

Valeriu Popa, Takashi Noiri

ON θ -QUASI CONTINUOUS MULTIFUNCTIONS

1. Introduction

In 1963, Levine [8] has introduced the notion of semi-continuity between topological spaces. Since then several variations of continuity have been defined and investigated in the literature. Arya and Bhamini [1] introduced the notion of θ -semi-continuity as a generalization of semi-continuity. Recently, the second author [12] of the present paper has further investigated properties of θ -semi-continuity. In the present paper, we define and investigate upper (lower) θ -quasi continuous multifunctions. In Section 3, we shall obtain several characterizations of upper (lower) θ -quasi continuous multifunctions. In Section 4, we shall investigate several properties of such multifunctions.

2. Preliminaries

Throughout the present paper, X and Y always represent topological spaces. Let A be a subset of X . By $\text{Cl}(A)$ and $\text{Int}(A)$, we denote the closure of A and the interior of A , respectively. The θ -closure [21] of A , denoted by $\text{Cl}_\theta(A)$, is defined to be the set of all $x \in X$ such that $A \cap \text{Cl}(U) \neq \emptyset$ for every open neighborhood U of x . The θ -interior [9] of A , denoted by $\text{Int}_\theta(A)$, is defined to be the set of all $x \in A$ such that $\text{Cl}(U) \subset A$ for some open neighborhood U of x . It is shown in [21] that $\text{Cl}_\theta(A)$ is closed in X and that $\text{Cl}(U) = \text{Cl}_\theta(U)$ for each open set U of X . A subset A of X is said to be *semi-open* [8] if there exists an open set U such that $U \subset A \subset \text{Cl}(U)$, or equivalently if $A \subset \text{Cl}(\text{Int}(A))$. A subset A is said to be *regular open* (resp. *preopen* [10]) if $A = \text{Int}(\text{Cl}(A))$ (resp. $A \subset \text{Int}(\text{Cl}(A))$). The family of all semi-open (resp. regular open, preopen) sets of X is denoted by $\text{SO}(X)$ (resp. $\text{RO}(X)$, $\text{PO}(X)$). For each $x \in X$, the family of semi-open sets containing x is denoted by $\text{SO}(X, x)$. The complement of a semi-open (resp. regular open) set is said to be *semi-closed* [2] (resp. *regular closed*). The family of all semi-closed (resp. regular closed) sets of X is denoted by $\text{SC}(X)$ (resp.

$\text{RC}(X)$). The intersection of all semi-closed sets containing a subset A is called the *semi-closure* [2] of A and is denoted by $\text{sCl}(A)$. The *semi-interior* of A , denoted by $\text{sInt}(A)$, is defined by the union of all semi-open sets contained in A . The *semi θ -closure* of A and the *semi θ -interior* of A are respectively defined in [3] as follows:

$$\begin{aligned}\text{sCl}_\theta(A) &= \{x \in X \mid A \cap \text{sCl}(U) \neq \emptyset \text{ for every } U \in \text{SO}(X, x)\} \text{ and} \\ \text{sInt}_\theta(A) &= \{x \in A \mid \text{sCl}(U) \subset A \text{ for some } U \in \text{SO}(X, x)\}.\end{aligned}$$

Throughout the present paper, $F : X \rightarrow Y$ (resp. $f : X \rightarrow Y$) represents a multifunction (resp. single valued function). For a multifunction $F : X \rightarrow Y$, we shall denote the upper and lower inverse of a subset B of Y by $F^+(B)$ and $F^-(B)$, respectively, that is

$$F^+(B) = \{x \in X \mid F(x) \subset B\} \text{ and } F^-(B) = \{x \in X \mid F(x) \cap B \neq \emptyset\}.$$

DEFINITION 1. A multifunction $F : X \rightarrow Y$ is said to be

(a) *upper weakly quasi continuous* [16] if for each $x \in X$, each open set U containing x and each open set V containing $F(x)$, there exists a nonempty open set G of X such that $G \subset U$ and $F(G) \subset \text{Cl}(V)$;

(b) *lower weakly quasi continuous* [16] if for each $x \in X$, each open set U containing x and each open set V such that $F(x) \cap V \neq \emptyset$, there exists a nonempty open set G of X such that $G \subset U$ and $F(g) \cap \text{Cl}(V) \neq \emptyset$ for every $g \in G$.

LEMMA 1 (Noiri and Popa [15]). *A multifunction $F : X \rightarrow Y$ is upper (resp. lower) weakly quasi continuous if and only if for each $x \in X$ and each open set V of Y such that $F(x) \subset V$ (resp. $F(x) \cap V \neq \emptyset$), there exists $U \in \text{SO}(X, x)$ such that $F(U) \subset \text{Cl}(V)$ (resp. $U \subset F^-(\text{Cl}(V))$).*

DEFINITION 2. A multifunction $F : X \rightarrow Y$ is said to be

(a) *upper almost quasi continuous* [18] if for each $x \in X$, each open set U containing x and each open set V containing $F(x)$, there exists a nonempty open set G of X such that $G \subset U$ and $F(G) \subset \text{sCl}(V)$;

(b) *lower almost quasi continuous* [18] if for each $x \in X$, each open set U containing x and each open set V such that $F(x) \cap V \neq \emptyset$, there exists a nonempty open set G of X such that $G \subset U$ and $F(g) \cap \text{sCl}(V) \neq \emptyset$ for every $g \in G$.

