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ON THE CONVOLUTION EQUATION ji*p*p = p 

Introduction 
It has been resently proved in [B] that for any probability measure p 

on a countable (discrete) group G the existence of nontrivial (i.e. nonzero) 
solutions p of the convolution equation (o) jfi • p • p = p is equivalent to the 
concentration (see definition below) of the measure p. By irPir(p) we denote 
the convex set of all probabilities p on G which solve (o). Our definitions 
and notation follow [B]. For the reader's convenience we briefly recall some 
of them. By the support of a measure p. on G we mean the set S(p) = {g € 
G : p(g) > 0}. If S(p) is finite we say that the measure p is finitary. The 
convolution of measures p, v is defined 

(1) n*v{g)= J > G / / r > ( / 0 = E M W ' i ) . 
heG h£G 

Clearly p-kv belongs to the set P(G) of all probabilities on G if both p. and 
v are from P(G). Moreover (P(G), •) is an associative semigroup. It follows 
from (1) that S(p*u) = S(p)S(v). By p, we denote the symmetric reflection 
of a measure p, (i.e. p(g) = p(g~1)) and A 1/2 stands for the minimum of 
1/1 and 1/2 • For a fixed probability measure p on G we define a positive linear 
operator acting on real (or complex) functions f on G 

( 2 ) P , / ( * ) = £ / « MA)-
h£G 

1991 Mathematics Subject Classification: 22D40, 43A05, 47A35, 60B15, 60J15. 
Key words and phrases: random walk, concentration function, stationary distribution. 
The author wishes to express his gratitude to the South African Foundation for Re-

search Development for financial support. Most of the results of this paper were presented 
at the Potchefetroom University of Christian Higher Education in May of 1992. The first 
draft was also prepared at PUCHE. The author wishes to express his thanks for the 
hospitality and support shown him by both institutions. 



162 W. B a r t o s z e k 

It is well known that each /z G P(G) defines a (right) random walk {£n}n>o 
on the group G. The transition probabilities are: 

(3) Prob (£b + 1 = g\£n = h) = p{h~xg) g,heG. 

Thus for any natural n, A C G and h € G we have 

(4) Prob ((n € A\to = h) = ^(h^A). 

In this note we continue investigations, originated in [B], of the asymptotic 
behaviour of sup{/i*"(/iA) : h £ G}, where A are finite subsets of G. 

D E F I N I T I O N 1. A concentration function of a probability measure // 6 
P(G) is the set function KM defined 

= sup n(hA). 
h€G 

We say that a measure // € P(G) is concentrated if there exist a finite set 
A C G and a sequence gn € G such that 

We say that a measure fi G P(G) is not scattered if there exists a finite set 
AC G such that 

lim K^n (A) > 0. n—•oo 
We say that a measure ^ € P(G) is scattered if for each finite set A C G we 
have 

lim = 0. 
n—»co 

Concentration functions of random walks have been investigated for al-
most forty years. Crucial papers for our considerations are [DL] and [B]. 
In the second paper it is proved that random walks are either concentrated 
or scattered. Moreover, (see the Theorem below) it is established that the 
classes of concentrated and non-scattered random walks coincide. Several 
conditions eqiuvalent to concentration are given there. In this note we add 
new eqiuvalent conditions in the case when the measure /z is adapted. 

DEFINITION 2. A probability measure /z on G is said to be adapted if the 
smallest subgroup <5(//) containing S(fi) is the whole group G. By fj(/z) we 
denote the smallest normal subgroup H of ©(//) such that for all g € S(p) 
we have 5(/x) C gH. 

It has been discovered in [B] that if ¡i is concentrated then 
oo oo 

Sj(n)= ( J S(ji*n*n*n) = U ( S ( A * n * / O u S ( / i * n * A * n ) ) 
7 1 = 1 n = l 
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is a finite subgroup of G. It is even true that for n being large enough we 
have f j ( f i ) = 5(/i*n • fi*n). This yields a ^ f j ^ b = £(/x) for all a, b <E S(fi). 
The above property of concentrated measures brings our attention to the 
following family of permutations of the group G. Let $Xty(g) = xgy~x where 
x,y,g e G. 

