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1. Introduction 
Let R n be n-dimensional Euclidean space, n € N and N the set of inte-

gers. 

ASSUMPTION 1. Let ft C R n , n > 2 be abounded domain with boundary 
r of class C2m, m € N and closure ft. Let t € (0, T), T € R+ = (0, oo) and 
let functions <j>, if) : ft —• R and apq : ft x (0,T) —> R be given, p, q are 
multiindices 

77i m 

p = (pi,p2,---,pm), q = (qi,q2,•••,qm), bl = J^p,-,\q\ = 
¿=1 i=l 

Let H'{ft) and Hfftft) be Sobolev spaces with the norms ||.| |#»,s £ R. 
Let Ao(t,x,D), t 6 {0,i), be a family linear elliptic operators [5] of order 
2m, m € N, in the divergence form 

m 
(1) A0(t,x,D)= J2 (-l) | p |£> P(aP90M)£><). 

|p|=M=o 

ASSUMPTION 2 . apq e C 2 M , 1 ( I ? x (0 ,1")) , apq - aqp, \p\ < m, |G| < m. 

ASSUMPTION 3. The operators A0(t,x,D), t € (0 ,T) , are uniformly 
strongly elliptic in ft, i.e. there is a constant c > 0 that 

TO 

|p|=|,|=0 

for every x e f t , t e (0 ,T), f G R n . 

Then the operators Ao(t, x, D) for t G (0, T) satisfy Garding's inequality, 
i.e. there exist constants C\ > 0 such that 
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a(v,v,t) > Ci||»||^m(/J) - C2\\v\\2
L^(n) 

for any v G Hq1(Q) and t 6 (0,T), where the bilinear form a(v,w,t) being 
given by the formula 

m 
(2) a(v,w,t)= f apq(x,t)Dpv(x)D9w(x)dx, w,v e Hm(i2). 

|p|=l?l=o n 

If C2 0 we can replace the operators Ao(t, x, £)) by the operators x, D) 
= -D) + AI, where I — the identity operator, and A > Then for 
any v € W0

m(i?) and t € (0,T> 

(3 ) o K » , < ) > C i | | f | | / f - . ( n ) -

In this paper existence of solutions of the following equation 

(E) uu+A(t,x,D)u = f(t,x,u,ut,Du,...,Dm~1u), x £ (2, t e (0,T), 

with the initial conditions 

(IC) «(x, 0) = <j>(x), ut(x) = ip(x), x £ f2, 

and the boundary conditions 

(BC) D^u\r = 0, for |/?| < m - 1 , t € ( 0 , r ) , /? = (/?!, . . . , /?„) 

has been investigated. 
Now the problem (E), (IC), (BC) will be set in an abstract form and the 

theory of an evolution system U(t, s), 0 < s < t < T, on a certain Banach 
space will be applied in order to find solutions. This provides us with the 
existence and uniqueness of solutions in the sense of this Banach space [4], 
[5]. 

With the elliptic operators A{t, x,D), t £ (0,T), we associate linear 
operators A(t), t £ (0,T), in L2(i2). This is done as follows: 

D(A(t)) = D = H2m{Q) n and A(t)u = A(t, x, D)u for ueD. 

It is obvious that D is dense in L2(Q). 

LEMMA 1. By Assumptions 1 - 3 and density of D in L2(fi) we have: 

(i) the operator A(t), for every t £ (0,T), can be extended to self-adjoint 
operator (proof [6], p. 126); 

(ii) for any a 6 (0,1), the operator Aa(t) is self-adjoint and Da = 
D(Aa(t)) is also independent of t (proof [5], p. 109); for a = 1/2, in our 
case Dl/2 = D(A1/2(t)) = H^(i2); 

(iii) a(t,v,w) = (Axl2(t)v,All2(t)w) (proof [5], p. 29). 
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We can set the problem (E), (IC), (BC) as the abstract initial value 
problem 
(4) utt + A(t)u = fx (t, u,ut), 

(5) «(0) = = V, 
where fi(t, u, ut)(x) — f(t, x, u,ut, Du,..., Dm~lu). 

Next, the problem (4), (5) can be written in the form 

(6) ^ = A(t)w + F(t,w), 

(7) wo = «7(0) = 

where A = ^ —A(t) o) ' F(t'w) = ( f j , - " 1 W = u 
\ / 1 U-" — I 

' w ) J 
Let Ho = HF{(2) x L2(f2) and D(A(t)) = D := (H 2 m ( i , 1 ) n x 

H™(f2), for t e (0, T). The space Ho is the Hilbert space with scalar product 

(wuw2 K = (A1^(t)vuA1^(t)v2) + (z1,z2), 

2. An evolution system 
Let X be a Banach space with the norm ||.||. For every t G (0 , T ) , let 

A{t) : D(A(t)) C L ^ I b e a linear operator in X and / : <0,T) X X X 
be a function. 