LEMMA 2 (Popa and Noiri [18]). *The following are equivalent for a multifunction $F : X \rightarrow Y$:*

- (1) *F is upper (resp. lower) almost quasi continuous;*
- (2) *$F^+(V) \in \text{SO}(X)$ (resp. $F^-(V) \in \text{SO}(X)$ for every $V \in \text{RO}(Y)$);*
- (3) *$F^-(K) \in \text{SC}(X)$ (resp. $F^+(K) \in \text{SC}(X)$) for every $K \in \text{RC}(Y)$;*

(4) for each $x \in X$ and each open set V of Y such that $F(x) \subset V$ (resp. $F(x) \cap V \neq \emptyset$), there exists $U \in \text{SO}(X, x)$ such that $F(U) \subset \text{sCl}(V) = \text{Int}(\text{Cl}(V))$ (resp. $U \subset F^-(\text{sCl}(V)) = F^-(\text{Int}(\text{Cl}(V)))$).

3. Characterizations

DEFINITION 3. A multifunction $F : X \rightarrow Y$ is said to be

(a) *upper θ -quasi continuous* (briefly $u.\theta.\text{q.c.}$) for each point $x \in X$ and each open set V of Y containing $F(x)$, there exists $U \in \text{SO}(X, x)$ such that $F(\text{sCl}(U)) \subset \text{Cl}(V)$;

(b) *lower θ -quasi continuous* (briefly $l.\theta.\text{q.c.}$) if for each point $x \in X$ and each open set V of Y such that $F(x) \cap V \neq \emptyset$, there exists $U \in \text{SO}(X, x)$ such that $F(u) \cap \text{Cl}(V) \neq \emptyset$ for every $u \in \text{sCl}(U)$.

In this section we obtain several characterizations of upper (lower) θ -quasi continuous multifunctions.

THEOREM 1. *The following are equivalent for a multifunction $F : X \rightarrow Y$:*

- (1) F is $u.\theta.\text{q.c.}$;
- (2) $\text{sCl}_\theta(F^-(\text{Int}(\text{Cl}_\theta(B)))) \subset F^-(\text{Cl}_\theta(B))$ for every subset B of Y ;
- (3) $\text{sCl}_\theta(F^-(\text{Int}(\text{Cl}(V)))) \subset F^-(\text{Cl}(V))$ for every open set V of Y ;
- (4) $\text{sCl}_\theta(F^-(\text{Int}(R))) \subset F^-(R)$ for every $R \in \text{RC}(X)$;
- (5) $F^+(V) \subset \text{sInt}_\theta(F^+(\text{Cl}(V)))$ for every open set V of Y ;
- (6) $\text{sCl}_\theta(F^-(\text{Int}(K))) \subset F^-(K)$ for every closed set K of Y ;
- (7) $\text{sCl}_\theta(F^-(V)) \subset F^-(\text{Cl}(V))$ for every open set V of Y .

Proof. (1) \Rightarrow (2): Let B be any subset of Y . Suppose that $x \notin F^-(\text{Cl}_\theta(B))$. Then $x \in X - F^-(\text{Cl}_\theta(B))$ and $F(x) \subset Y - \text{Cl}_\theta(B)$. Since $\text{Cl}_\theta(B)$ is closed in Y , there exists $U \in \text{SO}(X, x)$ such that $F(\text{sCl}(U)) \subset \text{Cl}(Y - \text{Cl}_\theta(B)) = Y - \text{Int}(\text{Cl}_\theta(B))$. Thus, we have $F(\text{sCl}(U)) \cap \text{Int}(\text{Cl}_\theta(B)) = \emptyset$ and $\text{sCl}(U) \cap F^-(\text{Int}(\text{Cl}_\theta(B))) = \emptyset$. This shows that $x \notin \text{sCl}_\theta(F^-(\text{Int}(\text{Cl}_\theta(B))))$. Therefore, we obtain $\text{sCl}_\theta(F^-(\text{Int}(\text{Cl}_\theta(B)))) \subset F^-(\text{Cl}_\theta(B))$.

(2) \Rightarrow (3): This is obvious since $\text{Cl}(V) = \text{Cl}_\theta(V)$ for every open set V of Y .

(3) \Rightarrow (4): Let $R \in \text{RC}(Y)$, then we have $\text{sCl}_\theta(F^-(\text{Int}(R))) = \text{sCl}_\theta(F^-(\text{Int}(\text{Cl}(\text{Int}(R))))) \subset F^-(\text{Cl}(\text{Int}(R))) = F^-(R)$.

(4) \Rightarrow (5): Let V be any open set of Y . Then we have

$$X - \text{sInt}_\theta(F^+(\text{Cl}(V))) = \text{sCl}_\theta(X - F^+(\text{Cl}(V))) = \text{sCl}_\theta(F^-(Y - \text{Cl}(V))),$$

$$Y - \text{Cl}(V) = \text{Int}(Y - \text{Cl}(V)) \subset \text{Int}(Y - \text{Int}(\text{Cl}(V))), \text{ and}$$

$$Y - \text{Int}(\text{Cl}(V)) \in \text{RC}(Y).$$

Therefore, we obtain

$$\begin{aligned} s\text{Cl}_\theta(F^-(\text{Int}(Y - \text{Int}(\text{Cl}(V))))) &\subset F^-(Y - \text{Int}(\text{Cl}(V))) = \\ &= X - F^+(\text{Int}(\text{Cl}(V))) \subset X - F^+(V). \end{aligned}$$

Consequently, we obtain $F^+(V) \subset s\text{Int}_\theta(F^+(\text{Cl}(V)))$.

(5) \Rightarrow (6): Let K be any closed set of Y . Then by (5) we have

$$\begin{aligned} X - F^-(K) &= F^+(Y - K) \subset s\text{Int}_\theta(F^+(\text{Cl}(Y - K))) = \\ &= s\text{Int}_\theta(F^+(Y - \text{Int}(K))) = s\text{Int}_\theta(X - F^-(\text{Int}(K))) = \\ &= X - s\text{Cl}_\theta(F^-(\text{Int}(K))). \end{aligned}$$

Therefore, we obtain $s\text{Cl}_\theta(F^-(\text{Int}(K))) \subset F^-(K)$.

