

Jan Kurek

ON GAUGE-NATURAL OPERATORS OF CURVATURE
TYPE ON PAIRS OF CONNECTIONS

Recently, Kolář has determined all gauge-natural operators for any Lie group G of curvature type transforming every principal connection into modified curvature operator, [3]. In the case the structure group is the general linear group $GL(m, \mathbf{R})$ in an arbitrary dimension m he has obtained two parameter family of all $GL(m, \mathbf{R})$ -natural operators of curvature type consisting of a curvature of connection and a contracted curvature of connection and generated by linear adjoint invariant maps of the Lie algebra $gl(m, \mathbf{R})$ into itself of the form id and $A \mapsto \text{tr } A \cdot \text{id}$, [4].

Using a general method by Kolář, [3], [4], [5], we determine all gauge-natural operators for any Lie group G defined on the bundle $\mathbf{Q} \oplus \mathbf{Q}$ of pairs of principal connections with values in $L \otimes \otimes^2 T^*B$. We deduce that all such operators form a system generated by two modified curvatures of both principal connections and by values on the difference of these connections of some map induced by bilinear adjoint invariant map of the Lie algebra \mathbf{g} of G . In the case the structure group is the general linear group $GL(m, \mathbf{R})$ in an arbitrary dimension m we obtain 10-parameter family of all $GL(m, \mathbf{R})$ -natural operators of curvature type consisting 4-parameter system generated by curvatures and contracted curvatures both connections and 6-parameter system generated by values on the difference of these connections of some bilinear and adjoint invariant maps of the Lie algebra $gl(m, \mathbf{R})$.

The author is grateful to Professor I. Kolář for suggesting the problem, valuable remarks and useful discussions.

1. Let Mf_n be a category of n -dimensional manifolds and their local diffeomorphisms. Let FM be a category of fibred manifolds and denote by B the base functor. Fix a Lie group G and define a category $P_n(G)$, whose objects are principal G -bundles and whose morphisms are the morphisms

of principal G -bundles $f : P \rightarrow \overline{P}$ with the base map $Bf : BP \rightarrow B\overline{P}$ in Mf_n .

DEFINITION 1. A gauge-natural bundle over n -manifolds is a functor $F : P_n(G) \rightarrow FM$ such that

1. every principal bundle $p : P \rightarrow BP$ in $P_n(G)$ is transformed by F into fibred manifold $q : FP \rightarrow BP$ over the same base BP
2. every morphism $f : P \rightarrow \overline{P}$ in $P_n(G)$ is transformed by F into morphism $Ff : FP \rightarrow F\overline{P}$ over Bf in FM
3. for every open subset $U \subset BP$, the inclusion $\iota : p^{-1}(U) \rightarrow P$ is transformed into the inclusion $F\iota : q^{-1}(U) \rightarrow FP$.

Let F and E be two G -natural bundle over n -manifolds.

DEFINITION 2. A gauge-natural operator $A : F \rightarrow E$ is a system of operators $A_P : C^\infty FP \rightarrow C^\infty EP$ for every object P in $P_n(G)$ transforming every section $s \in C^\infty FP$ into section $A_P s \in C^\infty EP$ such that

1. $A_P(Ff \circ Bf^{-1}) = E f \circ A_P s \circ Bf^{-1}$ for every isomorphism $f : P \rightarrow \overline{P}$ in $P_n(G)$
2. $A_{P^{-1}(U)}(s|U) = (A_P s)|U$ for every open subset $U \subset BP$
3. A_P transforms every smoothly parametrized family of sections into smoothly parametrized family of sections.

A gauge-natural bundle F over n -manifolds is said to be of order r , if for any two morphisms $f, h : P \rightarrow \overline{P}$ in $P_n(G)$ the condition $j_y^r f = j_y^r h$ at some point $y \in P_x$ of the fibre of P over $x \in BP$ implies $Ff|_{F_x P} = Fh|_{F_x P}$.