D E F I N I T I O N 3. Given a probability measure n € P(G) by A(fi) we de-
note the group of 1-1 and onto transformations of G generated by all <?„,{, 
where a,b G S(fi). A set D C G is called forward-back (shortly f-b) in-
variant if $(D) = D for all # 6 A(fi). A f-b invariant set D is called 
forward-back minimal if there are no f-b invariant sets included in D other 
than D. 

Since A(fi) is a group thus there exist f-b minimal sets and all of them 
have the form {#(<7) : # € «4(//)}, for some g £ G. Let T>(fi) denote the 
partition of G onto f-b minimal sets. 

D E F I N I T I O N 4 . Given a probability measure /X € P(G) by we 
denote the group of 1-1 and onto transformations of G generated by all 

such that x = a^a^S^ .. .a j 1 , y = b°*b°nJ1
1 ...bp where aj,bj € S(n), 

n n 
£ j i a j € 1)1} a n ( l £ = £ a j • By (M) w e denote the partition of 

j=1 j=1 1 

G onto minimal sets defined by the group Aj(fi) and we call them f-b | 
minimal. 

Since A(n) C A^(fi) thus the partition V^(fi) should be finer. However 
for concentrated fi we find the partitions V(fi),V^(fi) are same. The exis-
tence at least one finite set of the partition X>(/x) or (/¿) is equivalent to 
concentration of fi and this fact is the main point of our Theorem 1. The 
partitions X>(/x) or X>|(/z) are also used to describe the geometry of 
We find out that either there is only one trivial solution p = 0 of (o) or if 
G is infinite and /1 is adapted then the set *P*(/x) is infinite dimensional. 
Since solutions of (o) form a Banach sublattice of £*(G) thus in the second 

00 
case *P*(/x) is an affine and isometric copy of : £ n̂ = 1? ¿n > 0} 

n=l 
(so an affine and isometric copy of P(G) ). We finish the introductory part 
with the following Theorem which comes from [B]. 

T H E O R E M (see [ B ] ) . Let n be a probability measure on a countable 
group G. Then the following conditions are equivalent: 

(i) fi is concentrated 
(ii) fi is not scattered 

(iii) there exists a function f e l2(G) such that lim \\PJ}f W2 > 0 
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(iv) there exists a probability measure p on G such that jl*p*p, = p 
(v) lim card (S(/i*n)) < oo n—> oo 

(vi) Sj(fi) is finite. 

Results 
The above Theorem gives us a convenient tool in investigating of ran-

dom walks on discrete groups. Let us notice that the question whether a 
probability measure /z on countable G is concentrated may be studied us-
ing computers. By [B] nonfinitary measures may be excluded since they are 
scattered. For a concrete discrete group G and a finitary measure p, 6 P(G) 
we may build an algorithm describing the sequence S(/2*n)5'(/z*n) = f)n(/i). 
If at some moment n + 1 the sets fjn+i(/i) and Sjn(p) coincide then the pro-
cedure may be stopped with the conclusion that p, is concentrated. Moreover 
in this case the group is exactly fjn(/i). To prove Theorem 1 we need 

LEMMA 1. I f p is adapted, and concentrated then andV^(p) coincide 
with the family of cosets of P r o o f . Since for concentrated p the subgroup Sj(p) may be represented 

oo 
as IJ S(/i)"n5(/z)n = S(p,)-n»S(p)n* for some natural nM thus Sj(fi) is f-b 

n=l 
invariant set. It is also a normal subgroup, so for any a , a i , . . . , a n € S(p) 

n 

and £ i , . . . ,£n G {—1,1} we have a®» • • • = a'-1 In particular 
$j(n) is f-b | invariant. Clearly it is f-b minimal since Sj(fi) = {#(e) : 
$ € A(fi)} where e denotes the neutral element of G.This implies that the 
subgroup Sj(fi) is f-b | minimal. Since fi is assumed to be adapted on the 
same way we may prove f-b or f-b | minimality of any coset gSj(fi). It follows 
that the partitions T>(fi) and P|(/i) coincide with classes {gf)(fi)}g€G and 
the proof of lemma is completed. • 