(6) \Rightarrow (7): Let V be any open set of Y , then $\text{Cl}(V)$ is closed and we have $s\text{Cl}_\theta(F^-(V)) \subset s\text{Cl}_\theta(F^-(\text{Int}(\text{Cl}(V)))) \subset F^-(\text{Cl}(V))$.

(7) \Rightarrow (1): Let $x \in X$ and V be any open set of Y containing $F(x)$. Then $F(x) \cap \text{Cl}(Y - \text{Cl}(V)) = \emptyset$ and $x \notin F^-(\text{Cl}(Y - \text{Cl}(V)))$. It follows from (7) that $x \notin s\text{Cl}_\theta(F^-(Y - \text{Cl}(V)))$. Then there exists $U \in \text{SO}(X, x)$ such that $s\text{Cl}(U) \cap F^-(Y - \text{Cl}(V)) = \emptyset$; hence $F(s\text{Cl}(U)) \subset \text{Cl}(V)$. This shows that F is $l.\theta.\text{q.c.}$.

LEMMA 3. *If $F : X \rightarrow Y$ is $l.\theta.\text{q.c.}$, then for each $x \in X$ and each subset B of Y with $F(x) \cap \text{Int}_\theta(B) \neq \emptyset$ there exists $U \in \text{SO}(X, x)$ such that $s\text{Cl}(U) \subset F^-(B)$.*

Proof. Since $F(x) \cap \text{Int}_\theta(B) \neq \emptyset$, there exists an open set V of Y such that $V \subset \text{Cl}(V) \subset B$ and $F(x) \cap V \neq \emptyset$. Since F is $l.\theta.\text{q.c.}$, there exists $U \in \text{SO}(X, x)$ such that $F(u) \cap \text{Cl}(V) \neq \emptyset$ for every $u \in s\text{Cl}(U)$ and hence $s\text{Cl}(U) \subset F^-(B)$.

THEOREM 2. *The following are equivalent for a multifunction $F : X \rightarrow Y$:*

- (1) *F is $l.\theta.\text{q.c.}$;*
- (2) *$s\text{Cl}_\theta(F^+(B)) \subset F^+(\text{Cl}_\theta(B))$ for every subset B of Y ;*
- (3) *$s\text{Cl}_\theta(F^+(V)) \subset F^+(\text{Cl}(V))$ for every open set V of Y ;*
- (4) *$F^-(V) \subset s\text{Int}_\theta(F^-(\text{Cl}(V)))$ for every open set V of Y ;*
- (5) *$F(s\text{Cl}_\theta(A)) \subset \text{Cl}_\theta(F(A))$ for every subset A of X ;*
- (6) *$s\text{Cl}_\theta(F^+(\text{Int}(\text{Cl}_\theta(B)))) \subset F^+(\text{Cl}_\theta(B))$ for every subset B of Y ;*
- (7) *$s\text{Cl}_\theta(F^+(\text{Int}(\text{Cl}(V)))) \subset F^+(\text{Cl}(V))$ for every open set V of Y ;*
- (8) *$s\text{Cl}_\theta(F^+(\text{Int}(R))) \subset F^+(R)$ for every $R \in \text{RC}(Y)$;*
- (9) *$s\text{Cl}_\theta(F^+(\text{Int}(K))) \subset F^+(K)$ for every closed set K of Y .*

Proof. (1) \Rightarrow (2): Let B be any subset of Y . Suppose that $x \notin F^+(\text{Cl}_\theta(B))$. Then $x \in F^-(Y - \text{Cl}_\theta(B)) = F^-(\text{Int}_\theta(Y - B))$. Since F is $l.\theta.\text{q.c.}$, by Lemma 3 there exists $U \in \text{SO}(X, x)$ such that $s\text{Cl}(U) \subset$

$F^-(Y - B) = X - F^+(B)$. Thus we have $s\text{Cl}(U) \cap F^+(B) = \emptyset$ and hence $x \notin s\text{Cl}_\theta(F^+(B))$.

(2) \Rightarrow (3): This is obvious since $\text{Cl}(V) = \text{Cl}_\theta(V)$ for every open set V of Y .

(3) \Rightarrow (4): Let V be any open set of Y . Then, we have

$$X - s\text{Int}_\theta(F^-(\text{Cl}(V))) = s\text{Cl}_\theta(X - F^-(\text{Cl}(V))) = s\text{Cl}_\theta(F^+(Y - \text{Cl}(V))) \subset F^+(\text{Cl}(Y - \text{Cl}(V))) \subset F^+(\text{Cl}(Y - V)) = F^+(Y - V) = X - F^-(V).$$

Therefore, we obtain $F^-(V) \subset s\text{Int}_\theta(F^-(\text{Cl}(V)))$.

(4) \Rightarrow (1): Let $x \in X$ and V be any open set such that $F(x) \cap V \neq \emptyset$. Then $x \in F^-(V) \subset s\text{Int}_\theta(F^-(\text{Cl}(V)))$. Therefore, there exists $U \in \text{SO}(X, x)$ such that $s\text{Cl}(U) \subset F^-(\text{Cl}(V))$; hence $F(u) \cap \text{Cl}(V) \neq \emptyset$ for every $u \in s\text{Cl}(U)$. This shows that F is $1.\theta.\text{q.c.}$

(2) \Rightarrow (5): Let A be any subset of X . By replacing B in (2) by $F(A)$, we have $s\text{Cl}_\theta(A) \subset s\text{Cl}_\theta(F^+(F(A))) \subset F^+(\text{Cl}_\theta(F(A)))$. Thus we obtain $F(s\text{Cl}_\theta(A)) \subset \text{Cl}_\theta(F(A))$.

