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A CHARACTERIZATION 
OF LOW D E G R E E POLYNOMIALS 

This paper concerns with the solution of a functional equation that char-
acterizes low degree polynomials. The method used for solving the equation 
is simple and elementary. Here, an answer is also provided to a problem 
posed by Walter Rudin in the American Mathematical Monthly [11] in a 
general setting. 

1. Introduction 
Let R be the set of all real numbers. A function A : R —> R is said to be 

an additive function on reals if 

for all real numbers x and y. There are many papers dealing with the various 
aspects of additive functions. A comprehensive review on additive functions 
can be found in [9]. 

It is well known that for quadratic polynomials the Mean Value Theorem 
takes the form 

It was shown in [1] (and also [6]) that the solution of the functional differ-
ential equation (1) is of the form f(x) = ax2 + bx + c, where a, b and c 
are arbutrary real constants. This has the following interpretation. Let / ( i ) 
denote the position of a moving object at time t. If the mean velocity 

A(x + y) = A(x) + A{y) 

(1) 

f { y ) - / 0 ) 
y - x 
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during every interval [x,y] is equal to the velocity a t the arithmetic 
mean of the end points x and y of the interval [x,y], then the trajectory 
of the object is a parabola or a line. The above functional equation (1) is a 
special case of the following equation 

/ 0 ) - f(y) ,,, „ ——-— = <Kv(*,v)h 

where i](x,y) is an apriori known function of x and y. Note that this equa-
tion contains no derivative and no mean value. In a recent paper, Aczel and 
Kuczma [2] have determined the solution of the above functional equation 
assuming rj(x,y) to be either arithmetic, or harmonic or geometric mean 
of x and y. Several authors (see [1], [2], [6], [8]) have treated equations of 
this type. If T)(x, y) = x + y, then the above equation characterizes quadratic 
polynomials. For a generalization of (1) to higher derivatives the reader may 
refer to [3], [7] and [8]. For a generalization of (1) that characterizes poly-
nomials of degree at most n the reader may refer to [3], [4], and [7]. The 
motivation behind the study of the above functional equations for charac-
terizing polynomials can be found in [1], [2], [3], [5], [6], [7], [8], [10], [12] 
and references therein. 

In the American Mathematical Monthly [11] the following problem was 
proposed by Walter Rudin: "Let s and t be given real numbers. Find all 
differentiable functions f on the real line which satisfy 

(RE) + = y - x 

for all real x,y, with x ^ y." Note that any solution of (RE) is intrinsi-
cally differentiable. In fact, if / is a solution of (RE), then / E C°°(R). 
The equation given by Rudin is a special case of the following functional 
equation 

(2) + = y-x 

for all x,y € R with x ^ y. The solution of (2) was given by Baker [13] 
in the following theorem. If s,t are given real numbers, then the necessary 
and sufficient condition for f,g to satisfy f ( y ) — f(x) = {y — x)g(sx + ty) 
for all x,y is as follows: If s = t = 0 or s2 ^ t2, then f is a polyno-
mial of degree at most 1 and g = f . If s = t ^ 0, then f is a poly-
nomial of degree at most 2 and g(x) = f'(x/2t). If s = — t ^ 0, then 
/ ( x ) = a + A(x) and g{x) = A(x/t)/(x/t) for i / 0, where a is a real 
constant and A is an additive function. Also, the solution of (2) (and also 
of (RE)) was obtained independently by the last two authors of this pa-
per. 
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It is the purpose of this paper to present an elementary and simple 
technique for determining solution of the following functional equation: 

( F E ) fJ±jM = h ( s x + t y ) 

x - y 

for all real x, y with i / j/. Here s and t are a priori known real parameters. 
This equation generalizes (2) and characterizes polynomials of low degrees. 

2. The solution of the functional equation 
Now we proceed to find the general solution of ( F E ) with no regularity 

assumptions (differentiability, continuity, measurability, etc.) imposed on h, 
g and / . 

T H E O R E M 1. Lets andt be the real parameters. Functions f , g , h : R 
satisfy (FE) for all x,y £ R,x ^ y if and only if 

R 

f ( x ) = 

' ax + b 

ax + b 

atx2 + ax + b 

A(tx) 

t 
+ b, 

s(y) = < 

ßx + b 

ay + b 

ay + b 

aty2 + ay+ b 

4*> + c 

ßy + b 

arbitrary with h(0) = a 

h(y) = Qy + a 
W A(y) (c - b)t 

i > 

ß 

if s = 0 = t 

i f s = 0 , t ^ 0 

i f s = tj£ 0 

if s = - t / 0 

i f s 2 ¿ t 2 

if s = 0 = t 

i f s = 0, t / 0 
i f s = t^ 0 

if s = - t ¿ 0 

i f s 2 ^t2 

if s = 0 = t 

i f s = 0, t ± 0 
if s - t ^ 0 

i f s = - t ^ 0, y ± 0 

i f s 2 ± t2, 

where A : R 
constants. 

