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STRONG APPROXIMATION
IN GENERALIZED HOLDER NORMS

In this paper we extend some results on approximation of 27-periodic
functions, given in [3]-[5], to the case of strong approximation by some
means of Fourier series. Similarly as in [3], we present approximation results
in Holder norms based on general modulus-type functions.

1. Notations
1.1. Let C = Cy, be the space of 27r-periodic real-valued functions con-
tinuous on R = (—o00,+00) with the norm

(1) Iflle = max|f(z).
Let {2 be the set of modulus-type functions, i.e. §2 is the set of all func-
tions Q satisfying the following conditions:

a) w is defined and continuous on (0, +00),
b) w is increasing and w(0) = 0,
c¢) w(h)h™! is decreasing for h > 0.

For a given w € 2 we define the class H“ of all functions f € C for
which

o [14wflle
(2) | flle := SUp ) < 400,
where
(3) Anf(z) = f(z + k)~ f(2).
In H¥ we define the norm
(4) 1 fllze == fllc + [[fllw-

It is known that H¥ (w € £2) with the norm (4) is a Banach space. H¥
is called generalized Holder space. If w(h) = h*, 0 < @ < 1, then HY is the
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classical Hélder space.

1.2. Similarly as in [3]-[5] we define subspace H* C H“, w € £, as
follows

Tw . w., 1 ”Ahf”C _
H ._{fEH 'hlg})l+__w(h) =0

with the norm || - || 4. defined by (4).
If w,p € 2 and q(h) = %‘%, h > 0, is a non-decreasing function, then

(5) HYC H* and HYC H*

1.3. Denote, as usual, by E,(f;C),n € N = {0,1,...}, the best approxi-
mation of function f € C by trigonometric polynomials of order < n in the
sense of C. It is known ([6], [8]) that if f € H¥, w € {2, then

) Bn(£0) < %0( 7 )y mEN.

Iffeff“’,we.(),then

1
(7 En(f,C)—o(w(n—H)) as m — 00.
1.4. For a given f € C let

(8) % + Z(ak cos kz + by sin kz)
k=1

be its Fourier series. Let S,(z; f), n € N, z € R, be the n-th partial sum of

(8).

In this paper we shall consider the strong approximation of function f
belonging to the spaces H* by some means of Fourier series (8) in generalized
Holder norms (4).

Let @ be a set of real numbers, r, € @ be a accumulation point of Q
and let T = {tx(7)}32, be a sequence of real-valued functions defined on Q

and such that:
1°t(r) > 0forall r€ @ and k € N,
2° lim tx(r) = 0 for every fixed k € N,

reQ
3° the series Y pe, tk(r)log(k + 1) is convergent on Q,

4° 3 02" Trga(r) < My, for all r € Q, where @ = 2™ — 1, M; =
const. > 0 and
() Tya(r) = max t(r), pg€l.
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We define the strong 7-means of Fourier series (8) of f € C:

(10) L(r,z; £, T) =Y _ te()|Sk(z; 1) - f (=)
k=0

for z € R and r € . It is obvious that if f € C, then for every fixed r € @
the function L(r, -; f,T) belongs also to C.

The purpose of this note is to estimate the generalized Hélder norms of
L(r,-; f,T) for f € H¥ and f € H“.

By Mi(-), k =1,2,..., we shall denote suitable positive constants de-
pending only on indicated parameters.

2. Auxiliary results
Let P = {pi}2, be a non-negative and bounded sequence,

(11) Pom = nrsnkasxm px, n,m¢€N,

and let {v,} be a monotone non-decreasing sequence of integers such that
0<v, <nandn < A, for n € N, where A = const. > 1. For a given
f € C we define two functions as follows:

n

(12 U @3 1,P)i= —5 3 pelSe(as f)
n k=n—-v,
and
(13)  Wan@SP)= o Y mlSus ) - S,

k=n-—v,

z € R. Clearly the functions (12) and (13) belong to C also.
Using the Leindler results given in [1] and [2] ([2], Th. 1.11), we immedia-
tely obtain

LEMMA 1. If f € C, then we have

(14) IUn,v (-5 f, Pllc < My(A) P, llflic
and

(15) Wa . (-5 s Plllc £ Ma(A)Proy, nEnv,(f;C)
forallneN.

Using Lemma 1, we shall prove two lemmas.
LeMMA 2. If f € HY, w € 12, then
Wa,v, (-5 s Plw £ Ma(A) Py, nll fllo
for alln € N, which proves that W, , (-; f,P) € H“.
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Proof. By (1)—(3) and (11)—(13), we have
Wnioa (3 /s Plllw = sup{ll AnWe,v, (-5 £, P)llc/w(h)}

and
AnWu a3 £, P = | 2 kz PrAnIS(x: ) - £@)
$oET, X A - Aaf(e)
= Y misEm A - AnfCe)

k=n—vy,
S Un,v,. (.'l:; Ahf, P) + Pn—v,, ,nlAhf(x)l
for all z € R. Hence and by (14) we get
(16) 1A Wnw, (-3 f, Plllc < (My(A) + 1)Pas, nllArfllc,
which implies
1Wa,v, (5 £, Pllw < (M1(A) + 1) Pau, ol fll-
Thus the proof is completed.

