

M. Górzeńska, M. Leśniewicz, L. Rempulska

STRONG APPROXIMATION  
IN GENERALIZED HÖLDER NORMS

In this paper we extend some results on approximation of  $2\pi$ -periodic functions, given in [3]–[5], to the case of strong approximation by some means of Fourier series. Similarly as in [3], we present approximation results in Hölder norms based on general modulus-type functions.

1. Notations

1.1. Let  $C = C_{2\pi}$  be the space of  $2\pi$ -periodic real-valued functions continuous on  $R = (-\infty, +\infty)$  with the norm

$$(1) \quad \|f\|_C := \max_x |f(x)|.$$

Let  $\Omega$  be the set of modulus-type functions, i.e.  $\Omega$  is the set of all functions  $\Omega$  satisfying the following conditions:

- a)  $\omega$  is defined and continuous on  $(0, +\infty)$ ,
- b)  $\omega$  is increasing and  $\omega(0) = 0$ ,
- c)  $\omega(h)h^{-1}$  is decreasing for  $h > 0$ .

For a given  $\omega \in \Omega$  we define the class  $H^\omega$  of all functions  $f \in C$  for which

$$(2) \quad \|f\|_\omega := \sup_{h>0} \frac{\|\Delta_h f\|_C}{\omega(h)} < +\infty,$$

where

$$(3) \quad \Delta_h f(x) = f(x + h) - f(x).$$

In  $H^\omega$  we define the norm

$$(4) \quad \|f\|_{H^\omega} := \|f\|_C + \|f\|_\omega.$$

It is known that  $H^\omega$  ( $\omega \in \Omega$ ) with the norm (4) is a Banach space.  $H^\omega$  is called generalized Hölder space. If  $\omega(h) = h^\alpha$ ,  $0 < \alpha \leq 1$ , then  $H^\omega$  is the

classical Hölder space.

1.2. Similarly as in [3]–[5] we define subspace  $\tilde{H}^\omega \subset H^\omega$ ,  $\omega \in \Omega$ , as follows

$$\tilde{H}^\omega := \left\{ f \in H^\omega : \lim_{h \rightarrow 0_+} \frac{\|\Delta_h f\|_C}{\omega(h)} = 0 \right\}$$

with the norm  $\|\cdot\|_{\tilde{H}^\omega}$  defined by (4).

If  $\omega, \mu \in \Omega$  and  $q(h) = \frac{\omega(h)}{\mu(h)}$ ,  $h > 0$ , is a non-decreasing function, then

$$(5) \quad H^\omega \subset H^\mu \quad \text{and} \quad \tilde{H}^\omega \subset \tilde{H}^\mu.$$

1.3. Denote, as usual, by  $E_n(f; C)$ ,  $n \in N = \{0, 1, \dots\}$ , the best approximation of function  $f \in C$  by trigonometric polynomials of order  $\leq n$  in the sense of  $C$ . It is known ([6], [8]) that if  $f \in H^\omega$ ,  $\omega \in \Omega$ , then

$$(6) \quad E_n(f; C) \leq 3\omega\left(\frac{1}{n+1}\right)\|f\|_\omega, \quad n \in N.$$

If  $f \in \tilde{H}^\omega$ ,  $\omega \in \Omega$ , then

$$(7) \quad E_n(f; C) = o\left(\omega\left(\frac{1}{n+1}\right)\right) \quad \text{as } n \rightarrow \infty.$$

1.4. For a given  $f \in C$  let

$$(8) \quad \frac{a_0}{2} + \sum_{k=1}^{\infty} (a_k \cos kx + b_k \sin kx)$$

be its Fourier series. Let  $S_n(x; f)$ ,  $n \in N$ ,  $x \in R$ , be the  $n$ -th partial sum of (8).

In this paper we shall consider the strong approximation of function  $f$  belonging to the spaces  $H^\omega$  by some means of Fourier series (8) in generalized Hölder norms (4).