Let $W^r P$ be a space of all r -jets $j_{(0,e)}^r \varphi$, where $\varphi : \mathbf{R}^n \times G \rightarrow P$ is a morphism in $P_n(G)$. The space $W^r P$ is a principal bundle over BP with structure group $W_n^r G$, which is the group of all r -jets $j_{(0,e)}^r \psi$ of morphisms $\psi : \mathbf{R}^n \times G \rightarrow \mathbf{R}^n \times G$ in $P_n(G)$ satisfying $B\psi(0, e) = 0$. Every morphism $f : P \rightarrow \overline{P}$ in $P_n(G)$ is extended into a principal bundle morphism $W^r f : W^r P \rightarrow W^r \overline{P}$ defined by the jet composition $W^r f(j_{(0,e)}^r \varphi) = j_{(0,e)}^r (f \circ \varphi)$. Every smooth left action of $W_n^r G$ on a manifold S determines r -th order G -natural bundle over n -manifolds as a functor transforming every object P in $P_n(G)$ into the fibre bundle associated to $W^r P$ with standard fibre S and every morphism f in $P_n(G)$ into $(W^r f, \text{id}_S)$.

Every r -th order gauge-natural bundle is a fibre bundle associated to bundle W^r . The k -th jet prolongation $J^k F$ of a gauge-natural bundle F of order r is a gauge-natural bundle of order $(k+r)$.

According to a general theory, [1], [2], [3], [4], [5], there is a canonical bijection between the k -th order G -natural operators $A : F \rightarrow E$ and the

$W_n^s G$ -equivariant maps of standard fibres $A : J_0^k F(\mathbf{R}^n \times G) \rightarrow E_0(\mathbf{R}^n \times G)$, where s is maximum of the orders $J^k F$ and E .

2. The connection bundle $\mathbf{Q}P \rightarrow BP$ of P can be defined as the factor space $\mathbf{Q}P = J^1 P/G$ over BP . Clearly, the connection bundle $\mathbf{Q} : P_n(G) \rightarrow FM$, $\mathbf{Q} : P \mapsto \mathbf{Q}P$, is a gauge-natural bundle of the order 1.

Given a connection Γ on $P = \mathbf{R}^n \times G$, its value $\Gamma(0, e)$ is a 1-jet $j_0^1 \gamma$ of a section $\gamma : \mathbf{R}^n \rightarrow \mathbf{R}^n \times G$, which is identified with a map $\gamma : \mathbf{R}^n \rightarrow G$, where $\gamma(0) = e$ is a unit of G .

The standard fibre of \mathbf{Q} is of the form $\mathbf{Q}_0(\mathbf{R}^n \times G) = J_0^1(\mathbf{R}^n, G)_e = \mathbf{g} \otimes \mathbf{R}^{n*}$. Fix a basis e_p of the Lie algebra \mathbf{g} of G , we have the coordinate expression of an element Γ of $\mathbf{g} \otimes \mathbf{R}^{n*}$ in the form $\Gamma = \Gamma_i^p e_p dx^i$.

Consider an isomorphism $\Phi : \mathbf{R}^n \times G \rightarrow \mathbf{R}^n \times G$ in $P_n(G)$ of the form

$$(2.1) \quad \bar{x} = f(x), \quad \bar{y} = \varphi(x) \cdot y$$

where $f : \mathbf{R}^n \rightarrow \mathbf{R}^n$ is a local diffeomorphism satisfying $f(0) = 0$ and $\varphi : \mathbf{R}^n \rightarrow G$ is a smooth map and the dot denotes the multiplication in G .

Then 2-jet $j_0^2 \Phi \in W_n^2 G$ has coordinates

$$a = \varphi(0) \in G$$

$$(2.2) \quad \begin{aligned} (a_i^p, a_{ij}^p) &= j_0^2(\varphi(x) \cdot a^{-1}) \in \mathbf{g} \otimes \mathbf{R}^{n*} \times \mathbf{g} \otimes S^2 \mathbf{R}^{n*} \\ (a_j^i, a_{jk}^i) &= j_0^2 f \in G_n^2. \end{aligned}$$

Isomorphism Φ transforms a section γ generating $\Gamma(0, e)$ into a section $\varphi(f^{-1}(x)) \cdot \gamma(f^{-1}(x))$ generating image $\Phi(\Gamma(0, e))$ as the 1-jet of the section

$$(2.3) \quad \Phi(\Gamma(0, e)) = j_0^1[\varphi(f^{-1}(x)) \cdot \gamma(f^{-1}(x)) \cdot a^{-1}].$$