R is an additive function and a,b,c,a,ß are arbitrary real 

P r o o f . To prove the theorem, we consider several cases depending on 
parameters s and t. 



90 PL. Kannappan , P. K. Sahoo , M. S. Jacobson 

C a s e 1. Suppose s = 0 = t. Then (FE) yields 

M ^ i y ) = h ( Q ) 

x - y 

which is 

f ( x ) -ax = g(y) - ay, 

where a := /i(0). From the above, we obtain 
(3) f ( x ) = ax + b and g(y) = ay + b, 

where b is an arbitrary constant. Letting (2) into (FE), we see that h is an 
arbitrary function with a = /i(0). Thus we obtain the solution as asserted 
in theorem for the case s = 0 = t. 

C a s e 2. Suppose s = 0 and t ^ 0. Then from (FE), we get 

(4) M ^ l = h { t y ) . 
x - y 

Putt ing y = 0 in (4), we see that 

(5) f ( x ) = ax + b, x f 0 

where a = h(0) and b = <jr(0). Letting (5) into (4), we obtain 

(6) ax + b- g(y) = (a; - y)h(ty) 

for all x ^ y and x ^ 0. Equating the coefficients of x and the constant 
terms in (6), we get 

(7) h(ty) = a and g(y) = h(ty)y + b = ay + b 

for all y € R. Letting a; = 0 in (4) and using (7), we see that / ( 0 ) = b. Thus 
(5) holds for all x in R . From (5) and (7), we get the solution of the (FE) 
for this case as asserted in Theorem 1. 

C a s e 3. Suppose s ^ 0 ^ t. Letting x = 0 in (FE), we get 

(8) g{y) = yh(ty) + b 

for all y ^ 0 (where b := / (0 ) ) . Similarly, letting y = 0 in (FE), we get 

(9) f ( x ) = xh(sx) + c 

for all x ^ 0 (where c := g(0)). Inserting (8) and (9) into (FE) and simpli-
fying, we obtain 

(10) xh(sx) - yh(ty) + c — b = (x — y)h(sx + ty) 

for all real nonzero x and y with x ^ y. 
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Replacing x by ^ and y by | in (10), we get 

( 1 1 ) -sh{x) - | % ) + c - b = ^ - h(x + y) 

for all real nonzero x and y with tx ^ sy. 

Subcase 3.1. Suppose s = t. Hence (11) yields 

(12) xh{x) - yh(y) = (b - c)t + (x - y)h{x + y). 

Interchanging x with y in (12), we get b = c and (12) reduces to 

(13) xh(x) - yh(y) - (x - y)h{x + y) 

for all real nonzero x and y with x ^ y. Replacing y with — y in (13), we 
obtain 

( 1 4 ) xh(x) + y h ( - y ) = (x + y)h(x - y) 

for all real nonzero x and y with x + y ^ 0. Letting y = —x in (13), we see 
that 

( 1 5 ) xh(x) + xh(-x) = 2xh(0). 

Subtracting (14) from (13) and using (15), we get 

( 1 6 ) 2yh(0) = (x + y)h{x - y) - (x - y)h(x + y) 

for all real nonzero x, y with x + y and x — y / 0. Writing 

(17) u = x + y and v = x — y 

in (16), we see that 

(w — v)h( 0) = uh{v) — vh(u) 

which is 

(18) v[/i(«) - /»(O)] = ti[/i(r) - fc(0)], 

for all real nonzero u,v,u — v and u + v. Thus 

(19) h(u) = au + a 

for all real nonzero u in R (where a := h{0)). Notice that (19) also holds for 
u = 0. Using (19) in (FE), we get 

f ( x ) ~ g(y) = ( x - y)(atx + aty + a) 

for all x ^ y. Thus, we obtain the asserted solution 

( 2 0 ) / ( x ) = g(x) = atx2 + ax + b a n d h(y) = ay + a, 

where a , a and b are arbitrary constants. 

Subcase 3.2. Suppose s = -t. Then (11) yields 

(21) xh(x) + yh(y) + (6 - c)t = (x + y)h{x + y) 



92 PL. K a n n a p p a n , P. K. Sahoo , M. S. Jacobson 

for all real nonzero x and y with x / y. Define 

(22) A(x) = f + ( b ~ c ) t i f 1 / 0 
v 7 K ' 10 if x = 0. 
Then by (22), (21) reduces to 

(23) A(x) + A{y) = A(x + y) 

for all real nonzero x, y and x + y. Next we show that A in (23) is additive 
on the set of reals. In order for A to be additive it must satisfy 

' A(x) + A(-x) = ¿(0) = 0 
(24) or 

xh(x) - xh(-x) + 2(6 - c)t - 0. 

Interchanging y with —y in (21), we get 

(25) xh(x) - yh(-y) + (6 - c)t = (® - y)h(x - y). 

Subtracting (25) from (21), we get 
yh{y) + yK-y) = (x + y)Kx + y ) - ( x ~ y)Kx - y)-

Thus, using (22), we get 

(26) A(y) - A(—y) = A(x + y) - A(x - y) 

for all real nonzero x, y, x + y and x — y. Replacing x by — x in (26), we 
obtain 

(27) A{y) - A{-y) = A(-x + y) - A(-x - y). 