LEMMA 3. Suppose that f € HY, w € 12, and p € §2 is a function such
that q(h) = i’—((%)— is non-decreasing for h > 0. Then we have

1
w. .. < - -
1 n,v..( 3 £, P)”u pS MS(’\)Pn—vn,nq(n o, + 1)“f”w

foralln e N.

Proof. From Lemma 2 and (5) it follows that W, , (-;f,P) € H*.
Hence and by (1)—(3) we have

“Wn,u,.( ) f’ P)”# = T;I;(”Ahwn,u,.( ';f’ P)“C/N(h))
S MWawa (5 F Pl +IWa,0, (55 5 Pllus2s
where
IWh,oo (-5 F, P)luy == Sup (1AW, (-5 £, Pllc/u(R)),
IWhon (-5 F P2 = Sup (1AWn,o. (<5 £, P)llc/n(h)),
An={h:h>1/(n=v,+1)}, Bpa={h:0<h<1/(n-v,+1)},
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By (3) we have

186Wa,u, (5 s Plllc < 2lWaw, (-5 f, P)lles
which, by (15) and (6), gives

1
”Wn,u..( ' ;f’ P)”I-l,l < 2(“(m))

< 2M,(N) (u (n__+n+1)) _1Pn_u" nEau, (f;C)

1
R DL

1
We (-5 f, Pllc

Using (16), we get

A
W (-5 £y Pz < (My(A) 4 1)Pacy, o sup 1A2SN

B, M(h)
< 060 + 1) Pacsym iy ) Il

Summing up, we obtain our result.
Applying (4), (15), (6) and Lemma 3, we obtain the following

LEMMA 4. Under the assumptions of Lemma 3 we have

1
nual "3 w < ’ n—vg,,n —_ w
W3, PVt < M) Poc mt( 5—ag ) U1

forallne N,
Arguing as in the proofs of Lemmas 2-4 and using (1)~(7) we obtain

LEMMA 5. If f € H¥, w € 2, then the Junction W, , (-; f,P),n € N,
0 < v, < n, belongs to H* also.

LEMMA 6. Suppose that f € fI“’, w € N2 and p € N2 is such that q(h) =
w(h)

) is a non-decreasing function for h > 0. Then, if P,_, » > 0 and
n — v, — 00, we have

W £, Pl = o Prnt (g ) ) a9 oo

n—ov,+1
In particular, if P, 2, > 0, then

1
“W2n,n( -;f, P)”f{p = O(P"’2"q(n_ﬂ)> as n — o00.
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3. General theorems

In this part we shall give four theorems on the strong means L(r, -; f,T)
of Fourier series of f € C'. We observe that if T is a sequence having the
properties 1°-4° and f € C, then formula (10) can be written in the form

oo 2%

17) L(r,z; £, T)= Y Y te(")ISk(z; f) - f(z)|

n=0 k=%
oo
= Z 2nW2ﬂ,ﬁ(T, ;5 f) T))
n=0

for z € R and r € Q, where @ = 2™ — 1 and Wiz a(r,2; f,T) is defined by
(13) with P =T.
From (4) and (17) we get

ArL(r,z; f,T) = Y 2" AWana(r,3; £, T),

n=0

which, by (16), (9) and 4°, gives that

(18) JALL(r, 5 £, Tllc < D 21 ArWan,a(r, -5 £, Tl
n=0
< Mgl Anfllc D 2" Tn2a(r)
n=0

< M||Anflle, r€@, h>0.

From (18) we immediately obtain

THEOREM 1. If f € H¥, w € 12, then

WL(r, 5 £, TD)llw < Mg| fllws 7€Q,

which proves that L(r, -; f,T)|| € H¥ for every firedr € Q.

THEOREM 2. If f € ﬁ“’, w € 2, then for every fizred r € Q the function
L(r, -5 f,T) belongs to H also.

Applying Lemma 1 and Lemma 4, we shall prove two theorems.

THEOREM 3. If f € HY, w € 12, then

o0

IZ(r, -3 £, Dllc < Mollfllw Y 2" Tn 2n(r)w(27")

n=0

forallr e Q (m=2"-1).
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Proof. Using Lemma 1 and (6) to (17), we obtain

”L(T’ af9T)”C S Z2n”W2ﬁ.ﬁ(ra 1f1T)”C

n=0

< My(2) i 2"Ta2n(r)Er(f; C)

n=0
< 3M2(2)|| fllw E 2"Taan(r)w(27") forre Q.
n=0

THEOREM 4. Suppose that f € HY,w € §2, and p € £ is a function such
that q¢(h) = 3’{% is non-decreasing for h > 0. Then

u(h
(19) IL(r, 5 £, s < Mio()l|fllw Y 2" Ta,2a(r)a(27")
n=0

forallre Q (W=2"-1).