Let  $Q$  be a set of real numbers,  $r_o \notin Q$  be a accumulation point of  $Q$  and let  $T = \{t_k(r)\}_{k=0}^{\infty}$  be a sequence of real-valued functions defined on  $Q$  and such that:

1°  $t_k(r) \geq 0$  for all  $r \in Q$  and  $k \in N$ ,

2°  $\lim_{\substack{r \rightarrow r_o \\ r \in Q}} t_k(r) = 0$  for every fixed  $k \in N$ ,

3° the series  $\sum_{k=1}^{\infty} t_k(r) \log(k+1)$  is convergent on  $Q$ ,

4°  $\sum_{n=0}^{\infty} 2^n T_{\bar{n}, 2\bar{n}}(r) \leq M_1$ , for all  $r \in Q$ , where  $\bar{n} = 2^n - 1$ ,  $M_1 = \text{const.} > 0$  and

$$(9) \quad T_{p,q}(r) := \max_{p \leq k \leq q} t_k(r), \quad p, q \in N.$$

We define the strong  $T$ -means of Fourier series (8) of  $f \in C$ :

$$(10) \quad L(r, x; f, T) := \sum_{k=0}^{\infty} t_k(r) |S_k(x; f) - f(x)|$$

for  $x \in R$  and  $r \in Q$ . It is obvious that if  $f \in C$ , then for every fixed  $r \in Q$  the function  $L(r, \cdot; f, T)$  belongs also to  $C$ .

The purpose of this note is to estimate the generalized Hölder norms of  $L(r, \cdot; f, T)$  for  $f \in H^\omega$  and  $f \in \tilde{H}^\omega$ .

By  $M_k(\cdot)$ ,  $k = 1, 2, \dots$ , we shall denote suitable positive constants depending only on indicated parameters.

## 2. Auxiliary results

Let  $P = \{p_k\}_{k=0}^{\infty}$  be a non-negative and bounded sequence,

$$(11) \quad P_{n,m} := \max_{n \leq k \leq m} p_k, \quad n, m \in N,$$

and let  $\{v_n\}$  be a monotone non-decreasing sequence of integers such that  $0 \leq v_n \leq n$  and  $n \leq \lambda v_n$  for  $n \in N$ , where  $\lambda = \text{const.} \geq 1$ . For a given  $f \in C$  we define two functions as follows:

$$(12) \quad U_{n,v_n}(x; f, P) := \frac{1}{v_n + 1} \sum_{k=n-v_n}^n p_k |S_k(x; f)|$$

and

$$(13) \quad W_{n,v_n}(x; f, P) := \frac{1}{v_n + 1} \sum_{k=n-v_n}^n p_k |S_k(x; f) - f(x)|,$$

$x \in R$ . Clearly the functions (12) and (13) belong to  $C$  also.

Using the Leindler results given in [1] and [2] ([2], Th. 1.11), we immediately obtain

LEMMA 1. *If  $f \in C$ , then we have*

$$(14) \quad \|U_{n,v_n}(\cdot; f, P)\|_C \leq M_1(\lambda) P_{n-v_n, n} \|f\|_C$$

and

$$(15) \quad \|W_{n,v_n}(\cdot; f, P)\|_C \leq M_2(\lambda) P_{n-v_n, n} E_{n-v_n}(f; C)$$

for all  $n \in N$ .

Using Lemma 1, we shall prove two lemmas.

LEMMA 2. *If  $f \in H^\omega$ ,  $\omega \in \Omega$ , then*

$$\|W_{n,v_n}(\cdot; f, P)\|_\omega \leq M_4(\lambda) P_{n-v_n, n} \|f\|_\omega$$

for all  $n \in N$ , which proves that  $W_{n,v_n}(\cdot; f, P) \in H^\omega$ .

