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A CHARACTERIZATION
OF LOW DEGREE POLYNOMIALS

This paper concerns with the solution of a functional equation that char-
acterizes low degree polynomials. The method used for solving the equation
is simple and elementary. Here, an answer is also provided to a problem
posed by Walter Rudin in the American Mathematical Monthly [11] in a
general setting.

1. Introduction
Let R be the set of all real numbers. A function A : R — R is said to be
an additive function on reals if

A(z +y) = A(z) + A(y)

for all real numbers z and . There are many papers dealing with the various
aspects of additive functions. A comprehensive review on additive functions
can be found in [9].

It is well known that for quadratic polynomials the Mean Value Theorem
takes the form

T—y 2

It was shown in [1] (and also [6]) that the solution of the functional differ-
ential equation (1) is of the form f(z) = az® 4 bz + ¢, where a, b and ¢
are arbutrary real constants. This has the following interpretation. Let f(t)
denote the position of a moving object at time ¢. If the mean velocity

f(y) = f(=)
y—-z
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during every interval [z, y] is equal to the velocity f’ (%ﬁ) at the arithmetic
mean %’i of the end points z and y of the interval [z, y], then the trajectory
of the object is a parabola or a line. The above functional equation (1) is a
special case of the following equation
f(z) - f(v)
w —

Ty = (@),

where 7(z,y) is an apriori known function of z and y. Note that this equa-
tion contains no derivative and no mean value. In a recent paper, Aczel and
Kuczma [2] have determined the solution of the above functional equation
assuming 7(z,y) to be either arithmetic, or harmonic or geometric mean
of z and y. Several authors (see [1], [2], [6], [8]) have treated equations of
this type. If n(z,y) = z +y, then the above equation characterizes quadratic
polynomials. For a generalization of (1) to higher derivatives the reader may
refer to [3], [7] and [8]. For a generalization of (1) that characterizes poly-
nomials of degree at most n the reader may refer to [3], [4], and [7]. The
motivation behind the study of the above functional equations for charac-
terizing polynomials can be found in [1], [2], [3], [5], [6], [7], [8], [10], [12]
and references therein. ’

In the American Mathematical Monthly [11] the following problem was

proposed by Walter Rudin: “Let s and t be given real numbers. Find all
differentiable functions f on the real line which satisfy
(RE) f(so+1y) = O=1E)
Jor all real z,y, with z # y.” Note that any solution of (RE) is intrinsi-
cally differentiable. In fact, if f is a solution of (RE), then f € C*°(R).
The equation given by Rudin is a special case of the following functional
equation

(2) g(sz +ty) = _f(?/; = f(=)

T
for all z,y € R with z # y. The solution of (2) was given by Baker [13]
in the following theorem. If s,t are given real numbers, then the necessary
and sufficient condition for f.g to satisfy f(y) — f(z) = (y — z)g(sz + ty)
for all z,y is as follows: If s = t = 0 or s* # t%, then f is a polyno-
mial of degree at most 1 and g = f'. If s = t # 0, then f is a poly-
nomial of degree at most 2 and g(z) = f'(z/2t). If s = —t # 0, then
f(z) = a + A(z) and g(z) = A(z/t)/(z/t) for ¢ # 0, where a is a real
constant and A is an additive function. Also, the solution of (2) (and also
of (RE)) was obtained independently by the last two authors of this pa-
per.
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It is the purpose of this paper to present an elementary and simple
technique for determining solution of the following functional equation:

(FE) 18 =90) _ bz + 1y

for all real z,y with = # y. Here s and t are a priori known real parameters.
This equation generalizes (2) and characterizes polynomials of low degrees.

2. The solution of the functional equation

Now we proceed to find the general solution of (FE) with no regularity
assumptions (differentiability, continuity, measurability, etc.) imposed on h,
g and f.

THEOREM 1. Let s and t be the real parameters. Functions f,g,h: R - R
satisfy (FE) for all z,y € R,z # y if and only if

(az + b ifs=0=t
az + b ifs=0,t#£0
_J otz +az+b ifs=t#0
)= A(tz) .
T+b’ ifs=-t#0
Bz + b if s # 2
(ay+b ifs=0=t
ay+b ifs=0,t#0
g(y)z‘aty2+ay+b ifs=t#0
—4@+c, ifs=—-t#0
L By +b if s £
(arbitrary with h(0) =a ifs=0=t
a ifs=0,t#0
h(y)=<ay+a ifs=t#£0
A - b)t
S’)+(cy), ifs=—-t#£0,y#0
\ﬂ ifsz#tz,

where A : R — R is an additive function and a,b,c,a,3 are arbitrary real
constants.