(5) \Rightarrow (2): Let B be any subset of Y . Replacing A in (5) by $F^+(B)$, we have $F(s\text{Cl}_\theta(F^+(B))) \subset \text{Cl}_\theta(F(F^+(B))) \subset \text{Cl}_\theta(B)$. Thus we obtain $s\text{Cl}_\theta(F^+(B)) \subset F^+(\text{Cl}_\theta(B))$.

(3) \Rightarrow (6): Let B be any subset of Y . Put $V = \text{Int}(\text{Cl}_\theta(B))$ in (3). Then, since $\text{Cl}_\theta(B)$ is closed in Y , we have

$$s\text{Cl}_\theta(F^+(\text{Int}(\text{Cl}_\theta(B)))) \subset F^+(\text{Cl}(\text{Int}(\text{Cl}_\theta(B)))) \subset F^+(\text{Cl}_\theta(B)).$$

(6) \Rightarrow (7): This is obvious since $\text{Cl}(V) = \text{Cl}_\theta(V)$ for any open set V of Y .

(7) \Rightarrow (8): If $R \in \text{RC}(Y)$, then by (7) we have

$$\begin{aligned} s\text{Cl}_\theta(F^+(\text{Int}(R))) &= s\text{Cl}_\theta(F^+(\text{Int}(\text{Cl}(\text{Int}(R))))) \\ &\subset F^+(\text{Cl}(\text{Int}(R))) = F^+(R). \end{aligned}$$

(8) \Rightarrow (9): Let K be any closed set of Y . Since $\text{Cl}(\text{Int}(K)) \in \text{RC}(Y)$, we have

$$\begin{aligned} s\text{Cl}_\theta(F^+(\text{Int}(K))) &= s\text{Cl}_\theta(F^+(\text{Int}(\text{Cl}(\text{Int}(K))))) \\ &\subset F^+(\text{Cl}(\text{Int}(K))) \subset F^+(K). \end{aligned}$$

(9) \Rightarrow (4): Let V be any open set of Y . Then $Y - V$ is closed in Y and by (9) we have $s\text{Cl}_\theta(F^+(\text{Int}(Y - V))) \subset F^+(Y - V) = X - F^-(V)$. Moreover, we have $s\text{Cl}_\theta(F^+(\text{Int}(Y - V))) = s\text{Cl}_\theta(F^+(Y - \text{Cl}(V))) = s\text{Cl}_\theta(X - F^-(\text{Cl}(V))) = X - s\text{Int}_\theta(F^-(\text{Cl}(V)))$. Therefore, we obtain $F^-(V) \subset s\text{Int}_\theta(F^-(\text{Cl}(V)))$.

COROLLARY 1 (Noiri [12]). *The following are equivalent for a function $f : X \rightarrow Y$:*

(1) f is θ -semi-continuous;

- (2) $s\text{Cl}_\theta(f^{-1}(B)) \subset f^{-1}(\text{Cl}_\theta(B))$ for every subset B of Y ;
- (3) $s\text{Cl}_\theta(f^{-1}(V)) \subset f^{-1}(\text{Cl}(V))$ for every open set V of Y ;
- (4) $f^{-1}(V) \subset s\text{Int}_\theta(f^{-1}(\text{Cl}(V)))$ for every open set V of Y ;
- (5) $f(s\text{Cl}_\theta(A)) \subset \text{Cl}_\theta(f(A))$ for every subset A of X .

For a multifunction $F : X \rightarrow Y$, the *graph multifunction* $G_F : X \rightarrow X \times Y$ is defined as follows: $G_F(x) = \{x\} \times F(x)$ for every $x \in X$.

LEMMA 4. (Noiri and Popa [14]). *The following hold for a multifunction $F : X \rightarrow Y$:*

- (a) $G_F^+(A \times B) = A \cap F^+(B)$ and (b) $G_F^-(A \times B) = A \cap F^-(B)$ for every subsets $A \subset X$ and $B \subset Y$.

THEOREM 3. *Let $F : X \rightarrow Y$ be a multifunction such that $F(x)$ is compact for each $x \in X$. Then F is u.θ.q.c. if and only if $G_F : X \rightarrow X \times Y$ is u.θ.q.c..*

Proof. *Necessity.* Suppose that $F : X \rightarrow Y$ is u.θ.q.c. Let $x \in X$ and W be any open set of $X \times Y$ containing $G_F(x)$. For each $y \in F(x)$ there exist open sets $U(y) \subset Y$ and $V(y) \subset Y$ such that $(x, y) \in U(y) \times V(y) \subset W$. The family $\{V(y) \mid y \in F(x)\}$ is an open cover of $F(x)$ and there exists a finite number of points, says, y_1, y_2, \dots, y_n in $F(x)$ such that $F(x) \subset \bigcup\{V(y_i) \mid i = 1, 2, \dots, n\}$. Set $U = \bigcap\{U(y_i) \mid i = 1, 2, \dots, n\}$ and $V = \bigcup\{V(y_i) \mid i = 1, 2, \dots, n\}$. Then U and V are open in X and Y , respectively, and $\{x\} \times F(x) \subset U \times V \subset W$. Since F is u.θ.q.c., there exists $U_0 \in \text{SO}(X, x)$ such that $F(s\text{Cl}(U_0)) \subset \text{Cl}(V)$. It follows from [11, Lemma 1] that $G = U \cap U_0 \in \text{SO}(X, x)$. By Lemma 4 we have

$$\begin{aligned} s\text{Cl}(G) &= s\text{Cl}(U \cap U_0) \subset s\text{Cl}(U) \cap s\text{Cl}(U_0) \subset \text{Cl}(U) \cap F^+(\text{Cl}(V)) \\ &= G_F^+(\text{Cl}(U) \times \text{Cl}(V)) = G_F^+(\text{Cl}(U \times V)) \subset G_F^+(\text{Cl}(W)). \end{aligned}$$

Thus $G_F(s\text{Cl}(G)) \subset \text{Cl}(W)$. This shows that G_F is u.θ.q.c.