**Proof.** By (1)–(3) and (11)–(13), we have

$$\|W_{n,v_n}(\cdot; f, P)\|_\omega = \sup_{h>0} \{\|\Delta_h W_{n,v_n}(\cdot; f, P)\|_C / \omega(h)\}$$

and

$$\begin{aligned} |\Delta_h W_{n,v_n}(x; f, P)| &= \left| \frac{1}{v_n + 1} \sum_{k=n-v_n}^n p_k \Delta_h |S_k(x; f) - f(x)| \right| \\ &\leq \frac{1}{v_n + 1} \sum_{k=n-v_n}^n p_k |\Delta_h S_k(x; f) - \Delta_h f(x)| \\ &= \frac{1}{v_n + 1} \sum_{k=n-v_n}^n p_k |S_k(x; \Delta_h f) - \Delta_h f(x)| \\ &\leq U_{n,v_n}(x; \Delta_h f, P) + P_{n-v_n,n} |\Delta_h f(x)| \end{aligned}$$

for all  $x \in R$ . Hence and by (14) we get

$$(16) \quad \|\Delta_h W_{n,v_n}(\cdot; f, P)\|_C \leq (M_1(\lambda) + 1) P_{n-v_n,n} \|\Delta_h f\|_C,$$

which implies

$$\|W_{n,v_n}(\cdot; f, P)\|_\omega \leq (M_1(\lambda) + 1) P_{n-v_n,n} \|f\|_\omega.$$

Thus the proof is completed.

**LEMMA 3.** Suppose that  $f \in H^\omega$ ,  $\omega \in \Omega$ , and  $\mu \in \Omega$  is a function such that  $q(h) = \frac{\omega(h)}{\mu(h)}$  is non-decreasing for  $h > 0$ . Then we have

$$\|W_{n,v_n}(\cdot; f, P)\|_\mu \leq M_5(\lambda) P_{n-v_n,n} q\left(\frac{1}{n - v_n + 1}\right) \|f\|_\omega$$

for all  $n \in N$ .

**Proof.** From Lemma 2 and (5) it follows that  $W_{n,v_n}(\cdot; f, P) \in H^\mu$ . Hence and by (1)–(3) we have

$$\begin{aligned} \|W_{n,v_n}(\cdot; f, P)\|_\mu &= \sup_{h>0} (\|\Delta_h W_{n,v_n}(\cdot; f, P)\|_C / \mu(h)) \\ &\leq \|W_{n,v_n}(\cdot; f, P)\|_{\mu,1} + \|W_{n,v_n}(\cdot; f, P)\|_{\mu,2}, \end{aligned}$$

where

$$\|W_{n,v_n}(\cdot; f, P)\|_{\mu,1} := \sup_{h \in A_n} (\|\Delta_h W_{n,v_n}(\cdot; f, P)\|_C / \mu(h)),$$

$$\|W_{n,v_n}(\cdot; f, P)\|_{\mu,2} := \sup_{h \in B_n} (\|\Delta_h W_{n,v_n}(\cdot; f, P)\|_C / \mu(h)),$$

$$A_n = \{h : h > 1/(n - v_n + 1)\}, \quad B_n = \{h : 0 < h \leq 1/(n - v_n + 1)\},$$

By (3) we have

$$\|\Delta_h W_{n,v_n}(\cdot; f, P)\|_C \leq 2\|W_{n,v_n}(\cdot; f, P)\|_C,$$

which, by (15) and (6), gives

$$\begin{aligned} \|W_{n,v_n}(\cdot; f, P)\|_{\mu,1} &\leq 2\left(\mu\left(\frac{1}{n-v_n+1}\right)\right)^{-1}\|W_{n,v_n}(\cdot; f, P)\|_C \\ &\leq 2M_2(\lambda)\left(\mu\left(\frac{1}{n-v_n+1}\right)\right)^{-1}P_{n-v_n,n}E_{n-v_n}(f; C) \\ &\leq 6M_2(\lambda)P_{n-v_n,n}q\left(\frac{1}{n-v_n+1}\right)\|f\|_\omega. \end{aligned}$$

Using (16), we get

$$\begin{aligned} \|W_{n,v_n}(\cdot; f, P)\|_{\mu,2} &\leq (M_1(\lambda) + 1)P_{n-v_n,n}\sup_{h \in B_n} \frac{\|\Delta_h f\|_C}{\mu(h)} \\ &\leq (M_1(\lambda) + 1)P_{n-v_n,n}q\left(\frac{1}{n-v_n+1}\right)\|f\|_\omega. \end{aligned}$$

Summing up, we obtain our result.

