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ON THE CONVOLUTION EQUATION jixp%p=p

Introduction

It has been resently proved in [B] that for any probability measure u
on a countable (discrete) group G the existence of nontrivial (i.e. nonzero)
solutions p of the convolution equation (o) i xp*pu = p is equivalent to the
concentration (see definition below) of the measure pu. By , P,(x) we denote
the convex set of all probabilities p on G which solve (¢). Our definitions
and notation follow [B]. For the reader’s convenience we briefly recall some
of them. By the support of a measure p on G we mean the set S(u) = {g €
G : pu(g) > 0}. If S(u) is finite we say that the measure p is finitary. The
convolution of measures y, v is defined

(1) prv(g)= Y plgh (k) =Y p(hw(h™'g).
heG hEG

Clearly p*v belongs to the set P(G) of all probabilities on G if both px and
v are from P(G). Moreover (P(G), ) is an associative semigroup. It follows
from (1) that S(uxv) = S(1)S(v). By ji we denote the symmetric reflection
of a measure p (i.e. i(g) = p(g~?)) and 1 A v; stands for the minimum of
vy and v,. For a fixed probability measure p on G we define a positive linear
operator P, acting on real (or complex) functions f on G

(2) P.f(g)=)_ f(gh)u(h).

heG
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It is well known that each u € P(G) defines a (right) random walk {£,}n>0
on the group G. The transition probabilities are:

(3) Prob (éni1 = glén = k) = u(h7'9) g,h€G.
Thus for any natural n, A C G and h € G we have
(4) Prob (€, € Aléo = h) = (b1 4).

In this note we continue investigations, originated in [B], of the asymptotic
behaviour of sup{u*"(hA): h € G}, where A are finite subsets of G.

DEFINITION 1. A concentration function of a probability measure p €
P(G) is the set function K, defined

Ku(4) = sup p(hA).

We say that a measure p € P(G) is concentrated if there exist a finite set
A C G and a sequence g, € G such that

K, (A) = p**(g;1A) = 1.

We say that a measure u € P(G) is not scattered if there exists a finite set
A C G such that

lim Ku*n (A) > 0.

We say that a measure u € P(G) is scattered if for each finite set A C G' we
have
JggoK#m(A)—-a

Concentration functions of random walks have been investigated for al-
most forty years. Crucial papers for our considerations are [DL] and [B].
In the second paper it is proved that random walks are either concentrated
or scattered. Moreover, (see the Theorem below) it is established that the
classes of concentrated and non-scattered random walks coincide. Several
conditions egiuvalent to concentration are given there. In this note we add
new eqiuvalent conditions in the case when the measure u is adapted.

DEFINITION 2. A probability measure g on G is said to be adapted if the
smallest subgroup &(u) containing S(u) is the whole group G. By () we
denote the smallest normal subgroup H of &(u) such that for all g € S(u)
we have §(u) C gH.

It has been discovered in [B] that if y is concentrated then

50 = U S wwm) = U (SGE™* ™) U S+ )

n=1 n=1
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is a finite subgroup of G. It is even true that for n being large enough we
have H(p) = S(*™ % p*™). This yields a~1H(pn)b = H() for all a,b € S(p).
The above property of concentrated measures brings our attention to the
following family of permutations of the group G. Let &, ,(g) = zgy~! where
z,y,9€G.

DEFINITION 3. Given a probability measure u € P(G) by A(p) we de-
note the group of 1-1 and onto transformations of G' generated by all &,
where a,b € S(p). A set D C G is called forward-back (shortly f-b) in-
variant if ¢(D) = D for all & € A(y). A f-b invariant set D is called
forward-back minimal if there are no f-b invariant sets included in D other
than D.

Since A(u) is a group thus there exist f~b minimal sets and all of them
have the form {®(g) : & € A(n)}, for some g € G. Let D(u) denote the
partition of G onto f-b minimal sets.

DEFINITION 4. Given a probability measure u € P(G) by At(u) we
denote the group of 1-1 and onto transformations of G generated by all
&, such that z = aSra;" 7 ...af', y = b%nb," 7' ... b]* where a;,b; € S(p),
€j,0; € {~1,1} and )} ¢; = ) ;. By DT(”) we denote the partition of

i=1 i=1
G onto minimal sets defined by the group .AT(u) and we call them f-b t
minimal.

Since A(u) C .A:[(u) thus the partition Dy (1) should be finer. However
for concentrated p we find the partitions ’D(,u),'D:f(p) are same. The exis-
tence at least one finite set of the partition D(u) or Dy (n) is equivalent to
concentration of u and this fact is the main point of our Theorem 1. The
partitions D(u) or Dy (1) are also used to describe the geometry of , P,(p).