Sufficiency. Suppose that $G_F : X \rightarrow X \times Y$ is u.θ.q.c. Let $x \in X$ and V be any open set of Y containing $F(x)$. Since $X \times V$ is open in $X \times Y$ and $G_F(x) \subset X \times Y$, there exists $U \in \text{SO}(X, x)$ such that $G_F(s\text{Cl}(U)) \subset \text{Cl}(X \times V) = X \times \text{Cl}(V)$. Therefore by Lemma 4 we obtain $s\text{Cl}(U) \subset G_F^+(X \times \text{Cl}(V)) = F^+(\text{Cl}(V))$ and hence $F(s\text{Cl}(U)) \subset \text{Cl}(V)$. This shows that F is u.θ.q.c.

THEOREM 4. *A multifunction $F : X \rightarrow Y$ is l.θ.q.c. if and only if $G_F : X \rightarrow X \times Y$ is l.θ.q.c.*

Proof. *Necessity.* Suppose that F is l.θ.q.c. Let $x \in X$ and W be any open set of $X \times Y$ such that $G_F(x) \cap W \neq \emptyset$. There exists $y \in F(x)$ such that $(x, y) \in W$ and hence we have $(x, y) \in U \times V \subset W$ for some open

sets $U \subset X$ and $V \subset Y$. Since F is $l.\theta.q.c.$ and $y \in F(x) \cap V$, there exists $U_0 \in \text{SO}(X, x)$ such that $\text{sCl}(U_0) \subset F^-(\text{Cl}(V))$. It follows from [11, Lemma 1] that $G = U \cap U_0 \in \text{SO}(X, x)$. By Lemma 4, we have

$$\begin{aligned}\text{sCl}(G) &= \text{sCl}(U \cap U_0) \subset \text{sCl}(U) \cap \text{sCl}(U_0) \subset \text{Cl}(U) \cap F^-(\text{Cl}(V)) \\ &= G_F^-(\text{Cl}(U) \times \text{Cl}(V)) = G_F^-(\text{Cl}(U \times V)) \subset G_F^-(\text{Cl}(W)).\end{aligned}$$

Therefore, $G_F(u) \cap \text{Cl}(W) \neq \emptyset$ for every $u \in \text{sCl}(G)$. This shows that G_F is $l.\theta.q.c.$

Sufficiency. Suppose that G_F is $l.\theta.q.c.$ Let $x \in X$ and V be an open set in Y such that $F(x) \cap V \neq \emptyset$. Then $X \times V$ is open in $X \times Y$ and $G_F(x) \cap (X \times V) = (\{x\} \times F(x)) \cap (X \times V) = \{x\} \times (F(x) \cap V) \neq \emptyset$. There exists $U \in \text{SO}(X, x)$ such that $G_F(u) \cap \text{Cl}(X \times V) \neq \emptyset$ for each $u \in \text{sCl}(U)$. By Lemma 4, we obtain $\text{sCl}(U) \subset G_F^-(\text{Cl}(X \times V)) = F^-(\text{Cl}(V))$. This shows that F is $l.\theta.q.c.$

COROLLARY 2 (Noiri [12]). *A function $f : X \rightarrow Y$ is θ -semi-continuous if and only if the graph function $g : X \rightarrow X \times Y$ is θ -semi-continuous.*

For a multifunction $F : X \rightarrow Y$, a multifunction $\text{sCl } F : X \rightarrow Y$ is defined in [17] as follows: $(\text{sCl } F)(x) = \text{sCl}(F(x))$ for each $x \in X$.

LEMMA 5. (Noiri and Popa [14]). *Let $F : X \rightarrow Y$ be a multifunction. Then $(\text{sCl } F)^-(V) = F^-(V)$ for every $V \in \text{SO}(Y)$.*

THEOREM 5. *A multifunction $F : X \rightarrow Y$ is $l.\theta.q.c.$ if and only if $\text{sCl } F : X \rightarrow Y$ is $l.\theta.q.c.$*

Proof. Necessity. Suppose that F is $l.\theta.q.c.$ Let $x \in X$ and V be any open set of Y such that $(\text{sCl } F)(x) \cap V \neq \emptyset$. By Lemma 5, we have $F(x) \cap V \neq \emptyset$. Since F is $l.\theta.q.c.$, there exists $U \in \text{SO}(X, x)$ such that $F(u) \cap \text{Cl}(V) \neq \emptyset$ for every $u \in \text{sCl}(U)$. Since $\text{Cl}(V) \in \text{SO}(Y)$, by Lemma 5 we have $\text{sCl}(U) \subset F^-(\text{Cl}(V)) = (\text{sCl } F)^-(\text{Cl}(V))$ and hence $(\text{sCl } F)(u) \cap \text{Cl}(V) \neq \emptyset$ for any $u \in \text{sCl}(U)$. This shows that $\text{sCl } F$ is $l.\theta.q.c.$

Sufficiency. Suppose that $\text{sCl } F$ is $l.\theta.q.c.$ Let $x \in X$ and V be any open set of Y such that $F(x) \cap V \neq \emptyset$. Then $\text{sCl}(F(x)) \cap V \neq \emptyset$ and there exists $U \in \text{SO}(X, x)$ such that $(\text{sCl } F)(u) \cap \text{Cl}(V) \neq \emptyset$ for every $u \in \text{sCl}(U)$. Since $\text{Cl}(V) \in \text{SO}(Y)$, by Lemma 5 $\text{sCl}(U) \subset (\text{sCl } F)^-(\text{Cl}(V)) = F^-(\text{Cl}(V))$ and hence $F(u) \cap \text{Cl}(V) \neq \emptyset$ for every $u \in \text{sCl}(U)$. Therefore, F is $l.\theta.q.c.$

4. Some results

First, we obtain some sufficient conditions for an upper (resp. lower) weakly quasi continuous multifunction to be $u.\theta.q.c.$ (resp. $l.\theta.q.c.$).