Let $A_q^p(a)$ be a coordinate expression of the adjoint representation of G in Lie algebra \mathbf{g} . Let $\tilde{\cdot}$ denote the inverse matrix. Then (2.3) gives the action of $W_n^1 G$ on the standard fibre $\mathbf{Q}_0 = \mathbf{g} \otimes \mathbf{R}^{n*}$ in the form

$$(2.4) \quad \bar{\Gamma}_i^p = A_q^p(a)(\Gamma_j^q + a_j^q)\tilde{a}_i^j.$$

Let $\Gamma_{ij}^p = \frac{\partial \Gamma_i^p}{\partial x^j}$ be the induced coordinates on $J_0^1 \mathbf{Q} = \mathbf{g} \otimes \mathbf{R}^{n*} \times \mathbf{g} \otimes S^2 \mathbf{R}^{n*}$. Using a general prolongation procedure, [3], we deduce from (2.4) the action of $W_n^2 G$ on $J_0^1 \mathbf{Q}$ in the form (2.4) and

$$(2.5) \quad \begin{aligned} \bar{\Gamma}_{ij}^p &= A_q^p(a)\Gamma_{kl}^q \tilde{a}_i^k \tilde{a}_j^l + A_q^p(a)a_{kl}^q \tilde{a}_i^k \tilde{a}_j^l + \\ &+ B_{qr}^p(a)\Gamma_k^q a_l^r \tilde{a}_i^k \tilde{a}_j^l + E_{qr}^p(a)a_k^q a_l^r \tilde{a}_i^k \tilde{a}_j^l + \\ &+ A_q^p(a)(\Gamma_k^q + a_k^q)\tilde{a}_{ij}^k, \end{aligned}$$

where B_{qr}^p and E_{qr}^p are some functions on G .

The curvature of a principal connection can be considered as a section $C_P \Gamma : BP \rightarrow LP \otimes \Lambda^2 T^* BP$, where LP is an associated bundle to P with

standard fibre \mathbf{g} with respect to adjoint action of Lie group G . The curvature operator $C : \mathbf{Q} \rightarrow L \otimes \Lambda^2 T^* B$ is a gauge-natural operator of the first order because of geometric definition of the curvature.

In order to obtain a coordinate expression of curvature, we write the equation of a connection Γ on $P = \mathbf{R}^n \times G$ in the form

$$(2.6) \quad \omega^p = \Gamma_i^p(x) dx^i,$$

where ω^p are the Maurer-Cartan forms on G with respect to the basis e_p of Lie algebra \mathbf{g} . Then, components of a connection form are

$$(2.7) \quad \eta^p = \omega^p - \Gamma_i^p(x) dx^i.$$

Using a structure equation of the connection Γ in the form

$$(2.8) \quad d\eta^p = C_{qr}^p \eta^q \wedge \eta^r + R_{ij}^p dx^i \wedge dx^j$$

and Maurer-Cartan equation

$$(2.9) \quad d\omega^p = C_{qr}^p \omega^q \wedge \omega^r,$$

we obtain a coordinate expression of curvature in the form

$$(2.10) \quad R_{ij}^p = \Gamma_{ij}^p - \Gamma_{ji}^p + C_{qr}^p \Gamma_i^q \Gamma_j^r,$$

where C_{qr}^p are a structure constant of G .

Let $Z \subset \text{Lin}(\mathbf{g}, \mathbf{g})$ be the subspace of all linear maps commuting with the adjoint action of G . Since every $z \in Z$ is an equivariant linear map of the standard fibre \mathbf{g} of the vector bundle LP , it induces a morphism $z_P : LP \rightarrow LP$. Hence, we can construct a modified curvature operator of the curvature operator C_P in the form $C(z)_P = (z_P \otimes \Lambda^2 T^* \text{id}_{BP}) \circ C_P$.

We shall need some new essential relations concerning the function B_{qr}^p on G appearing in (2.5), which we will obtain in the detailed proof of the following theorem developed by I. Kolář in [3].

THEOREM 1. *All gauge-natural operators $\mathbf{Q} \rightarrow L \otimes \otimes^2 T^* B$ are the modified curvature operators*

$$(2.11) \quad C(z) = (z \otimes \Lambda^2 T^* \text{id}_B) \circ C.$$

for all $z \in Z$ of the curvature operator C .