We find out that either there is only one trivial solution p = 0 of (o) or if
G is infinite and g is adapted then the set ,P,(x) is infinite dimensional.
Since solutions of (o) form a Banach sublattice of £!(G) thus in the second

o0
case , P,(p) is an affine and isometric copy of {(,)%, : . t, =1, t, > 0}
n=1
(so an affine and isometric copy of P(G) ). We finish the introductory part
with the following Theorem which comes from [B].

THEOREM (see [B]). Let pu be a probability measure on a countable
group G. Then the following conditions are equivalent:

(i) g is concentrated
(ii) p is not scattered
(iii) there ezists a function f € £2(G) such that lim ||P?flj; >0
n—o0



164 W. Bartoszek

(iv) there exists a probability measure p on G such that fixpxp=p
(v) nh—»néo card (S(p*")) < oo

(vi) H(p) is finite.

Results

The above Theorem gives us a convenient tool in investigating of ran-
dom walks on discrete groups. Let us notice that the question whether a
probability measure p on countable G is concentrated may be studied us-
ing computers. By [B] nonfinitary measures may be excluded since they are
scattered. For a concrete discrete group G and a finitary measure u € P(G)
we may build an algorithm describing the sequence S(2*™)S(p*") = Hn(p).
If at some moment n+ 1 the sets $,41(x) and $H,(u) coincide then the pro-
cedure may be stopped with the conclusion that g is concentrated. Moreover
in this case the group H(u) is exactly H,(p). To prove Theorem 1 we need

LEMMA 1. If u is adapted and concentrated then D(p) and Dy (1) coincide
with the family of cosets of H(u).

Proof. Since for concentrated p the subgroup $(x) may be represented
as U S(p)~"S(p)* = S(u)~™ S(u)" for some natural n, thus H(x)is f-b
n=1

invariant set. It is also a normal subgroup, so for any a,a;,...,a, € S(u)

£
and €1,...,6, € {—1,1} we have a%r - - - a7 H(p) = a’='  H(p). In particular
H(p) is b t invariant. Clearly it is f~b minimal since H(u) = {D(e) :
® € A(p)} where e denotes the neutral element of G.This implies that the
subgroup $H(p) is f-b i minimal. Since p is assumed to be adapted on the
same way we may prove f-b or f-b t minimality of any coset g$(p). It follows
that the partitions D(u) and Dy (1) coincide with classes {g$H(1)}4ec and
the proof of lemma is completed. w

Now we are in a position to prove:

THEOREM 1. Let u be an adapted measure on a countable group G. Then
the following conditions are equivalent:

(i) p is concentrated
(vii) there ezists a finite f-b t invariant set
(viil) there ezists a finite f~b invariant set
(ix) all sets of the partition 'D:[(y) are finite and coincide with classes

of H(n)

(x) all sets of the partition D(u) are finite and coincide with classes

of (k)
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Proof. Implications (vii)=>(viii), (ix)==(x)==(viii) and (ix)==>(vii)
are obvious. (i)==(ix) and (i)==(x) follow Lemma 1. So we only have to
prove that (viii) implies (i). To show this we prove that existence of a finite
f-b invariant set D C G implies nontrivial solutions of (o). For this let us
take rp, the uniform distribution on D. We have

pxtpxp(g)= Y 7p(agh ™ )u(a)u(b)

a,b€S(u)
0 ifgg D
= { b:;s( )mu(a)u(b) otherwise
a, m
L ifgeD
- cTrﬁ—(F) otherwise = Tp(9)-

Thus 7p € ,Pi(p) and the proof of the Theorem 1 is completed. m
Remark 1. Notice that by the same arguments 7p € , P,(f).

Given a probability measure y on G let {{,}32; denote the random
walk generated by u and {£,}52, its independent copy. Consider a Markov
process {7,}52; on G defined as

(5) nn=£;1'770‘£n

where 7 is independent of £ and &. If pg is a distribution of 7y then the
distribution of 7, is #*™ x po *x u*". For symmetric u processes like (5) belong
to the class of so called bilateral random walks. In this note we obtain a
satisfactory description of their asymptotic distributions. We begin with:

THEOREM 2. Let u be an adapted probability measure on a countable
group G. Then the convez set , P,(p) 1 s either empty (if u is scattered) or
consists of all probabilities p € P(G) having the representation

(6) p= Y aptp

DeD(u)
(¢f p is concentrated) where ap > 0, DE%(”) ap =landrp(-) = gaa: (ﬁ?;f))))

is the uniform distribution on the set D € D(u). Moreover extreme points
of «P.(u) coincide with measures Tp.