THEOREM 6. *If a multifunction $F : X \rightarrow Y$ is upper weakly quasi continuous and lower almost quasi continuous, then F is $u.\theta.q.c.$*

Proof. Let $x \in X$ and V be any open set of Y containing $F(x)$. Then, by Lemma 1, there exists $U \in \text{SO}(X, x)$ such that $F(U) \subset \text{Cl}(V)$ and hence $U \subset F^+(\text{Cl}(V))$. Since $\text{Cl}(V) \in \text{RC}(Y)$, by Lemma 2 we have $F^+(\text{Cl}(V)) \in \text{SC}(X)$. Therefore, we obtain $\text{sCl}(U) \subset F^+(\text{Cl}(V))$ and hence $F(\text{sCl}(U)) \subset \text{Cl}(V)$. This shows that F is $u.\theta.\text{q.c.}$

THEOREM 7. *If a multifunction $F : X \rightarrow Y$ is lower weakly quasi continuous and upper almost quasi continuous, then F is $l.\theta.\text{q.c.}$*

Proof. Let $x \in X$ and V be any open set such that $F(x) \cap V \neq \emptyset$. Since F is lower weakly quasi continuous, by Lemma 1 there exists $U \in \text{SO}(X, x)$ such that $U \subset F^-(\text{Cl}(V))$. Since $\text{Cl}(V) \in \text{RC}(Y)$, by Lemma 2 $F^-(\text{Cl}(V)) \in \text{SC}(X)$ and hence $\text{sCl}(U) \subset F^-(\text{Cl}(V))$. This implies that $F(u) \cap \text{Cl}(V) \neq \emptyset$ for every $u \in \text{sCl}(U)$. Thus F is $l.\theta.\text{q.c.}$

COROLLARY 3. (Arya and Bhamini [1]). *Every almost semi-continuous function is θ -semi-continuous.*

DEFINITION 4. A topological space X is said to be *semi-regular* [4] if for each semi-closed set A and each point $x \notin A$, there exist disjoint semi-open sets U and V such that $x \in U$ and $A \subset V$.

THEOREM 8. *If a multifunction $F : X \rightarrow Y$ is upper weakly quasi continuous and X is semi-regular, then F is $u.\theta.\text{q.c.}$*

Proof. Let $x \in X$ and V be an open set of Y containing $F(x)$. Then, by Lemma 1, there exists $G \in \text{SO}(X, x)$ such that $F(G) \subset \text{Cl}(V)$. By [4, Theorem 2.1], there exists $U \in \text{SO}(X, x)$ such that $x \in U \subset \text{sCl}(U) \subset G$. Therefore, we obtain $F(\text{sCl}(U)) \subset \text{Cl}(V)$ and hence F is $u.\theta.\text{q.c.}$

THEOREM 9. *If a multifunction $F : X \rightarrow Y$ is lower weakly quasi continuous and X is semi-regular, then F is $l.\theta.\text{q.c.}$*

Proof. The proof is similar to that of Theorem 8.

DEFINITION 5. A subset of X is said to be *α -almost regular* [7] if for any point $a \in A$ and any $U \in \text{RO}(X)$ containing a , there exists an open set G such that $a \in G \subset \text{Cl}(G) \subset U$.

DEFINITION 6. A subset A of X is said to be *α -nearly paracompact* [6] if every cover of A by regular open sets of X has an X -open X -locally finite refinement which covers A .

LEMMA 6 (Kovačević [7]). *If A is an α -almost regular α -nearly paracompact subset of X and U is a regular open neighborhood of A , then there exists an open neighborhood G of A such that $A \subset G \subset \text{Cl}(G) \subset U$.*

THEOREM 10. *If a multifunction $F : Y \rightarrow Y$ is upper weakly quasi continuous and $F(x)$ is α -almost regular α -nearly paracompact in Y for each $x \in X$, then F is upper almost quasi continuous.*

Proof. Let V be any regular open set of Y and $F(x) \subset V$. Since $F(x)$ is α -almost regular α -nearly paracompact, by Lemma 6 there exists an open set W of Y such that $F(x) \subset W \subset \text{Cl}(W) \subset V$. Since F is upper weakly quasi continuous, by Lemma 1 there exists $U \in \text{SO}(X, x)$ such that $F(U) \subset \text{Cl}(W) \subset V$. Therefore, we have $x \in U \subset F^+(V)$ and hence $F^+(V) \in \text{SO}(X)$. It follows from Lemma 2 that F is upper almost quasi continuous.