From (26) and (27), we get 

(28) A(x + y) + A(-(x + y)) = A{x - y) + A(-(x - y)). 

Letting u = x + y and v = x — y in (28), we see that 

A{u) + A(-u) = A{v) + A(-v) 

for all real nonzero u, v, u — v and u + v. Thus 

(29) A(u) + A(-u) = 7 

for all real nonzero u (where 7 is a constant). Using (22), we see from (29) 
that 

(30) xh(x) - xh(-x) + 2(6 - c)t = 7 , 

for all real nonzero x. From (FE) with s = — we get 

(31) f(x)-g(y) = (x-y)h(-(x-y)t). 

Interchanging x with y, we get 

(32) f ( y ) - g(x) = -(x - y)h((x - y)t). 
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Adding (31) to (32) and using (30), we get 

( 3 3 ) f ( x ) - g ( x ) + f ( y ) - g ( y ) = 

= - ( a - y)h((x - y)t) + ( x - y)h(-(x - y)t) = + 2(6 - c ) . 

Using (8) and (22), we obtain 

( 3 4 ) A(tx) = t\g(x) -c] ( x 0 ) . 

Similarly, using (9) and (22), we get 

(35) A(- ix) = - i [ / ( x ) - 6 ] (x ji 0). 

So from (34) and (35), we see that 

x / x A(—tx) + A(tx) , 7 , / (x ) - 5(x) = * J- ^ + b - c = - j + 6 - c. 

Hence from above, we get 

(36) / (x ) - g(x) + f ( y ) - g(y) = -21- + 2(6 - c). 

Comparing (33) with (36), we get 7 = 0. Thus (29) yields 

A(x) + A(-x) = 0, 

for all real nonzero x. Evidently the above also holds for x = 0. Hence A is 
an additive function on the set of reals. From (22), (8) and (9), we obtain 

/(*) = 4M + 4, 9W = 4M + c and 

( 3 7 ) 

y y 

where b and c are arbitrary constants. 

Subcase 3.3. Suppose s2 ^ t2, that is s ^ ±t. Interchanging x with y in 
(11), we get 

( 3 8 ) U ( y ) - -th{x) + c - b = - ^ j h ( x + y) 

for all nonzero x and y with ty / sx. Subtracting (38) from (11) and using 
s + t ^ 0, we get 

(39) xh(x) - yh(y) = (x - y)h(x + y), 

which is same as (13). Thus 

(40) h(x) = ax + b, 



94 PL. Kannappan, P. K. Sahoo, M. S. Jacobson 

where a and b are arbitrary constants. Letting (40) into (38) and simplifying 
the resulting expression, we get 

for all nonzero x and y with tx ^ sy and sx ^ ty. Since s ^ f, we see that 
a = 0 and b = c. Hence (40) becomes 
(41) h(x) = b. 

From (41), (8) and (9), we obtained the asserted form of f,g and h. This 
completes the proof of the theorem. 

R e m a r k 1. In case of the functional equation (2) (that is when g = / ) , 
Subcase 3.2 simplifies to a great extent. If g = / , then the left side of the 
(FE) for s = — t is symmetric in x and y. Thus using this symmetry one 
can conclude that h is an even function. The evenness of h implies that A 
in (23) is additive. 

R e m a r k 2. In Subcase 3.1, h(y) is undefined at y = 0. 

R e m a r k 3. It is well known that the functional equation A(x + y) = 
A(x) + A(y) has nonmeasurable solutions in addition to the continuous so-
lution of the form A(x) = ax, where a is an arbitrary real constant. Since, 
additive function appears in the solution of (FE) for Subcase s = —t, it 
follows that (FE) has non-measurable solutions. However, all measurable 
solutions of (FE) are continuous and polynomials of low degree. 

The following theorem is obvious from the Theorem 1. 

THEOREM 2. Functions <f>, f : R —> R satisfy functional equation (2) for 
all x,y G R with x y if and only if 

ax -f b 

ax + c 

atx2 + ax + b 
A(tx) 

t 
+ b, 

M = 

Px + b 

arbitrary with </>(0) = a 

a 

ay + y 

Mv) 
y 

0 

if s = 0 = t 

i f s = 0,t^0 

i f s - t ^ 0 

if s = - t £ 0 

i f s 2 ^ t 2 

if s = 0 = t 

i f s = 0,t^0 

if s - t ^ 0 

i f s 2 t t \ 
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where A : R R is an additive function and a, b, c, a, (3 are arbitrary real 
constants. 

The following corollary addresses the problem proposed by Walter Rudin 
in [11]. 

COROLLARY 3. The function f : R —> R satisfies the equation 

nax+ty)=m^m 
y - x 

for all x,y € R with x ^ y if and only if 

f ( x ) = i 
[ bx + c otherwise, 

ax2 +bx + c if s = | = t 

where a, b and c are arbitrary real constants. 
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