Proof. To prove the theorem, we consider several cases depending on
parameters s and t.
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Case 1. Suppose s = 0 = t. Then (FE) yields

f(z)—g(y) _
ey - h(0)

which is
f(2) - az = g(y) - ay,
where a := h(0). From the above, we obtain
(3) f(z)=az+b and g(y)=ay+bd,

where b is an arbitrary constant. Letting (2) into (FE), we see that h is an
arbitrary function with @ = A(0). Thus we obtain the solution as asserted
in theorem for the case s = 0 = 1.

Case 2. Suppose s =0 and ¢ # 0. Then from (FE), we get

@) 12 290) _ by,

Putting y = 0 in (4), we see that

(5) f(z)=az+b, z#0

where a = h(0) and b = g(0). Letting (5) into (4), we obtain
(6) az +b—g(y) = (= - y)h(ty)

for all z # y and =z # 0. Equating the coeflicients of z and the constant
terms in (6), we get
(M) h(ty) =a and g(y)=h(ty)y+b=ay+bd

for all y € R. Letting z = 0 in (4) and using (7), we see that f(0) = b. Thus
(5) holds for all z in R. From (5) and (7), we get the solution of the (FE)
for this case as asserted in Theorem 1.

Case 3. Suppose s # 0 # t. Letting z = 0 in (FE), we get

(8) 9(y) = yh(ty) +b
for all y # 0 (where b:= f(0)). Similarly, letting y = 0 in (FE), we get
(9) f(a) = ch(sa) + ¢

for all z # 0 (where ¢ := g(0)). Inserting (8) and (9) into (FE) and simpli-
fying, we obtain

(10) zh(sz) — yh(ty) + ¢ — b= (z — y)h(sz + ty)

for all real nonzero z and y with z # y.
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Replacing « by £ and y by ¥ in (10), we get
z y - (E_Y
(11) 2he) - L) +e—b= (2= L) +o)
for all real nonzero z and y with tz # sy.

Subcase 3.1. Suppose s = t. Hence (11) yields

(12) zh(z) — yh(y) = (b — o)t + (z — y)h(z + y).
Interchanging z with y in (12), we get b = ¢ and (12) reduces to
(13) zh(z) = yh(y) = (z - y)h(z +y)

for all real nonzero z and y with = # y. Replacing y with —y in (13), we
obtain

(14) zh(z) + yh(-y) = (z + y)h(z - v)
for all real nonzero z and y with z + y # 0. Letting y = —z in (13), we see
that

(15) zh(z) + zh(—z) = 2zh(0).
Subtracting (14) from (13) and using (15), we get
(16) 2yh(0) = (z + Yh(z - y) - (= —Yh(z + y)
for all real nonzero z,y with z + y and z — y # 0. Writing
(17) u=z+y and v=z—y
in (16), we see that

(u — v)h(0) = uh(v) — vh(u)

which is

(18) o[h(w) - h(0)] = ulh(v) — h(O)),
for all real nonzero u,v,u — v and u + v. Thus

(19) h(u)=au+a

for all real nonzero u in R (where a := h(0)). Notice that (19) also holds for
u = 0. Using (19) in (FE), we get
f(z) = 9(y) = (z - y)(otz + aty + a)

for all z # y. Thus, we obtain the asserted solution
(20) f(z)=g(z)=atz® + az +b and h(y)=ay+a,
where a,a and b are arbitrary constants.

Subcase 3.2. Suppose s = —t. Then (11) yields
(21) 2h(z) + yh(s) + (b= O)t = (& + 1)h(z +v)
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for all real nonzero z and y with z # y. Define

(22) Az) = { gh(w) + (b= o)t g : # 0

Then by (22), (21) reduces to
(23) A(z) + A(y) = Az + 9)

for all real nonzero z,y and = + y. Next we show that A in (23) is additive
on the set of reals. In order for A to be additive it must satisfy

A(z)+ A(—2) = A(0)=0
or
zh(z) — zh(-z) + 2(b-¢)t = 0.
Interchanging y with —y in (21), we get
(25) zh(z) — yh(-y) + (b— o)t = (z — y)h(z - v).
Subtracting (25) from (21), we get
yA(y) + yh(-y) = (z + Y)h(z + y) - (¢ — Y)h(z - y).
Thus, using (22), we get
(26) A(y) - A(-y) = A(z +y) - A(z - 9)
for all real nonzero z, y, z + y and z — y. Replacing z by —z in (26), we
obtain

(24)

(27) A(y) - A(-y) = A(-2 + 9) - A(-2 - 9).
From (26) and (27), we get
(28) A(z +9)+ A(=(2z +9)) = Alz - y) + A(=(z - y)).