COROLLARY 4. *If $F : X \rightarrow Y$ is an $u.\theta.q.c.$ multifunction and $F(x)$ is α -almost regular α -nearly paracompact in Y for each $x \in X$, then F is upper almost quasi continuous.*

LEMMA 7 (Noiri and Ahmad [13]). *Let A and X_0 be subsets of X . Then the following hold:*

- (a) *If $A \in \text{SO}(X)$ and $X_0 \in \text{PO}(X)$, then $A \cap (X_0) \in \text{SO}(X_0)$.*
- (b) *If $A \subset X_0 \in \text{PO}(X)$, then $X_0 \cap \text{sCl}(A) = \text{sCl}_{X_0}(A)$, where $\text{sCl}_{X_0}(A)$ denotes the semi-closure of A in the subspace X_0 of X .*

THEOREM 11. *If a multifunction $F : X \rightarrow Y$ is $u.\theta.q.c.$ and $X_0 \in \text{PO}(X)$, then the restriction $F | X_0 : X_0 \rightarrow Y$ is $u.\theta.q.c.$*

Proof. Let $x \in X_0$ and V be any open set of Y containing $F(x)$. There exists $U \in \text{SO}(X, x)$ such that $F(\text{sCl}(U)) \subset \text{Cl}(V)$. Since $X_0 \in \text{PO}(X)$, by Lemma 7 we have $x \in U \cap X_0 \in \text{SO}(X_0)$ and $\text{sCl}_{X_0}(U \cap X_0) = X_0 \cap \text{sCl}(U \cap X_0) \subset X_0 \cap \text{sCl}(U)$. Therefore, we obtain

$$\begin{aligned} (F | X_0)(\text{sCl}_{X_0}(U \cap X_0)) &\subset (F | X_0)(X_0 \cap \text{sCl}(U)) \\ &= F(X_0 \cap \text{sCl}(U)) \subset \text{Cl}(V). \end{aligned}$$

This shows that $F | X_0$ is $u.\theta.q.c.$

THEOREM 12. *If a multifunction $F : X \rightarrow Y$ is $l.\theta.q.c.$ and $X_0 \in \text{PO}(X)$, then the restriction $F | X_0 : X_0 \rightarrow Y$ is $l.\theta.q.c.$*

Proof. Let $x \in X_0$ and V be any open set of Y such that $F(x) \cap V \neq \emptyset$. There exists $U \in \text{SO}(X, x)$ such that $F(u) \cap \text{Cl}(V) \neq \emptyset$ for each $u \in \text{sCl}(U)$. Since $X_0 \in \text{PO}(X)$, we have $x \in U \cap X_0 \in \text{SO}(X_0)$ and $\text{sCl}_{X_0}(U \cap X_0) \subset X_0 \cap \text{sCl}(U)$. For any $u \in \text{sCl}_{X_0}(U \cap X_0)$, $u \in \text{sCl}(U) \cap X_0$ and $\emptyset \neq F(u) \cap \text{Cl}(V) = (F | X_0)(u) \cap \text{Cl}(V)$. Therefore, we have $(F | X_0)(u) \cap \text{Cl}(V) \neq \emptyset$ for every $u \in \text{sCl}_{X_0}(U \cap X_0)$. This shows that $F | X_0$ is $l.\theta.q.c.$

COROLLARY 5 (Noiri [12]). *If a function $f : X \rightarrow Y$ is a θ -semi-continuous and $X_0 \in \text{PO}(X)$, then the restriction $f|_{X_0} : X_0 \rightarrow Y$ is θ -semi-continuous.*

DEFINITION 7. A topological space X is said to be *quasi H-closed* [19] (resp. *S-closed* [20], *s-closed* [3]) if for every open (resp. semi-open) cover $\{U_\alpha \mid \alpha \in \nabla\}$ of X , there exists a finite subset ∇_0 of ∇ such that $X = \bigcup\{\text{Cl}(U_\alpha) \mid \alpha \in \nabla_0\}$ (resp. $X = \bigcup\{\text{Cl}(U_\alpha) \mid \alpha \in \nabla_0\}$, $X = \bigcup\{\text{sCl}(U_\alpha) \mid \alpha \in \nabla_0\}$).

It is well known that *s*-closedness implies *S*-closedness and *S*-closedness implies quasi *H*-closedness but none of these implications is reversible.

THEOREM 13. *Let $F : X \rightarrow Y$ be a surjective multifunction and $F(x)$ compact for each $x \in X$. If F is $u.\theta.q.c.$ and X is *s*-closed, then Y is quasi *H*-closed.*

Proof. Let $\{V_\alpha \mid \alpha \in \nabla\}$ be any open cover of Y . Let x be any point of X . Since $F(x)$ is compact, there exists a finite subset $\nabla(x)$ of ∇ such that $F(x) \subset \bigcup\{V_\alpha \mid \alpha \in \nabla(x)\}$. Put $V(x) = \bigcup\{V_\alpha \mid \alpha \in \nabla(x)\}$, then $F(x) \subset V(x)$ and $V(x)$ is open in Y . Since F is $u.\theta.q.c.$, there exists $U(x) \in \text{SO}(X, x)$ such that $F(\text{sCl}(U(x))) \subset \text{Cl}(V(x))$. The family $\{U(x) \mid x \in X\}$ is a semi-open cover of X . Since X is *s*-closed, there exists a finite number of points, says, x_1, x_2, \dots, x_n in X such that $X = \bigcup\{\text{sCl}(U(x_i)) \mid i = 1, 2, \dots, n\}$. Since F is surjective, we obtain

$$Y = F(X) \subset \bigcup_{i=1}^n F(\text{sCl}(U(x_i))) \subset \bigcup_{i=1}^n \text{Cl}(V(x_i)) = \bigcup_{i=1}^n \bigcup_{\alpha \in \nabla(x_i)} \text{Cl}(\nabla_\alpha).$$

This shows that Y is quasi *H*-closed.