Proof. I. The first order gauge-natural operators $A : \mathbf{Q} \rightarrow L \otimes \otimes^2 T^* B$ are in bijection with $W_n^2 G$ equivariant maps of standard fibres $A : J_0^1 \mathbf{Q} \rightarrow \mathbf{g} \otimes \otimes^2 \mathbf{R}^{n*}$. The group $W_n^2 G$ acts on the standard fibre $J_0^1 \mathbf{Q}$ by formulas (2.4) and (2.5). On $\mathbf{g} \otimes \otimes^2 \mathbf{R}^{n*}$ we have the canonical coordinates y_{ij}^p and we have the action of $W_n^2 G$ in the form

$$(2.12) \quad \bar{y}_{ij}^p = A_q^p(a) y_{kl}^q \tilde{a}_i^k \tilde{a}_j^l.$$

The equivariancy of A with respect to homotheties in $G_n^1 : a = e$, $\tilde{a}_j^i = k\delta_j^i$, $a_{jk}^i = 0$, $a_i^p = 0$, $a_{ij}^p = 0$, gives a homogeneity condition

$$(2.13) \quad k^2 f_{ij}^p(\Gamma_i^p, \Gamma_{ij}^p) = f_{ij}^p(k \cdot \Gamma_i^p, k^2 \Gamma_{ij}^p).$$

By the homogeneous function theorem, [5], we deduce that f_{ij}^p are linear in Γ_{ij}^p and quadratic in Γ_i^p . Using invariant tensor theorem for G_n^1 , [5], we obtain f_{ij}^p in the form

$$(2.14) \quad f_{ij}^p = b_q^p \Gamma_{ij}^q + d_q^p \Gamma_{ji}^q + k_{qr}^p \Gamma_i^q \Gamma_j^r$$

with real coefficients.

Considering equivariancy of f_{ij}^p in the form (2.14) with respect to the subgroup in $W_n^2 G : a = e$, $\tilde{a}_j^i = \delta_j^i$ and a_{jk}^i , a_i^p , a_{ij}^p are arbitrary, we get conditions

$$(2.15) \quad \begin{aligned} b_q^p + d_q^p &= 0 \\ b_q^p B_{rs}^q(e) + k_{rs}^p &= 0, \quad d_q^p B_{rs}^q(e) + k_{sr}^p = 0. \end{aligned}$$

From this, we obtain the following relations

$$(2.16) \quad d_q^p = -b_q^p, \quad k_{sr}^p = -k_{rs}^p, \quad B_{sr}^q(e) = -B_{rs}^q(e), \quad k_{rs}^p = -b_q^p B_{rs}^q(e).$$

If we put $b_q^p = \delta_q^p$ into f_{ij}^p in (2.14) and if we use uniqueness of the curvature operator, we can put

$$(2.17) \quad B_{rs}^q(e) = -C_{rs}^q,$$

where C_{rs}^q are the constant structure of G .

The equivariancy of f_{ij}^p in (2.14) with respect to the canonical inclusion $\iota(G)$ into $W_n^2 G : a \in G$ is arbitrary and $\tilde{a}_j^i = \delta_j^i$, $a_{jk}^i = 0$, $a_i^p = 0$, $a_{ij}^p = 0$, gives the relation

$$(2.18) \quad A_q^p(a) b_q^r R_{ij}^r = b_q^p A_r^q(a) R_{ij}^r.$$

This means that b_q^p commutes with adjoint action.

II. The r -th order gauge-natural operators $\mathbf{Q} \rightarrow L \otimes \otimes^2 T^* B$ correspond to $W_n^{r+1} G$ equivariant maps of standard fibres $J_0^r \mathbf{Q} \rightarrow \mathbf{g} \otimes \otimes^2 \mathbf{R}^{n*}$.

Let $\Gamma_{i\alpha}^p$ be the induced coordinates on $J_0^r \mathbf{Q}$, where α is a multiindex of range n with $|\alpha| \leq r$.

Equivariancy $f_{ij}^p(\Gamma_{k\alpha}^q)$ with respect to homotheties in G_n^1 gives a homogeneity condition

$$(2.19) \quad k^2 f_{ij}^p(\Gamma_{k\alpha}^q) = f_{ij}^p(k^{1+|\alpha|} \Gamma_{k\alpha}^q).$$

By homogeneous function theorem f_{ij}^p is independent on $\Gamma_{k\alpha}^q$ for $|\alpha| \geq 2$ and is linear in Γ_{ij}^p and quadratic in Γ_i^p . Hence, the r -th order operators are reduced to the case I for every $r \geq 2$. Moreover, every gauge-natural

operator defined on the connection bundle has a finite order. This proves Theorem 1.

3. Consider a pair of principal connections Γ and Δ on the principal bundle $P = \mathbf{R}^n \times G$ as a section of the bundle $\mathbf{Q} \oplus \mathbf{Q}$. We are going to determine all gauge-natural operators $\mathbf{Q} \oplus \mathbf{Q} \rightarrow L \otimes \otimes^2 T^* B$.