Now we are in a position to prove: 

THEOREM 1. Let p. be an adapted measure on a countable group G. Then 
the following conditions are equivalent: 

(i) p, is concentrated 
(vii) there exists a finite f-b | invariant set 

(viii) there exists a finite f-b invariant set 
(ix) all sets of the partition X*|(/x) are finite and coincide with classes 

ofSj(tx) 
(x) all sets of the partition X>(/z) are finite and coincide with classes 

of Mri-
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P r o o f . Implications (vii)=4»(viii), (ix)=>(x)=>(viii) and (ix)=>(vii) 
are obvious. (i)=>(ix) and (i)=>-(x) follow Lemma 1. So we only have to 
prove that (viii) implies (i). To show this we prove that existence of a finite 
f-b invariant set D C G implies nontrivial solutions of (o). For this let us 
take T£>, the uniform distribution on D. We have 

fi *rD*p(g) = TD{agb~l )p(a)p(b) 
a,66S(/i) 

f 0 M g ^ D 
= 1 ^ c a r d f r n ^ M 6 ) o t h e r w i s e 

/ 0 if g i D 
= l 5 5 f e otherwise = 

Thus Tp 6 -kP-k(fi) and the proof of the Theorem 1 is completed. • 

R e m a r k 1. Notice that by the same arguments TD G *P*(/i). 

Given a probability measure p on G let denote the random 
walk generated by p and its independent copy. Consider a Markov 
process on G defined as 

( 5 ) Vn = in1 •Vo-^n 

where 770 is independent of £ and f . If po is a distribution of 770 then the 
distribution of rjn is p*n * pa* p*n. For symmetric p processes like (5) belong 
to the class of so called bilateral random walks. In this note we obtain a 
satisfactory description of their asymptotic distributions. We begin with: 

THEOREM 2. Let p be an adapted probability measure on a countable 
group G. Then the convex set +P*(p) i s either empty (if p is scattered) or 
consists of all probabilities p € P(G) having the representation 

(6) p = aDTD 
Dev(fi) 

(if p is concentrated) where OT£> > 0, Y\ AP = 1 and TD(-) = C a F j 
DZV(H) c a r a 

is the uniform distribution on the set D € D(p). Moreover extreme points 
of+P+ip) coincide with measures TQ. 

P r o o f . We may assume that p is concentrated. It is noticed in the proof 
of Theorem 1 that Tp € +P+(p). First we prove (6). For p G* P*(p) we set 
El = {gi e G : p(gx) = a i } where a ! = sup{p(g) : g G G}. Clearly is 
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nonempty and finite. If gi € E\ then 

p(gi) = i**p*Msi) = X) p(agMaM6)» 
a,bes(n) 

so for all a, b € the points agib~l belong to E\. It implies E\ is f -
b invariant, so may be decomposed on finite many sets of the partition 
V(fi). Since p is uniformly distributed on E\ thus P\E1 = aDTD, where 

DCEi 
otD = ajcard (S)(fi)) does not depend on D C E\. 