Proof. We may assume that u is concentrated. It is noticed in the proof
of Theorem 1 that Tp € , Pi(u). First we prove (6). For p €, P,(p) we set
Er = {91 € G: p(g1) = a1} where oy = sup{p(g) : g € G}. Clearly E, is
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nonempty and finite. If g; € E; then

plgr) = pxpxp(g) = D plagib™ )u(a)u(b),
a,beS(u)

so for all a,b € S(u) the points ag;b~! belong to E;. It implies E; is f-
b invariant, so may be decomposed on finite many sets of the partition

D(p). Since p is uniformly distributed on E; thus p|g, = Y. apTp, where
DCE,

ap = ajcard (H(p)) does not depend on D C E;.

Assume that there are pairwise disjoint sets F,,..., Er_; each of them
is a finite union of elements of the partition D(u), and that for any g; € E;
(1£j<k~-1)wehave

p(9;) = sup p(g) = a;.
9EG\(E1U...E;_1)

This implies p|g,u..E,_, = 3 apTp, where ap = ajcard(H(u))
DCE\U...Ex-1

for D C E;. Now we set o = sup p(9) < ap-1 and define
gEG\(EIU-..UEk_l)

E,={9€G:p(g9)= ar}. If oy =0 our procedure may be stopped. If not,

we show that again Ej is a finite union of f~b minimal sets disjoint from

E,,..., Ex_;. Since the last sets are f-b invariant thus #(F¢) C G\(E,U...U

Ey_1) for all & € A(p). On the other hand if gx € Ej then we have p(gi) =
bzs( )P(aykb_l)ﬂ(a)ﬂ(b) 50 p(Pa,b(gk)) = . This implies P, p(Ex) C Ex

a,beES(pn

for all a,b € S(u). Since the set Ej is finite and the transformations &

are 1-1, thus Ey is f-b invariant. The same arguments as before lead us to

the representation plg, = Y, ap7tp where ap = aicard(H(p)). Now by

DCE,

induction the decomposition (6) is easily seen.

In order to prove that extreme points of , P, () are exactly measures 7p
it is sufficient to show that the support S(p) of extremal p € ex, P.(u) is
f-b minimal, and that two distinct extremal solutions of (¢) have disjoint
supports. If S(p) is not f~b minimal then by the decomposition (6) p =

Y. aptp has at least two nonzero coefficients ap. Clearly such p is not
DeA(y)
extremal. Now let p; # p2 be from ex , P, (). Since

Ak (prAp2) * p < (i x py* )A(fL * pa * p) = p1Ap2

and

Y Bk (prAp)*plg) = ) p1Apa(g) = B

9€G g€G
thus pyAps = 0 (it holds if 8 = 0 and then S(p1)N S(p2) = 0) or 8 > 0 and
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then %ﬂz €x Pi(p). Clearly 3 < 1 since p; # p2. But 0 < 3 < 1 gives

_ aP1Ap2 _ \Pi = P1AP:
For extreme p; and p, the above is possible only if p; = p,. As a result we get
that different extremal solutions p; and p; of (o) satisfy S(p1) N S(p2) = 0,
and the proof of Theorem 2 is completed. m

COROLLARY 1. Let u be an adapted probability measure on a countable
group G. If p is concentrated then . P.(p) is an affine and isometric copy

N

of {(tj)?gl : _Eltj = 1,t; > 0} where N = c;;nd(f)i;)) if G is finite and
J:

N = o0 if G is infinite.

COROLLARY 2. For any adapted probability measure u on a countable
group G we have . P,(p) =, P(f2).

Proof. By Theorem from [B] p is concentrated if and only if & is con-
centrated. Since A(p) = A(jz) thus D(p) = D(ji), so for concentrated p the
decomposition (6) gives . Pi(p) =4« Pi(fi).