Let $Y \subset \text{Bilin}(\mathbf{g} \times \mathbf{g}, \mathbf{g})$ be the subspace of all bilinear and adjoint equivariant maps with respect to adjoint action of G .

For every $y \in Y$ we define a bilinear map $\bar{y} : \mathbf{g} \otimes \mathbf{R}^{n*} \times \mathbf{g} \otimes \mathbf{R}^{n*} \rightarrow \mathbf{g} \otimes \otimes^2 \mathbf{R}^{n*}$ by formula

$$(3.1) \quad \bar{y}(A_1 \otimes X_1, A_2 \otimes X_2) = y(A_1, A_2) \otimes X_1 \otimes X_2.$$

Now, we prove the main

THEOREM 2. *All gauge-natural operators $\mathbf{Q} \oplus \mathbf{Q} \rightarrow L \otimes \otimes^2 T^* B$ form the following system*

$$(3.2) \quad (\Gamma, \Delta) \mapsto C(z)(\Gamma) + C(w)(\Delta) + \bar{y}(D, D),$$

where $C(z)(\Gamma)$ and $C(w)(\Delta)$ are modified curvature operators for all $z, w \in Z$ and $\bar{y}(D, D)$ are the values on the difference of connections $D = \Gamma - \Delta$ for all $y \in Y$.

Proof. I. The first order gauge-natural operators $\mathbf{Q} \oplus \mathbf{Q} \rightarrow L \otimes \otimes^2 T^* B$ correspond bijectively to the $W_n^2 G$ equivariant maps of the standard fibres $J_0^1(\mathbf{Q} \oplus \mathbf{Q}) \rightarrow \mathbf{g} \otimes \otimes^2 \mathbf{R}^{n*}$. The group $W_n^2 G$ acts on the standard fibre $J_0^1(\mathbf{Q} \oplus \mathbf{Q})$ by formulas (2.4) and (2.5) and by formulas

$$(3.3) \quad \begin{aligned} \bar{\Delta}_i^p &= A_q^p(a)(\Delta_j^q + a_j^q)\tilde{a}_i^j \\ \bar{\Delta}_{ij}^p &= A_q^p(a)\Delta_{kl}^q\tilde{a}_i^k\tilde{a}_j^l + A_q^p(a)a_{kl}^q\tilde{a}_i^k\tilde{a}_j^l + \\ &\quad + B_{qr}^p(a)\Delta_k^q a_l^r \tilde{a}_i^k \tilde{a}_j^l + E_{qr}^p(a)a_k^q a_l^r \tilde{a}_i^k \tilde{a}_j^l + \\ &\quad + A_q^p(a)(\Delta_k^q + a_k^q)\tilde{a}_{ij}^k. \end{aligned}$$

The action of $W_n^2 G$ on $\mathbf{g} \otimes \otimes^2 \mathbf{R}^{n*}$ is of the form (2.12).

Any map of standard fibres $A : J_0^1(\mathbf{Q} \oplus \mathbf{Q}) \rightarrow \mathbf{g} \otimes \otimes^2 \mathbf{R}^{n*}$ in coordinates is of the form

$$(3.4) \quad y_{ij}^p = f_{ij}^p(\Gamma_k^q, \Gamma_{kl}^q, \Delta_k^q, \Delta_{kl}^q).$$

The equivariancy of f_{ij}^p with respect to homotheties in $G_n^1 : a = e$, $\tilde{a}_j^i = k\delta_j^i$, $a_{jk}^i = 0$, $a_i^p = 0$, $a_{ij}^p = 0$, gives a homogeneity condition

$$(3.5) \quad k^2 f_{ij}^p(\Gamma_i^p, \Gamma_{ij}^p, \Delta_i^p, \Delta_{ij}^p) = f_{ij}^p(k\Gamma_i^p, k^2\Gamma_{ij}^p, k\Delta_i^p, k^2\Delta_{ij}^p).$$

By the homogeneous function theorem, [5], we deduce that f_{ij}^p are linear in Γ_{ij}^p , Δ_{ij}^p and bilinear in Γ_i^p , Δ_i^p and quadratic in Γ_i^p , Δ_i^p . Using invariant

tensor theorem for G_n^1 , we obtain f_{ij}^p in the form

$$(3.6) \quad f_{ij}^p = b_q^p \Gamma_{ij}^q + c_q^p \Gamma_{ji}^q + d_q^p \Delta_{ij}^q + e_q^p \Delta_{ji}^q + k_{qr}^p \Gamma_i^r \Delta_j^r + l_{qr}^p \Delta_i^q \Gamma_j^r + m_{qr}^p \Gamma_i^q \Gamma_j^r + n_{qr}^p \Delta_i^q \Delta_j^r$$

with real coefficients.