Assume that there are pairwise disjoint sets Ei,..., Ek-i each of them 
is a finite union of elements of the partition T>(/z), and that for any gj G Ej 
( 1 < j < k — l ) w e have 

p(9j) = sup p(g) = otj. 
g€G\(E1U...Ej-1) 

This implies p\E1u...Ek--l = 2 <*dTd, where aD = ajcard(.$(/i)) 
DCE1U...Ek-1 

for D C Ej. Now we set a* = sup p{g) < atk-i and define 
geG^EiU.-UEk-i) 

Ek = {g € G ; p(g) = a*;}. If a*, = 0 our procedure may be stopped. If not, 
we show that again Ek is a finite union of f-b minimal sets disjoint from 
Ei,..., Ek-Since the last sets are f-b invariant thus $(Ek) C G\ (£ iU. . .U 
Ek-1) for all # € A(fi). On the other hand if gk € Ek then we have p{gk) = 

Y, p{agkb-x)ii{a)n{b) so p($ayb(gk)) = ak. This implies $a,b{Ek) C Ek a,b€S(n) 
for all a, 6 € S(n). Since the set Ek is finite and the transformations # 
are 1-1, thus Ek is f-b invariant. The same arguments as before lead us to 
the representation p\Ek = X) G ld td where a j j = afccard(-5(//)). Now by 

DCEk 
induction the decomposition (6) is easily seen. 

In order to prove that extreme points of are exactly measures td 
it is sufficient to show that the support S(p) of extremal p 6 ex*P*(/i) is 
f-b minimal, and that two distinct extremal solutions of (o) have disjoint 
supports. If S(p) is not f-b minimal then by the decomposition (6) p = 

S aDrD has at least two nonzero coefficients ap. Clearly such p is not 

extremal. Now let pi p2 be from ex Since 

£*(/5IA/>2)*/X < {{t*p\*p)t\{ii*p2*p) = P1AP2 
and 

^fl-k{pihp2)*n{g) = ^ piAp2{g) = /3 
g€G 3€G 

thus piAp2 = 0 (it holds if ¡3 = 0 and then S(pi) n S(p2) = 0) or /? > 0 and 
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then €* P M - Clearly 0 < 1 since px ± p2. But 0 < /? < 1 gives 

For extreme pi and p2 the above is possible only if p\ = p2. As a result we get 
that different extremal solutions ¿>i and of (o) satisfy S(p\) D S(pi) = 0, 
and the proof of Theorem 2 is completed. • 

COROLLARY 1. Let p be an adapted probability measure on a countable 
group G. If p. is concentrated then *P*(p) is an affine and isometric copy 

of {(tj)f=! : g t j = M ; > 0} where N = if G is fmite and 

N = oo if G is infinite. 

COROLLARY 2 . For any adapted probability measure p on a countable 
group G we have *P*(p.) =* P*(/i). 

P r o o f . By Theorem from [B] p is concentrated if and only if p is con-
centrated. Since A(p) = A(p) thus V(p) = V(p), so for concentrated p the 
decomposition (6) gives =* P*(p)- • 

Now we will study asymptotic behaviour of distributions of r)n.Obviously 
we may drop the case of scattered p. In fact, for such measures we have: 

sup sup p*n *v* p*n (gA) = 
f€P(G) g€G 

sup sup V ] pkn(c~1agA)v(c)pi'n(a) < 

sup T (sup p*n(gA)Mc)p*n(a) = 

suv p*n(gA) 
g£G 

for any finite set A C G and V € P(G). Thus the process RJN is scattered 
as well. On the other hand if p is concentrated and adapted the situation 
is different. For any initial distribution v the distribution of rjn becomes 
exponentially stationary. Namely, we have 

T H E O R E M 3 . Let p be an adapted and concentrated measure on a count-
able discrete group G. Then for some C > 0 and 7 > 0 the following esti-
mation 

(7) sup \\p*n*v*p*n - Y] V(D)TD\\ < C e - 7 n 

holds, where || • || stands for ¿1(G) (or equivalently variation) norm. 
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P r o o f . For an element D = gSj(fi) of the partition V(fi) let {7/n,r>}n>o 
denote the restriction of the Markov chain to the f-b invariant set D. Now 
{Vn,D}n>o is a finite Markov chain with transition probabilities 

a~1gib=g3 

It is proved in Theorem 1 that the measure Tp is a stationary probabilistic 
vector for this transition matrix. Let h M = card (D) = card ($j(fi)). With 
this notation [p^)i3]fc„xfcM is a x h^ doubly stochastic. We show that 
the family is "uniformly irreducible". Let us fix for a while 
D € For any g € D the states which may be reached in time n starting 
from g are exactly S(p,*n)gS(n*n) = Dg<n C D. Let g = . . . aj1 for some 
a m , . . . , a i € S(fi) and em,...,£i € {—1,1}- By the same arguments as in 
the proof of Theorem in [B] we get 