THEOREM 14. *Let $F : X \rightarrow Y$ be a surjective multifunction and $F(x)$ compact for each $x \in X$. If F is upper weakly quasi continuous and lower almost quasi continuous and X is *S*-closed, then Y is quasi *H*-closed.*

Proof. Let $\{V_\alpha \mid \alpha \in \nabla\}$ be any open cover of Y . For each $x \in X$, $F(x)$ is compact and there exists a finite subset $\nabla(x)$ of ∇ such that $F(x) \subset \bigcup\{V_\alpha \mid \alpha \in \nabla(x)\}$. Now, put $V(x) = \bigcup\{V_\alpha \mid \alpha \in \nabla(x)\}$, then $V(x)$ is open in Y and $F(x) \subset V(x)$. It follows from Theorem 6 that F is $u.\theta.q.c.$ By Theorem 1, we have $x \in F^+(V(x)) \subset \text{sInt}_\theta(F^+(\text{Cl}(V(x)))) \in \text{SO}(X)$ and hence $\{\text{sInt}_\theta(F^+(\text{Cl}(V(x)))) \mid x \in X\}$ is a semi-open cover of X . Since X is *S*-closed, there exists a finite number of points, says, x_1, x_2, \dots, x_n in X such that

$$\begin{aligned}
X &= \bigcup_{i=1}^n \text{Cl}(\text{sInt}_\theta(F^+(\text{Cl}(V(x_i))))) = \\
&= \bigcup_{i=1}^n \text{Cl}(F^+(\text{Cl}(V(x_i)))) = \text{Cl} \left(\bigcup_{i=1}^n F^+(\text{Cl}(V(x_i))) \right).
\end{aligned}$$

It follows from [5, Theorem 2.4] that

$$\begin{aligned}
X &= \text{sCl} \left(\bigcup_{i=1}^n F^+(\text{Cl}(V(x_i))) \right) \subset \text{sCl} \left(F^+ \left(\bigcup_{i=1}^n \text{Cl}(V(x_i)) \right) \right) \\
&= \text{sCl} \left(F^+ \left(\bigcup_{i=1}^n V(x_i) \right) \right).
\end{aligned}$$

Since $\text{Cl}(\bigcup\{V(x_i) \mid 1 \leq i \leq n\})$ is regular closed in Y , by Lemma 2 $F^+(\text{Cl}(\bigcup\{V(x_i) \mid 1 \leq i \leq n\}))$ is semi-closed in X . Therefore, we have

$$\begin{aligned}
Y &= F(X) = F(F^+(\text{Cl}(\bigcup_{i=1}^n V(x_i)))) \subset \text{Cl}(\bigcup_{i=1}^n V(x_i)) = \\
&= \bigcup_{i=1}^n \text{Cl}(V(x_i)) = \bigcup_{i=1}^n \bigcup_{\alpha \in V(x_i)} \text{Cl}(V_\alpha).
\end{aligned}$$

References

- [1] S. P. Arya and M. P. Bhambhani, *Some weaker forms of semi-continuous functions*, Ganita 33 (1982), 124–134.
- [2] S. G. Crossley and S. K. Hildebrand, *Semi-closure*, Texas J. Sci. 22 (1971), 99–112.
- [3] G. Di Maio and T. Noiri, *On s -closed spaces*, Indian J. Pure Appl. Math. 18 (1987), 226–233.
- [4] C. Dorsett, *Semi-regular spaces*, Soochow J. Math. 8 (1982), 45–53.
- [5] T. R. Hamlett, *Semi-continuous functions*, Math. Chronicle 4 (1976), 101–107.
- [6] I. Kovačević, *On nearly paracompact spaces*, Publ. Inst. Math. (N.S.) 25(39) (1979), 63–69.
- [7] I. Kovačević, *On nearly and almost paracompactness*, Ann. Soc. Sci. Bruxelles, 102 (1988), 105–118.
- [8] N. Levine, *Semi-open sets and semi-continuity in topological spaces*, Amer. Math. Monthly 70 (1963), 36–41.
- [9] P. E. Long and L. L. Herington, *Strongly θ -continuous functions*, J. Korean Math. Soc. 18 (1981), 21–28.
- [10] A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deep, *On precontinuous and weak precontinuous mappings*, Proc. Math. Phys. Soc. Egypt 53 (1982), 47–53.
- [11] T. Noiri, *On semi-continuous mappings*, Atti Accad. Naz. Lincei Rend. Sci. Fis. Mat. Natur. (8) 54 (1973), 210–214.

- [12] T. Noiri, *On θ -semi-continuous functions*, Indian J. Pure Appl. Math. 21 (1990), 410–415.
- [13] T. Noiri and B. Ahmad, *A note on semi-open functions*, Math. Sem. Notes Kobe Univ. 10 (1982), 437–441.
- [14] T. Noiri and V. Popa, *Almost weakly continuous multifunctions*, Demonstratio Math. 26 (1993), 363–380.
- [15] T. Noiri and V. Popa, *On upper and lower weakly quasi continuous multifunctions*, Rev. Roumaine Math. Pures Appl. 37 (1992), 499–508.
- [16] V. Popa, *On a decomposition of quasicontinuity for multifunctions (Romanian)*, Stud. Cerc. Mat. 27 (1975), 323–328.
- [17] V. Popa, *Multifonctions semi-continues*, Rev. Roumaine Math. Pures Appl. 27 (1982), 807–815.
- [18] V. Popa and T. Noiri, *On upper and lower almost quasi continuous multifunctions*, Bull. Inst. Math. Acad. Sinica 21 (1993), 337–349.
- [19] J. Porter and J. Thomas, *On H -closed and minimal Hausdorff spaces*, Trans. Amer. Math. Soc. 138 (1969), 159–170.
- [20] T. Thompson, *S -closed spaces*, Proc. Amer. Math. Soc. 60 (1976), 335–338.
- [21] N. V. Veličko, *H -closed topological spaces*, Amer. Math. Soc. Transl. (2) 78 (1968), 103–118.

Takashi Noiri

DEPARTMENT OF MATHEMATICS
YATSUSHIRO COLLEGE OF TECHNOLOGY
YATSUSHIRO-SHI, KUMAMOTO-KEN 866, JAPAN

Valeriu Popa

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF BACAU
5500 BACAU, RUMANIA

Received February 22, 1993.