Considering equivariancy of f_{ij}^p with respect to the subgroup in $W_n^2 G$: $a = e$, $a_j^i = \delta_j^i$ and a_{jk}^i , a_i^p , a_{ij}^p are arbitrary, we get the following relations

$$(3.7) \quad \begin{aligned} c_q^p &= -b_q^p, & e_q^p &= -d_q^p \\ k_{rs}^p &= -m_{rs}^p - b_q^p B_{rs}^q(e) \\ l_{rs}^p &= -m_{rs}^p + b_q^p B_{sr}^q(e) \\ k_{rs}^p &= -n_{rs}^p + d_q^p B_{sr}^q(e) \\ l_{rs}^p &= -n_{rs}^p - d_q^p B_{rs}^q(e). \end{aligned}$$

Using the relation (2.16), $B_{rs}^q(e) = -B_{sr}^q(e)$, we get $k_{rs}^p = l_{rs}^p$. If we put

$$(3.8) \quad h_{rs}^p = -k_{rs}^p, \quad h_{rs}^p = -l_{rs}^p$$

and take into account the relation (2.17) $B_{rs}^q(e) = -C_{rs}^q$, we obtain following relations

$$(3.9) \quad \begin{aligned} m_{rs}^p &= h_{rs}^p + b_q^p C_{rs}^q \\ n_{rs}^p &= h_{rs}^p + d_q^p C_{rs}^q. \end{aligned}$$

Finally, f_{ij}^p is of the form

$$(3.10) \quad f_{ij}^p = b_q^p \overset{\Gamma}{R}_{ij}^q + d_q^p \overset{\Delta}{R}_{ij}^q + h_{qr}^p D_i^r \cdot D_j^s$$

where we denote

$$(3.11) \quad \begin{aligned} \overset{\Gamma}{R}_{ij}^q &= \Gamma_{ij}^q - \Gamma_{ji}^q + C_{rs}^q \Gamma_i^r \Gamma_j^s, \\ \overset{\Delta}{R}_{ij}^q &= \Delta_{ij}^q - \Delta_{ji}^q + C_{rs}^q \Delta_i^r \Delta_j^s, \\ D_i^q &= \Gamma_i^q - \Delta_i^q. \end{aligned}$$

Considering equivariancy of the map (3.10), f_{ij}^p , with respect to the canonical inclusion $\iota(G)$ into $W_n^2 G$: $a \in G$ is arbitrary and $a_j^i = \delta_j^i$, $a_{jk}^i = 0$, $a_i^p = 0$, $a_{ij}^p = 0$, we obtain the relation:

$$(3.12) \quad \begin{aligned} A_q^p(a) b_q^p \overset{\Gamma}{R}_{ij}^r + A_q^p(a) d_q^p \overset{\Delta}{R}_{ij}^r + A_q^p(a) h_{rs}^q D_i^r D_j^s &= \\ &= b_q^p A_r^q(a) \overset{\Gamma}{R}_{ij}^r + d_q^p A_r^q(a) \overset{\Delta}{R}_{ij}^r + h_{qr}^p A_s^q(a) A_t^r(a) D_i^s D_j^t. \end{aligned}$$

This means that b_q^p and d_q^p defines linear maps of \mathbf{g} into itself commuting with adjoint action $A_q^p(a)$ and h_{qr}^p define a bilinear map $\mathbf{g} \otimes \mathbf{R}^{n*} \times \mathbf{g} \otimes \mathbf{R}^{n*} \rightarrow \mathbf{g} \otimes \otimes^2 \mathbf{R}^{n*}$ determined by some linear adjoint equivariant map $\mathbf{g} \times \mathbf{g} \rightarrow \mathbf{g}$.

II. The r -th order gauge-natural operators $\mathbf{Q} \oplus \mathbf{Q} \rightarrow L \otimes \otimes^2 T^* B$ correspond bijectively to the $W_n^{r+1} G$ equivariant maps of the standard fibres $J_0^r(\mathbf{Q} \oplus \mathbf{Q}) \rightarrow \mathbf{g} \otimes \otimes^2 \mathbf{R}^{n*}$. Let $(\Gamma_{i\alpha}^p, \Delta_{i\alpha}^p)$ be induced coordinates on $J_0^r(\mathbf{Q} \oplus \mathbf{Q})$, where α is a multiindex of range n with $|\alpha| \leq r$.

