_{g,k}$ implies that the sequence $\{D_{g,j}\}_{j \geq n}$ is periodic. Since for large j the sets $D_{g,j}$ are stabilized as D , by periodicity for some $n \leq j \leq k$ we have $D_{g,j} = D$. This means that $D = D_{g,j} = D_{g,k} = D_{g,n}$. By our *Lemma 1* all sets D of the partition $\mathcal{D}(\mu)$ have exactly h_μ elements. Obviously there are only finite many 1-1 sequences of subsets of a finite set D , and the amount of all such sequences is a function of h_μ . It follows $L < \infty$.

In particular we get that for all $D \in \mathcal{D}(\mu)$ and $g_1, g_2 \in D$ the transition probabilities $p_{g_1, g_2}^{D,n} = \sum_{a^{-1}g_1b = g_2} \mu^{*n}(a)\mu^{*n}(b)$ are strictly positive if $n \geq L$.

This implies that for some α we have $p_{g_1, g_2}^{D,n} \geq \alpha = \inf_{g \in S(\mu^{*n})} (\mu^{*n}(g))^2 > 0$. So the matrix of transition probabilities at the time n satisfies

$$(P^{(D)})^n = [p_{g_1, g_2}^{D,n}]_{h_\mu \times h_\mu} \geq \alpha [1]_{h_\mu \times h_\mu}$$

where $[1]_{h_\mu \times h_\mu}$ denotes the $h_\mu \times h_\mu$ matrix with 1's as entries. From the theory of doubly stochastic matrices $(P^{(D)})^n$ converges to $[1/h_\mu]_{h_\mu \times h_\mu}$

(with exponential rate). Thus for some $C > 0$ and $\gamma > 0$ the inequality $\|(P^{(D)})^n - [1/h_\mu]_{h_\mu \times h_\mu}\| \leq Ce^{-\gamma n}$ holds. The constants C and γ depend on α and h_μ but not on any particular $D \in \mathcal{D}(\mu)$. As a result we get the estimation

$$\sup_{D \in \mathcal{D}(\mu)} \sup_{A \subseteq D} \sup_{\nu \in P(D)} |\check{\mu}^{*n} \star \nu \star \mu^{*n}(A) - \tau_D(A)| \leq Ce^{-\gamma n},$$

where $P(D)$ denotes the set of all probabilities ν such that $S(\nu) \subseteq D$.

Let $\nu \in P(G)$ be an initial distribution of the Markov chain $\{\eta_n\}_{n \geq 0}$ and $A \subseteq G$ be arbitrary. By ν_D we denote the conditional probability of ν on D (i.e. $\nu_D(\cdot) = \frac{\nu(\cdot \cap D)}{\nu(D)}$) if $\nu(D) > 0$ or something if $\nu(D) = 0$. Now we have

$$\begin{aligned} & \left| \text{Prob}_\nu(\eta_n \in A) - \sum_{D \in \mathcal{D}(\mu)} \nu(D) \tau_D(A) \right| = \\ & \left| \sum_{D \in \mathcal{D}(\mu)} (\text{Prob}_\nu(\eta_n \in D \cap A) - \nu(D) \tau_D(A)) \right| \leq \\ & \sum_{D \in \mathcal{D}(\mu)} \nu(D) |\text{Prob}_{\nu_D}(\eta_{n,D} \in D \cap A) - \tau_D(D \cap A)| \leq \\ & \sum_{D \in \mathcal{D}(\mu)} \nu(D) Ce^{-\gamma n} = Ce^{-\gamma n}. \end{aligned}$$

Here $A \subseteq G$ and $\nu \in P(G)$ are arbitrary so we obtain (7) and the proof of *Theorem 3* is completed. ■

COROLLARY 3. *Let μ be an adapted probability measure on countable G and T_μ denote the stochastic operator on the Banach lattice $\ell^1(G)$ defined as $T_\mu(\nu) = \check{\mu} \star \nu \star \mu$. Then the following two conditions are equivalent:*

- (i) μ is concentrated
- (xi) there exist a stochastic projection Q_μ and constants $C > 0$, $\gamma > 0$ such that

$$\|T_\mu^n - Q_\mu\|_{\text{oper}} \leq Ce^{-\gamma n}$$

where $\|\cdot\|_{\text{oper}}$ is the operator norm on $\mathcal{L}(\ell^1(G))$.

Moreover if the above hold then $Q_\mu = \sum_{D \in \mathcal{D}(\mu)} \lambda_D \otimes \tau_D$ where $\lambda_D(\nu) = \nu(D)$.

Proof. Any finite signed measure ν on G may be represented as $\nu = s\nu_1 + t\nu_2$ where ν_1, ν_2 are orthogonal probabilities and $\|\nu\| = |s| + |t|$. ■

References

- [B] W. Bartoszek, *On concentration functions on discrete groups*, Ann. Probability 22, N3 (1994).
- [DL] Y. Derriennic, M. Lin, *Convergence of iterates of averages of certain operator representations and convolution powers*, J. Func. Anal. 85 (1989), 86–102.

DEPARTMENT OF MATHEMATICS,
APPLIED MATHEMATICS AND ASTRONOMY,
UNIVERSITY OF SOUTH AFRICA,
PO BOX 392,
0001 PRETORIA, SOUTH AFRICA
e-mail address: bartowk@risc5.unisa.ac.za

Received April 19, 1993.