Applying (4), (15), (6) and Lemma 3, we obtain the following

**LEMMA 4.** *Under the assumptions of Lemma 3 we have*

$$\|W_{n,v_n}(\cdot; f, P)\|_{H^\mu} \leq M_5(\lambda, \mu)P_{n-v_n,n}q\left(\frac{1}{n-v_n+1}\right)\|f\|_\omega$$

for all  $n \in N$ .

Arguing as in the proofs of Lemmas 2–4 and using (1)–(7) we obtain

**LEMMA 5.** *If  $f \in \tilde{H}^\omega$ ,  $\omega \in \Omega$ , then the function  $W_{n,v_n}(\cdot; f, P)$ ,  $n \in N$ ,  $0 \leq v_n \leq n$ , belongs to  $\tilde{H}^\omega$  also.*

**LEMMA 6.** *Suppose that  $f \in \tilde{H}^\omega$ ,  $\omega \in \Omega$  and  $\mu \in \Omega$  is such that  $q(h) = \frac{\omega(h)}{\mu(h)}$  is a non-decreasing function for  $h > 0$ . Then, if  $P_{n-v_n,n} > 0$  and  $n - v_n \rightarrow \infty$ , we have*

$$\|W_{n,v_n}(\cdot; f, P)\|_{\tilde{H}^\mu} = o\left(P_{n,v_n,n}q\left(\frac{1}{n-v_n+1}\right)\right) \quad \text{as } n \rightarrow \infty.$$

In particular, if  $P_{n,2n} > 0$ , then

$$\|W_{2n,n}(\cdot; f, P)\|_{\tilde{H}^\mu} = o\left(P_{n,2n}q\left(\frac{1}{n+1}\right)\right) \quad \text{as } n \rightarrow \infty.$$

### 3. General theorems

In this part we shall give four theorems on the strong means  $L(r, \cdot; f, T)$  of Fourier series of  $f \in C$ . We observe that if  $T$  is a sequence having the properties 1°–4° and  $f \in C$ , then formula (10) can be written in the form

$$(17) \quad \begin{aligned} L(r, x; f, T) &= \sum_{n=0}^{\infty} \sum_{k=\bar{n}}^{2\bar{n}} t_k(r) |S_k(x; f) - f(x)| \\ &= \sum_{n=0}^{\infty} 2^n W_{2\bar{n}, \bar{n}}(r, x; f, T), \end{aligned}$$

for  $x \in R$  and  $r \in Q$ , where  $\bar{n} = 2^n - 1$  and  $W_{2\bar{n}, \bar{n}}(r, x; f, T)$  is defined by (13) with  $P \equiv T$ .

From (4) and (17) we get

$$\Delta_h L(r, x; f, T) = \sum_{n=0}^{\infty} 2^n \Delta_h W_{2\bar{n}, \bar{n}}(r, x; f, T),$$

which, by (16), (9) and 4°, gives that

$$(18) \quad \begin{aligned} \|\Delta_h L(r, \cdot; f, T)\|_C &\leq \sum_{n=0}^{\infty} 2^n \|\Delta_h W_{2\bar{n}, \bar{n}}(r, \cdot; f, T)\|_C \\ &\leq M_6 \|\Delta_h f\|_C \sum_{n=0}^{\infty} 2^n T_{\bar{n}, 2\bar{n}}(r) \\ &\leq M_7 \|\Delta_h f\|_C, \quad r \in Q, \quad h > 0. \end{aligned}$$

From (18) we immediately obtain

**THEOREM 1.** *If  $f \in H^\omega$ ,  $\omega \in \Omega$ , then*

$$\|L(r, \cdot; f, T)\|_\omega \leq M_8 \|f\|_\omega, \quad r \in Q,$$

*which proves that  $L(r, \cdot; f, T)\| \in H^\omega$  for every fixed  $r \in Q$ .*

**THEOREM 2.** *If  $f \in \tilde{H}^\omega$ ,  $\omega \in \Omega$ , then for every fixed  $r \in Q$  the function  $L(r, \cdot; f, T)$  belongs to  $\tilde{H}^\omega$  also.*

Applying Lemma 1 and Lemma 4, we shall prove two theorems.