Equivariancy of $y_{ij}^p = f_{ij}^p(\Gamma_{i\alpha}^p, \Delta_{i\alpha}^p)$ with respect to homotheties in G_n^1 gives a homogeneity condition

$$(3.13) \quad k^2 f_{ij}^p(\Gamma_{i\alpha}^p, \Delta_{i\alpha}^p) = f_{ij}^p(k^{1+|\alpha|} \Gamma_{i\alpha}^p, k^{1+|\alpha|} \Delta_{i\alpha}^p).$$

By homogeneous function theorem f_{ij}^p is independent on $\Gamma_{i\alpha}^p, \Delta_{i\alpha}^p$ for $|\alpha| \geq 2$ and is linear in $\Gamma_{ij}^p, \Delta_{ij}^p$ and is bilinear in Γ_i^p, Δ_i^p and is quadratic in Γ_i^p, Δ_i^p . Hence, the r -th order operators are reduced to the case I. Moreover, since every gauge-natural operator $\mathbf{Q} \rightarrow L \otimes \otimes^2 T^* B$ defined on \mathbf{Q} has a finite order so gauge-natural operator $\mathbf{Q} \oplus \mathbf{Q} \rightarrow L \otimes \otimes^2 T^* B$ defined on $\mathbf{Q} \oplus \mathbf{Q}$ has a finite order, too. This proves our theorem.

4. Consider a principal bundle $P = \mathbf{R}^n \times G_m^1$ with the general linear group $G_m^1 = GL(m, \mathbf{R})$ in an arbitrary dimension m as a structure group. Let x^i, x_q^p be the canonical coordinates on the product bundle $\mathbf{R}^n \times G_m^1$, where $i, j, \dots = 1, \dots, n$ and $p, q, \dots = 1, \dots, m$.

The equation of connection Γ on $\mathbf{R}^n \times G_m^1$ are

$$(4.1) \quad dx_q^p = \Gamma_{ri}^p(x) x_q^r dx^i,$$

where Γ_{ri}^p are smooth functions defined on \mathbf{R}^n .

The curvature of the connection Γ on $P = \mathbf{R}^n \times G_m^1$ is a section $C\Gamma : \mathbf{R}^n \rightarrow L(\mathbf{R}^n \times G_m^1) \otimes \Lambda^2 T^* \mathbf{R}^n$ of the form in local coordinates:

$$(4.2) \quad C\Gamma = (\Gamma_{qij}^p + \Gamma_{ri}^p \Gamma_{qj}^r) \frac{\partial}{\partial x_q^p} \otimes dx^i \wedge dx^j.$$

In the case of the structure group G_m^1 , all linear adjoint equivariant maps of $gl(m, \mathbf{R}) = \mathbf{R}^m \otimes \mathbf{R}^{m*}$ into itself form the 2-parameter family generated by id and $A \mapsto (\text{tr } A) \text{id}$. This gives the 2-parameter family of G_m^1 -natural operators $\mathbf{Q} \rightarrow L \otimes \otimes^2 T^* B$ generated by the curvature operator C and by a contracted curvature operator $\bar{C} = (\tau \otimes \Lambda^2 \text{id}) \circ C$, where τ is a linear map of $L(\mathbf{R}^n \times G_m^1)$ into itself defined by the linear adjoint equivariant map of the standard fibre \mathbf{g} into itself of the form $A \mapsto (\text{tr } A) \text{id}$.

In a local coordinates on $P = \mathbf{R}^n \times G_m^1$ the contracted curvature of the connection Γ is of the form

$$(4.3) \quad \bar{C}\Gamma = \delta_q^p(\Gamma_{rij}^r) \frac{\partial}{\partial x_q^p} \otimes dx^i \wedge dx^j.$$

We will use the following

LEMMA 3. All bilinear and adjoint invariant maps $gl(m, \mathbf{R}) \times gl(m, \mathbf{R}) \rightarrow gl(m, \mathbf{R})$ form the 6-parameter family

$$(4.4) \quad w_q^p = k_1 y_s^p z_q^s + k_2 y_q^s z_s^p + k_3 y_q^p z_s^s + k_4 y_s^s z_q^p + \\ + k_5 \delta_q^p y_r^r z_s^s + k_6 \delta_q^s y_s^r z_r^s$$

for any real parameters k_1, \dots, k_6 .