Now we will study asymptotic behaviour of distributions of 7,.Obviously
we may drop the case of scattered u. In fact, for such measures we have:

sup sup 2" xvxu*"(gA) =
vEP(G) g€G

sup sup 3 u*™(c g A)u(c)™(a) <
veP(G) 9€G ‘=5

sup Y (sup p*"(gA))v(c)u*"(a) =
veP(G) ;4 9€G

sup u*"(gA) =3 0

9€G
for any finite set A C G and v € P(G). Thus the process 7, is scattered
as well. On the other hand if p is concentrated and adapted the situation
is different. For any initial distribution v the distribution of 7, becomes
exponentially stationary. Namely, we have

THEOREM 3. Let p be an adapted and concentrated measure on a count-
able discrete group G. Then for some C > 0 and v > 0 the following esti-
mation

™ sup [l xvap™ = Y o(Dyroll < Ce
vEP(G) DED(n)

holds, where || - || stands for €1(G) (or equivalently variation) norm.
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Proof. For an element D = gf(u) of the partition D(x) let {nn,p}n>0
denote the restriction of the Markov chain to the f-b invariant set D. Now
{"n,D}n30 is a finite Markov chain with transition probabilities

o= > mau(bd).

a~lg,b=g,

It is proved in Theorem 1 that the measure 7p is a stationary probabilistic
vector for this transition matrix. Let h , = card (D) = card ($(p)). With
this notation [pD 14 xn, is a k, x h, doubly stochastic. We show that

the family {P(P)}pepy,) is "uniformly irreducible”. Let us fix for a while
D € D(u). For any g € D the states which may be reached in time n starting
from g are exactly S(p*")gS(p*™) = Dgn C D.Let g = aSm ...af* for some
amy... a1 € S(p) and €m,...,61 € {—1,1}. By the same arguments as in
the proof of Theorem in [B] we get

S(E*™)gS (™) = S(ﬂ*ﬂ)s(”(n'{pzl‘%l si)) =H(u)g=D
if n is large enough. Thus D, = D for all n > L(g).Let L(D) = sup L(g)
9€D

and L = sup L(D).We show that L < oo. Firstly we notice that for any
DeD(u)
fixed D € D(p) and arbitrary g € D if Dy, = D, for some k& > n then

Dy n = D.In fact, for any j > n we have
Dy ;= S(ﬂ*(j—n))Dy,ns(/‘*(j—n))’

so D, = Dy implies that the sequence {D, ;};>n is periodic. Since for
large j the sets D, ; are stabilized as D, by periodicity for somen < j < k we
have Dy ; = D. This means that D = Dy ; = Dy = Dy . By our Lemma
1 all sets D of the partition D(x) have exactly h , elements. Obviously
there are only finite many 1-1 sequences of subsets of a finite set D, and the
amount of all such sequences is a function of h ,. It follows L < oo.

In particular we get that for all D € D(u) and g1, 92 € D the transition
probabilities pD = 12% p*(a)u*(b) are strictly positive if n > L.
2= g10=g2

This implies that for some @ we have pP" > a = inf (p*(g9))? > 0.

g1,92 — ges(ﬂ*")
So the matrix of transition probabilities at the time n satisfies

(P(D))n = .lqjizgj]hnx"u 2 a[I]hMXh»

where [1],x», denotes the h, x h, matrix with 1’s as entries. From the
theory of doubly stochastic matrices (P(P))" convereges to [1/hu]n, xh,
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(with exponential rate). Thus for some C > 0 and 7y > 0 the inequality
I(PPH™ — [1/hu)h, xh, || < Ce~™™ holds. The constants C' and v depend
on a and h , but not on any particular D € D(u). As a result we get the
estimation
sup sup sup | kwxp(A) - rp(A)] < Ce ™,
DeD(u) ACD veP(D)
where P(D) denotes the set of all probabilities » such that S(v) C D.

Let v € P(G) be an initial distribution of the Markov chain {7,}.50
and A C G be arbitrary. By vp we denote the conditional probability of v

on D (ie. vp(:) = %Dyl ) if ¥(D) > 0 or something if (D) = 0. Now we
have
[Prob,(m € )= ¥~ u(D)ro(4)| =
DeD(p)
Y (Prob,(n € DN A) - V(D)TD(A))j <
DeD(u)
> v(D)|Prob,, (1m0 € D0 A) - 7p(D N A)| <
DeD(p)
Y y(D)Cem ™ =Ce™™
DeD(n)

Here A C G and v € P(G) are arbitrary so we obtain (7) and the proof of
Theorem 3 is completed. m

COROLLARY 3. Let u be an adapted probability measure on countable G
and T, denote the stochastic operator on the Banach lattice £1(G) defined
as T,(v) = i xv x p. Then the following two conditions are equivalent:

(i) p is concentrated
(xi) there ezist a stochastic projection Q, and constants C > 0,y > 0
such that

T2 — Qulloper < Ce™"

where || - ||oper is the operator norm on L(£}(G)).

Moreover if the above hold then Q, = >, Ap ® rp where Ap(v) =
DeD(u)

v(D).

Proof. Any finite signed measure v on G may be represented as v =
svy + tv; where vy, v, are orthogonal probabilities and ||v|| = |s| + [¢|. =
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