Proof. By Theorem 1 and (5) we have L(r, -; f,T) € H* for every fixed
r € Q. From this and from (17) we get

00
”L(’I‘, “ f'; T)“H“ S Z 2n|IW2ﬁ.,ﬁ.(ra 3 fvT)“H“

n=0"

(r € Q). Now using Lemma 4, we obtain (19).

4. Applications

4.1. Riesz method. Consider the following strong Riesz means of Four-
ier series of f € C:

1 n
R.(z; f,B) := mF 1P Y ((k+1)P = k#)|Si(=; f) - f(2)],
k=0
n € N,z € R, 8 > 0. From Theorem 1 and Theorem 4 we obtain the

following

COROLLARY 1. Suppose that f € H“, w € 2, and p is a function as in
Theorem 4. Then, for every fized > 0, we have

IRA( -5 £, B)lw < Muy(p, B)Ifllu(m + 1) Y 2%Pg(27%)

k=0

for all n € N, where m is integer such that 2™ < n 4+ 1 < 2™+,
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In particular, if ¢(h) < M12h7 (0 < < 1) for A > 0, then

(n+1)77 if y < B,
B3 £, 8w < Mi3f| Sl { (n+1)7log(n +1) ify =4,
(n+1)7° if v > 8,

for all n € N, where M5 = Mis3(p, 3,7).
Using Theorem 2, (20) and Lemma 6 to (21), we obtain

COROLLARY 2. Suppose that w and p are two functions as in Theorem 4
and g(h) < M12h? (0<y< 1) forh> 0. If f € HY, then

o((n +1)7") f0<y<p,
1 Bal -5 f Bl = { of(n+1)""log(n+1)) fy=045,
O((n+1)77) if y > B,

as n — oo.

4.2. Abel method. Consider the strong Abel means of Fourier series of
fedC:
- (k +p

@) anzn)i= -y (V1) N - e,

k=0

z€R,re(0,1),r—>1_andpeN.

It is easily verified that the sequence T defining the strong Abel means
(22) satisfies the conditions 1°-4° and

k + P
- o = — p)itp k
(23) Tnaa(r) ﬁg}cgﬁ(l ) ( k )r

p+1) .
< (T(l — r)MP(2m)PrP
forne N,aA=2"-1,p€ N and r € (0,1).
Using Theorem 1, Theorem 4 and (23) to (22), we obtain
COROLLARY 3. Under the assumptions of Theorem 4 we have

S
I 4p(r, -5 Nl < M7l fllu(1 =)'+ 25(p + 1)g(27%))
k=0

for allr € (0,1), where § = [log, 2] (i.e. § is the integral part of log, =)
and Miy = Mis(p, p).

In particular if g(h) < My2h" for h > 0 with 0 < 4 < 1, then
1Ap(ry -5 Ollaw < Mas(p, p, VI fll(1 = 1)7

for all r € (0,1).
From Theorem 2, (5), (20)—(22) and Lemma 6 follows
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COROLLARY 4. Let w and p be a functions as in Corollary 2. If f € H¥
andp € N, then

NAp(r, s lgu = o((1=7)") asr—1_.

4.3. Riemann method. Now we shall consider the strong Riemann
means of Fourier series (8) of f € C defined by the formula

2 X sin? kr
R(r,z; f) = ~ > —7,I5k(z ) = f(2)],

k=1

z€R,0<r<1,r— 04 ([7], [8]).
The sequence T with tx(r) = ﬂ%;—fl, 0 <r <1, r— 04, satisfies the
conditions 1°-4°, e.g. applying the inequality
sin? kr r if0<kr<i,
Kr = | e k> 1,

r
and writing $ = [logy(1 +2)],0 < r < 1, we get

0 S-1 00
Z 2nTﬁ.,2ﬁ(T) < ( Z + E )QnTﬁJﬁ(T)
n=1 n=1 n=S

S5~1 1 0
< ny - nion _ 1\-2
<ry 2 +722 (2" -1)7?% < 35,
n=1 n=S
which proves that the condition 4° is fulfilled.
From Theorems 1-4 and Lemma 1-6 we obtain the following estimations:
COROLLARY 5. If f € H¥, w € 12, then

S
IR(r, -3 Nlle < Musllfllur Y 2"w(27")

n=1
for all r € (0,1), where S = [log,(} +2)].
COROLLARY 6. If the assumptions of Theorem 4 are satisfied, then

S
IR(r, -5 H)llze < Muz(@)lifllor D 27a(27™)
n=1

for all r € (0,1), where S = [log,(L + 2)].
In particular, if g(h) < M;3h7,0 < v < 1, for h > 0, then
IR, -5 HIE* < Mgy Dl ™
for all 7 € (0,1).
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CoOROLLARY 10. If the assumptions of Corollary 2 are satisfied, then for
f € H* we have

“R(’I‘, Lf)”f{u = 0(7'7) asr — 0+.
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