Proof. Using the invariant tensor theorem for G_m^1 , [5], we obtain any bilinear and adjoint invariant map $\mathbf{R}^m \otimes \mathbf{R}^{m*} \times \mathbf{R}^m \otimes \mathbf{R}^{m*} \rightarrow \mathbf{R}^m \otimes \mathbf{R}^{m*}$ in the form

$$(4.5) \quad w_q^p = k_1 \delta_q^t \delta_s^p \delta_u^r y_r^s z_t^u + k_2 \delta_q^r \delta_s^t \delta_u^p y_r^s z_t^u + \\ + k_3 \delta_q^r \delta_s^p \delta_u^t y_r^s z_t^u + k_4 \delta_q^t \delta_s^r \delta_u^p y_r^s z_t^u + \\ + k_5 \delta_q^p \delta_s^t \delta_u^r y_r^s z_t^u + k_6 \delta_q^p \delta_s^r \delta_u^t y_r^s z_t^u$$

with any real parameter k_1, \dots, k_6 .

Consider a pair of connections Γ and Δ on $P = \mathbf{R}^n \times G_m^1$ as a section $(\Gamma, \Delta) : \mathbf{R}^n \rightarrow \mathbf{Q}(\mathbf{R}^n \times G_m^1) \oplus \mathbf{Q}(\mathbf{R}^n \times G_m^1)$ with equations (4.1) and $dx_q^p = \Delta_{qi}^p(x)dx^i$.

We denote by

$$(4.6) \quad D_{qi}^p = \Gamma_{qi}^p - \Delta_{qi}^p$$

coordinates of difference of connections Γ and Δ and by

$$(4.7) \quad R_{qij}^p = \Gamma_{qij}^p - \Gamma_{qji}^p + \Gamma_{ri}^p \Gamma_{qj}^r - \Gamma_{rj}^p \Gamma_{qi}^r,$$

$$(4.8) \quad R_{rij}^r = \Gamma_{rij}^r - \Gamma_{rji}^r$$

coordinates of the curvature $C\Gamma$ and the contracted curvature $\overline{C}\Gamma$ of the connection Γ , respectively.

Immediately from Theorem 2 and Lemma 3 we obtain the following

COROLLARY 4. All $GL(m, \mathbf{R})$ -natural operators $\mathbf{Q} \oplus \mathbf{Q} \rightarrow L \otimes \otimes^2 T^* B$ form the 10-parameter family

$$(4.9) \quad (\Gamma, \Delta) \mapsto a_1 R_{qij}^p + a_2 \delta_q^p R_{rij}^r + a_3 \overset{\Delta}{R}_{qij}^p + a_4 \delta_q^p \overset{\Delta}{R}_{rij}^r + \\ + a_5 D_{ri}^p D_{qj}^r + a_6 D_{rj}^p D_{qi}^r + a_7 D_{ri}^r D_{qj}^p + \\ + a_8 D_{qi}^p D_{rj}^r + a_9 \delta_q^p D_{si}^r D_{rj}^s + a_{10} \delta_q^p D_{ri}^r D_{sj}^s$$

with any real parameters a_1, \dots, a_{10} .

This (4.9) the 10-parameter family of $GL(m, \mathbf{R})$ -natural operators $\mathbf{Q} \oplus \mathbf{Q} \rightarrow L \otimes \otimes^2 T^* B$ may be also obtained by direct calculation.

References

- [1] D. J. Eck, *Gauge-natural bundles and generalized gauge theories*, Mem. Amer. Math. Soc. 33, 247 (1981).
- [2] I. Kolář, *Gauge-natural operators transforming connections to the tangent bundle*, The Mathematical Heritage of C.F. Gauss, World Scien. Publ. Co. Singapore 1991, pp. 416–426.
- [3] I. Kolář, *Some gauge-natural operators on connections*, Colloq. Math. Soc. 56. Diff. Geom., Eger, (1989), 435–446.
- [4] I. Kolář, *Some natural operators in differential geometry*, Proc. Conf. Diff. Geom. and its Appl., Brno 1986, Dordrecht 1987, 91–110.
- [5] I. Kolář, P. Michor, J. Slovák, *Natural Operations in Differential Geometry*, Springer-Verlag, 1993.

INSTITUTE OF MATHEMATICS
MARIA CURIE SKŁODOVSKA UNIVERSITY
Plac Marii Curie Skłodowskiej 1
20 031 LUBLIN, POLAND

Received February 24, 1993.