Letting v = z + y and v = z — y in (28), we see that
A(u) + A(—u) = A(v) + A(—v)

for all real nonzero u,v,u — v and v + v. Thus

(29) Au) + A(=u) = 7

for all real nonzero u (where 7 is a constant). Using (22), we see from (29)
that

(30) zh(z) — ah(—z) + 2(b-c)t =7,
for all real nonzero z. From (FE) with s = —t, we get
(31) f(@) - 9(y) = (z - y)h(-(z - 9)1).

Interchanging z with y, we get

(32) f(y) - 9(z) = —(z — y)h((z - y)?).



Low degree polynomials 93

Adding (31) to (32) and using (30), we get
(33)  f(=z) - g(=) + f(y) —9(y) =
= —(z = P)h((z - 9)t) + (2 — Yh(~(z = 1)) = =T +2(b ).

Using (8) and (22), we obtain

(34) A(tz) = tlg(z)—c] (= #0).
Similarly, using (9) and (22), we get
(35) A(=tz) = ~t[f(2) =] (2 £0).

So from (34) and (35), we see that

f(z) - g(z) = —A(_tx):r Altz) 1y —% +b—c.
Hence from above, we get
(36) £(@) - 9(&) + f(3) - 9(y) = =27 +2(b - ©).

Comparing (33) with (36), we get v = 0. Thus (29) yields
A(z) + A(-2) = 0,

for all real nonzero z. Evidently the above also holds for z = 0. Hence A is
an additive function on the set of reals. From (22), (8) and (9), we obtain

f(z )—A(t‘”) +b, g(y)= (t"’)

= A0 =

where b and ¢ are arbitrary constants.

+c¢ and
(37)

Subcase 3.3. Suppose s? # t2, that is s # +t. Interchanging z with y in
(11), we get

(38) Yh(y) - Zh(z) + e~ b= (g - .”ti)h(z )

for all nonzero z and y with ty # sz. Subtracting (38) from (11) and using
s+t#0, we get

(39) zh(z) - yh(y) = (= — Y)h(z + y),

which is same as (13). Thus

(40) h(z) = az + b,
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where a and b are arbitrary constants. Letting (40) into (38) and simplifying
the resulting expression, we get

1 1
azy(;—;) =b-e¢

for all nonzero z and y with tz # sy and sz # ty. Since s # t, we see that
a = 0 and b = ¢. Hence (40) becomes

(41) h(z) = b.

From (41), (8) and (9), we obtained the asserted form of f,g and h. This
completes the proof of the theorem.

Remark 1. In case of the functional equation (2) (that is when g = f),
Subcase 3.2 simplifies to a great extent. If g = f, then the left side of the
(FE) for s = —t is symmetric in z and y. Thus using this symmetry one
can conclude that h is an even function. The evenness of h implies that A
in (23) is additive.

Remark 2. In Subcase 3.1, h(y) is undefined at y = 0.

Remark 3. It is well known that the functional equation A(z + y) =
A(z) + A(y) has nonmeasurable solutions in addition to the continuous so-
lution of the form A(z) = az, where @ is an arbitrary real constant. Since,
additive function appears in the solution of (FE) for Subcase s = —t, it
follows that (FE) has non-measurable solutions. However, all measurable
solutions of (FE) are continuous and polynomials of low degree.

The following theorem is obvious from the Theorem 1.

THEOREM 2. Functions ¢, f : R — R satisfy functional equation (2) for
all z,y € R with = # y if and only if

(az + b ifs=0=t

ar + ¢ ifs=0,t#0
f(x)=Jata:2+aa:+b ifs=t#0

A—(ttz—)+b, ifs=—-t#0

\ Bz + b if s £ 12

(arbitrary with ¢(0)=a ifs=0=t

a ifs=0,t#0
W= Fomire

_A_?(/?_/l, ifs=—t40,y#0

\ﬂ 'l.f3276t2,
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where A : R — R is an additive function and a, b, ¢, o, 3 are arbitrary real
constants.

The following corollary addresses the problem proposed by Walter Rudin
in [11].

CoROLLARY 3. The function f : R — R satisfies the equation

f(y) - f(z)

. B _
fi(sz +ty) = -
for all z,y € R with z # y if and only if

f(z)z{a:z:2+b:c+c fs=3=t

br + ¢ otherwise,

where a, b and ¢ are arbitrary real constants.
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