**THEOREM 3.** *If  $f \in H^\omega$ ,  $\omega \in \Omega$ , then*

$$\|L(r, \cdot; f, T)\|_C \leq M_9 \|f\|_\omega \sum_{n=0}^{\infty} 2^n T_{\bar{n}, 2\bar{n}}(r) \omega(2^{-n})$$

*for all  $r \in Q$  ( $\bar{n} = 2^n - 1$ ).*

**Proof.** Using Lemma 1 and (6) to (17), we obtain

$$\begin{aligned}
 \|L(r, \cdot; f, T)\|_C &\leq \sum_{n=0}^{\infty} 2^n \|W_{2\bar{n}, \bar{n}}(r, \cdot; f, T)\|_C \\
 &\leq M_2(2) \sum_{n=0}^{\infty} 2^n T_{\bar{n}, 2\bar{n}}(r) E_{\bar{n}}(f; C) \\
 &\leq 3M_2(2) \|f\|_{\omega} \sum_{n=0}^{\infty} 2^n T_{\bar{n}, 2\bar{n}}(r) \omega(2^{-n}) \quad \text{for } r \in Q.
 \end{aligned}$$

**THEOREM 4.** Suppose that  $f \in H^{\omega}$ ,  $\omega \in \Omega$ , and  $\mu \in \Omega$  is a function such that  $q(h) = \frac{\omega(h)}{\mu(h)}$  is non-decreasing for  $h > 0$ . Then

$$(19) \quad \|L(r, \cdot; f, T)\|_{H^{\mu}} \leq M_{10}(\mu) \|f\|_{\omega} \sum_{n=0}^{\infty} 2^n T_{\bar{n}, 2\bar{n}}(r) q(2^{-n})$$

for all  $r \in Q$  ( $\bar{n} = 2^n - 1$ ).

**Proof.** By Theorem 1 and (5) we have  $L(r, \cdot; f, T) \in H^{\mu}$  for every fixed  $r \in Q$ . From this and from (17) we get

$$\|L(r, \cdot; f, T)\|_{H^{\mu}} \leq \sum_{n=0}^{\infty} 2^n \|W_{2\bar{n}, \bar{n}}(r, \cdot; f, T)\|_{H^{\mu}}$$

( $r \in Q$ ). Now using Lemma 4, we obtain (19).

#### 4. Applications

**4.1. Riesz method.** Consider the following strong Riesz means of Fourier series of  $f \in C$ :

$$R_n(x; f, \beta) := \frac{1}{(n+1)^{\beta}} \sum_{k=0}^n ((k+1)^{\beta} - k^{\beta}) |S_k(x; f) - f(x)|,$$

$n \in N$ ,  $x \in R$ ,  $\beta > 0$ . From Theorem 1 and Theorem 4 we obtain the following

**COROLLARY 1.** Suppose that  $f \in H^{\omega}$ ,  $\omega \in \Omega$ , and  $\mu$  is a function as in Theorem 4. Then, for every fixed  $\beta > 0$ , we have

$$\|R_n(\cdot; f, \beta)\|_{H^{\mu}} \leq M_{11}(\mu, \beta) \|f\|_{\omega} (n+1)^{-\beta} \sum_{k=0}^m 2^{k\beta} q(2^{-k})$$

for all  $n \in N$ , where  $m$  is integer such that  $2^m \leq n+1 < 2^{m+1}$ .