S(ji*n)gS(fi*n) = ''>) = Sj(ji)g = D 

if n is large enough. Thus D3in = D for all n > L(g).Let L(D) = sup L(g) 
g£D 

and L = sup L(D).We show that L < oo. Firstly we notice that for any 
Dev(n) 

fixed D € T>(fi) and arbitrary g € D if D9tn = D3tk for some k > n then 
DgtU = D. In fact, for any j > n we have 

DaJ = S(il*^)Dg,nS(fi^), 

so Dgtn = Dgyk implies that the sequence {Dg,j}j>n is periodic. Since for 
large j the sets Dgj are stabilized as Z), by periodicity for some n < j < kv/e 
have DStj = D. This means that D = Dgj = D3ik = D3tn. By our Lemma 
1 all sets D of the partition T>(fi) have exactly h M elements. Obviously 
there are only finite many 1-1 sequences of subsets of a finite set D, and the 
amount of all such sequences is a function of h It follows L < oo. 

In particular we get that for all D £ V(fi) and <71,(72 G D the transition 
probabilities = ^ /i*n(a)//*n(6) are strictly positive if n > L. 

a~19ib=92 
This implies that for some a we have p? '" > a = inf (u*n(g))2 > 0. 

So the matrix of transition probabilities at the time n satisfies 

where [ l j^x /v denotes the h^ X h^ matrix with l 's as entries. From the 
theory of doubly stochastic matrices (p(£ ,))n convereges to [l/fcM]fcMxfcM 
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(with exponential rate). Thus for some C > 0 and 7 > 0 the inequality 
||(p(D))n _ [l/h^]hitXhJ\ < Ce~in holds. The constants C and 7 depend 
on a and h M but not on any particular D € As a result we get the 
estimation 

sup sup sup \ixkn-ku*fi*n(A)-TD(A)\<Ce"rn, 
DeV(ti)ACD I>eP(D) 

where P(D) denotes the set of all probabilities v such that S(y) C D. 
Let v 6 P(G) be an initial distribution of the Markov chain {i?n}„>o 

and A C G b e arbitrary. By vd we denote the conditional probability of v 
on D (i.e. !/£>(•) = ) ^ v{D) > 0 or something if i/(D) = 0. Now we 
have 

JProb^ijn € A) - V(D)Td{A)\ = 
D<LV(n) 

| Y , (ProKi^e Dn A) ~^D)Td(A))\< 

5 3 V(D)|Prob„D {nn,D e D n A) - TD(D n A)\ < 

53 v{D)Ce-^n = Ce~'in. 
Dev(n) 

Here A C G and v € P{G) are arbitrary so we obtain (7) and the proof of 
Theorem 3 is completed. • 

COROLLARY 3. Let /x be an adapted probability measure on countable G 
and Tft denote the stochastic operator on the Banach lattice tl(G) defined 
as Tft(v) = fi-kv-k fi. Then the following two conditions are equivalent: 

(i) [i is concentrated 
(xi) there exist a stochastic projection Q ̂  and constants C > 0, 7 > 0 

such that 

IIT; - Q J o p e r < Ce-i" 
where || • ||oper is the operator norm on C{il{G)). 

Moreover if the above hold then Q^ = ^d®td where \d(v) = 
Dev(») 

v{D). 

P r o o f . Any finite signed measure v on G may be represented as v = 
svi + if2 where i>i,f2 are orthogonal probabilities and ||i/|| = |s| + |i|. • 
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