D E F I N I T I O N 1. A two parameter family {U(t, .s)} of bounded linear 
operators U(t,s), 0 < s < t < T, on X, is called an evolution system if the 
following two conditions are satisfied: 

(i) U(s, s) = I, U(t, r)U(r, s) = U(t, s) for 0 < s < r < t < T, 
(ii) (t, 5) —• U(t, s) is strongly continuous for 0 < s < t < T. 

D E F I N I T I O N 2 . A family {A(t)}, t e ( 0 , T ) , of infinitesimal generators 
of Co semigroups on X is called stable if there are constants M > 1 and 
u € R such that resolvent set satisfies conditions: 

g(A(t)) D (0, 00) for t € (0,T) 
and 

k 
|| P | iZ(A;,4(ij))|j < M{\ — u>)~k 

j=1 

for A > u and for every finite sequence 0 < t\ < t2 < ... < tk < T, 
k = 1 , 2 , . . . ; M and u are called the stability constants. 
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R e m a r k 1. Any family {A(i)}, t £ (0, T), of infinitesimal generators of 
Co semigroups of contractions is stable ([4], p. 131). 

DEFINITION 3 . Let X and Y be Banach spaces with norms ||.|| and 
||.||y, respectively. Y is densely and continuously imbedded in X, if Y is 
dense subspace of X and there is a constant C > 0 such that ||iz;|| < C11it*11 
for w G Y. 

DEFINITION 4. Let X be a Banach space and S : D(S) C X X a 
linear operator in X. The subspace Y of X is an invariant subspace of S if 

DEFINITION 5 . Let A be a infinitesimal generator of Co semigroup S(s), 
s € R + . A subspace Y of X is called A-admissible, if it is an invariant 
subspace of 5(5), s G R + , and the restriction of S(s) to Y is a Co semigroup 
in Y (i.e., it is strongly continuous in the norm ||-||y). 

LEMMA 2 . Let, for each t £ ( 0 , T ) , A(t) be the infinitesimal generator 
of Co semigroup St(s), s £ R+, on X. The following conditions (H1)-(H3) 
[usually referred to as the "hyperbolic" case): 

(HI) {A(i)}, t E (0, T), is a stable family with stability constants M,u, 
( H 2 ) Y is A(t)-admissible, for t £ ( 0 , T ) , and the family t £ 

(0 ,T), of the parts of A(t) inY, is a stable family inY with stability 
constants M,LJ, 

(H3) for t e (0,T), Y C D(A(t)), A(t) is a bounded operator from Y into 
X andt —> A(t) is continuous in B(Y,X) norm H-lly-^; guarantee 
existence of a unique evolution system U(t, s), 0 < s < t < T, in X 
satisfying 

(El) ||f(i.«)ll < Mexp[u(t-s)] for 0 < s < t < T, 
d+ 

( E 2 ) ~ d t U ^ S ) t ' l t = s = A ( s ^ v f o r v e Y , 0 < s < T , 

( E 3 ) a ) t > = ~U(tf for veY, 0 < s < t < T, 

where the right-hand derivative in (E2) and the derivative in (E3) are in the 
strong sense in X (proof [4], p. 135). 

LEMMA 3 . Let ( Y L ( / ) } , t E ( 0 , T ) , be a stable family of infinitesimal 
generators of Co semigroup on X. If D(A(t)) = D is independent oft and 
A(t)v is continuously differentiable in X for v € D, then there exists a 
unique evolution system U(t,s), 0 < s < t < T, satisfying ( E 1 ) - ( E 3 ) and 

(E4) U(t,s)Y C Y for 0 < s < t < T, 



Y-valued solutions 81 

(E5) U(t, s)v is continuous in Y for 0 < s <t <T and v G Y, where Y 
is D equipped with the norm ||v||y = ||u|| + ||A(0)v||, for v eY = D. 
(proof [4], p. 145, see also [1], [3]). 

Theorem 1. If Assumptions 1-3 are satisfied, then the family {A(i)} of 
operators A(f), t £ (0, T), is generator of a unique evolution system on the 
space Ho having the properties (E1)-(E5). 

P r o o f . At first we will prove that A(i) is a dissipative operator for each 
t G (0,T). By Lemma 1, we have 

[A(i)u>, WJho = (~A(t) o) ( l ) ' ( * ) ] * - [ ( - / ( « > ) ' ( 0 . Ho 

o 
-A(t) 0 

= (A}l2{t)z, A1/2(i)u) + (~A(t)v,z) = (z,A(t)v) - (A(t)v,z) = 
= (A(t)v,z)-(A(t)v,z) = 0. 