In particular, if  $q(h) \leq M_{12}h^\gamma$  ( $0 < \gamma < 1$ ) for  $h > 0$ , then

$$\|R_n(\cdot; f, \beta)\|_{H^\mu} \leq M_{13}^* \|f\|_\omega \begin{cases} (n+1)^{-\gamma} & \text{if } \gamma < \beta, \\ (n+1)^{-\gamma} \log(n+1) & \text{if } \gamma = \beta, \\ (n+1)^{-\beta} & \text{if } \gamma > \beta, \end{cases}$$

for all  $n \in N$ , where  $M_{13}^* = M_{13}(\mu, \beta, \gamma)$ .

Using Theorem 2, (20) and Lemma 6 to (21), we obtain

**COROLLARY 2.** *Suppose that  $\omega$  and  $\mu$  are two functions as in Theorem 4 and  $q(h) \leq M_{12}h^\gamma$  ( $0 < \gamma < 1$ ) for  $h > 0$ . If  $f \in \tilde{H}^\omega$ , then*

$$\|R_n(\cdot; f, \beta)\|_{\tilde{H}^\mu} = \begin{cases} o((n+1)^{-\gamma}) & \text{if } 0 < \gamma < \beta, \\ o((n+1)^{-\gamma} \log(n+1)) & \text{if } \gamma = \beta, \\ O((n+1)^{-\beta}) & \text{if } \gamma > \beta, \end{cases}$$

as  $n \rightarrow \infty$ .

**4.2. Abel method.** Consider the strong Abel means of Fourier series of  $f \in C$ :

$$(22) \quad A_p(r, x; f) := (1-r)^{1+p} \sum_{k=0}^{\infty} \binom{k+p}{k} r^k |S_k(x; f) - f(x)|,$$

$x \in R$ ,  $r \in (0, 1)$ ,  $r \rightarrow 1_-$  and  $p \in N$ .

It is easily verified that the sequence  $T$  defining the strong Abel means (22) satisfies the conditions 1°–4° and

$$(23) \quad \begin{aligned} T_{\bar{n}, 2\bar{n}}(r) &= \max_{\bar{n} \leq k \leq 2\bar{n}} (1-r)^{1+p} \binom{k+p}{k} r^k \\ &\leq \frac{(p+1)^p}{p!} (1-r)^{1+p} (2\bar{n})^p r^{\bar{n}} \end{aligned}$$

for  $n \in N$ ,  $\bar{n} = 2^n - 1$ ,  $p \in N$  and  $r \in (0, 1)$ .

Using Theorem 1, Theorem 4 and (23) to (22), we obtain

**COROLLARY 3.** *Under the assumptions of Theorem 4 we have*

$$\|A_p(r, \cdot; f)\|_{H^\mu} \leq M_{14}^* \|f\|_\omega (1-r)^{1+p} \sum_{k=0}^S 2^k (p+1) q(2^{-k})$$

for all  $r \in (0, 1)$ , where  $S = [\log_2 \frac{1}{1-r}]$  (i.e.  $S$  is the integral part of  $\log_2 \frac{1}{1-r}$ ) and  $M_{14}^* = M_{14}(\mu, p)$ .

In particular if  $g(h) \leq M_{12}h^\gamma$  for  $h > 0$  with  $0 < \gamma < 1$ , then

$$\|A_p(r, \cdot; f)\|_{H^\mu} \leq M_{15}(\mu, p, \gamma) \|f\|_\omega (1-r)^\gamma$$

for all  $r \in (0, 1)$ .

From Theorem 2, (5), (20)–(22) and Lemma 6 follows

**COROLLARY 4.** *Let  $\omega$  and  $\mu$  be a functions as in Corollary 2. If  $f \in H^\omega$  and  $p \in N$ , then*

$$\|A_p(r, \cdot; f)\|_{\tilde{H}^\mu} = o((1-r)^\gamma) \quad \text{as } r \rightarrow 1_-.$$

**4.3. Riemann method.** Now we shall consider the strong Riemann means of Fourier series (8) of  $f \in C$  defined by the formula

$$R(r, x; f) = \frac{2}{\pi} \sum_{k=1}^{\infty} \frac{\sin^2 kr}{k^2 r} |S_k(x; f) - f(x)|,$$

$x \in R$ ,  $0 < r < 1$ ,  $r \rightarrow 0_+$  ([7], [8]).

The sequence  $T$  with  $t_k(r) = \frac{\sin^2 kr}{k^2 r}$ ,  $0 < r < 1$ ,  $r \rightarrow 0_+$ , satisfies the conditions 1°–4°, e.g. applying the inequality

$$\frac{\sin^2 kr}{k^2 r} \leq \begin{cases} r & \text{if } 0 < kr \leq 1, \\ \frac{1}{k^2 r} & \text{if } kr > 1, \end{cases}$$

and writing  $S = [\log_2(\frac{1}{r} + 2)]$ ,  $0 < r < 1$ , we get

$$\begin{aligned} \sum_{n=1}^{\infty} 2^n T_{\bar{n}, 2\bar{n}}(r) &\leq \left( \sum_{n=1}^{S-1} + \sum_{n=S}^{\infty} \right) 2^n T_{\bar{n}, 2\bar{n}}(r) \\ &\leq r \sum_{n=1}^{S-1} 2^n + \frac{1}{r} \sum_{n=S}^{\infty} 2^n (2^n - 1)^{-2} \leq 35, \end{aligned}$$

which proves that the condition 4° is fulfilled.

From Theorems 1–4 and Lemma 1–6 we obtain the following estimations:

**COROLLARY 5.** *If  $f \in H^\omega$ ,  $\omega \in \Omega$ , then*

$$\|R(r, \cdot; f)\|_C \leq M_{16} \|f\|_\omega r \sum_{n=1}^S 2^n \omega(2^{-n})$$

for all  $r \in (0, 1)$ , where  $S = [\log_2(\frac{1}{r} + 2)]$ .

**COROLLARY 6.** *If the assumptions of Theorem 4 are satisfied, then*

$$\|R(r, \cdot; f)\|_{H^\mu} \leq M_{17}(\mu) \|f\|_\omega r \sum_{n=1}^S 2^n q(2^{-n})$$

for all  $r \in (0, 1)$ , where  $S = [\log_2(\frac{1}{r} + 2)]$ .

In particular, if  $g(h) \leq M_{12} h^\gamma$ ,  $0 < \gamma < 1$ , for  $h > 0$ , then

$$\|R(r, \cdot; f)\|_{H^\mu} \leq M_{18}(\mu, \gamma) \|f\|_\omega r^\gamma$$

for all  $r \in (0, 1)$ .

**COROLLARY 10.** *If the assumptions of Corollary 2 are satisfied, then for  $f \in \tilde{H}^\mu$  we have*

$$\|R(r, \cdot; f)\|_{\tilde{H}^\mu} = o(r^\gamma) \quad \text{as } r \rightarrow 0_+.$$

### References

- [1] L. Leindler, *On summability of Fourier series*, Acta Sci. Math. (Szeged), 29(1968), 147–162.
- [2] L. Leindler, *Strong Approximation by Fourier Series*. Budapest 1985.
- [3] J. Prestin, *On the approximation by de la Vallée Poussin sums and interpolatory polynomials in Lipschitz norms*, Analysis Math., 13(1987), 251–259.
- [4] J. Prestin, S. Prössdorf, *Error estimates in generalized trigonometric Hölder-Zygmund norms*, Z. Anal. und Anwend., 9, 4 (1990), 343–349.
- [5] S. Prössdorf, *Zur Konvergenz der Fourierreihen hölderstetiger Funktionen*, Math. Nachr., 69(1975), 7–14.
- [6] A. F. Timan, *Theory of Approximation of Functions of a Real Variable*, Moscow 1960 (in Russian).
- [7] V. Totik, *A general theorem on strong means*, Studia Sci. Math. Hungar. 13(1–3), (1979), 227–240.
- [8] A. Zygmund, *Trigonometric Series*. Moscow 1965 (in Russian).

INSTITUTE OF MATHEMATICS  
 TECHNICAL UNIVERSITY OF POZNAŃ  
 Piotrowo 3A  
 60-965 POZNAŃ, POLAND

*Received March 1st, 1993.*