Thus A(t) is dissipative for each t G (0, T). 
Now we will prove that for any A > 0 the range of (AE — A(f)), for cach 

1 0" t € (0,T) is all of Ho, E -

k(t))w = F,F = 

0 1 
'h V , w = 
.5 . z 

. We have to prove that equation (AE — 

has a solution w € ( H 2 m { Q ) fl x 

H^(Sl) for any (h,g) G HQ1{Q) x L2{Q). This equation is equivalent to the 
system of equations (A(f) + A2I)v = g + A/i, z = Xv — h. It is clear that 
g + Xh e L2({2). Due to (3) the bilinear form (2) is coercive for t e (0,T) 
with Ci = 0. We may therefore apply the Lax-Milgram theorem and derive 
the existence of a unique weak solution v G H™(Q) of boundary value 
problem ( A ( t ) + A2I)v = g + Xh for A > 0 ([2], p. 43). The coefficients 
apq(x,t) of A(t,x,D) (Assumption 2) and the boundary T (Assumption 1) 
are smooth enough that we can apply regularization theory ([2], p. 67). 
So we obtain v G H2m(Q) and finally v G H2m{Q) n From the 
equation z = Xv — h and the condition h G H™(Q) we have z G H™(Q). 
This means that A ( t ) is maximal operator for each t G (0,T). It is also clear 
that D(A(t)) = (H2m(Q) fl H^(i2)) x is dense in Ho. 

All assumptions of Lummer-Phillips Theorem ([4], p. 14) are satisfied, so 
{A(i)}, t G (0,T), is a family of the infinitesimal generators of Co semigroups 
of contractions on Ho, i.e., 

||Tt(5)|| < 1 for s G R + and t G (0,T). 

By Remark 1, the family (A(i)}, t G (0,T), is stable with stability constants 
M = 1 and u> = 0. It is obvious that D(A(t)) are independent of t G (0,T). 
Assumption 2 implies that A(t)w is continuously diiferentiable in Ho for 
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w G D. All assumptions of Lemma 3 are satisfied, then there exists a unique 
evolution system U(t,s), 0 < s < i < T, on Ho satisfying (E1)-(E5). 

3. Existence of solutions 
At first we recall some definitions. 

DEFINITION 1. A function w : ( 0 , T ) —» HO is said to be a mild solution 
of the problem (6), (7) if W G C((0,T),Ho) for any WQ G Ho, and w satisfies 
the following integral equation 

t 
w(t) = U(t, 0)wo + J U(t, s)F(s, w(s)) ds, 0 < t < T. 

o 

DEFINITION 2 . A function w : ( 0 , T ) -»• H0 is said to be a Y-valued 
solution of the problem (6), (7), if w G C((0,T); Y) D C 1 ( (0 ,T >;Ho) and 
equation (6) is satisfied in Ho. 

The set Y is domain D(A(t)) = D = ( H 2 m { Q ) n x with 
the norm | |U; | |T = I M ^ + | |A(0)| |HO F O R 

DEFINITION 3 . A function F : ( 0 , T ) x H0 -> H0 is said to be Lipschitz 
continuous in w, uniformly in t G (0, T), with constant i > 0, if \\F(t, w2) — 

^ L\\w2 - K>i||no f ° r every t G ( 0 , T ) , wi,w2 G H0 . 

DEFINITION 4. A function F : ( 0 , oo) x H0 -> H0 is said to be locally 
Lipschitz continuous in w, uniformly in t on bounded intervals, if for every 
constants r > 0, r > 0 there exists a constant L(r,r) such that 

||F(i,™2) - < L(T,T)\\W2 - wi|k 

for every t G (0 , r ) and wi,w2 G H0 with ||wi||HO < r, H^Hn, < f . 

T H E O R E M 2 . If Assumptions 1 - 3 are satisfied and the function F : 
(0,T) X Ho H0 is continuous in t G ( 0 , T ) and Lipschitz continuous 
in w, uniformly in t G ( 0 , T ) , then for every WQ G Ho = HQ1(Q) X L2(Q) 
there exists a unique mild solution w G C((0,T); H™(f2) X L2(f2)) of the 
problem (6), (7). 

It has been proved in general case in [4], [5]. 

T H E O R E M 3 . If Assumptions 1 - 3 are satisfied and function F : (0,oo) x 
Ho —*• Ho is continuous in t for t > 0 and locally Lipschitz continuous in 
w, uniformly in t on bounded intervals, then for every WQ G Ho there exists 
a unique mild solution w G C((0,tmAX), H™(f}) X L2(f2)) of the problem 
(6), (7) with either £max = oo or t m a x < oo. Moreover, if i m a x < oo then 
i i m t - W I K O I k = 
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P r o o f . The proof is similar to that of Theorem 1.4 ([4], p. 185), but in 
our case we have to put M2(io) = rciax{||i7(i, s)||; 0 < s < £ < f o + l} and 
use integral equation 

t 

w(t) = U(t,t0)w0 + f U(t,s)F(s,w(s))ds. 
to 

T H E O R E M 4. If Assumptions 1 - 3 are satisfied and function F : ( 0 , T ) x 
Y —> Y is Lipschitz continuous in Y, uniformly in t € (0 ,T) and for each 
w G Y continuous from (0 ,T ) into Y, then for WQ 6 Y the problem (6), (7) 
has a unique Y-values solution on (0,T), i.e. 

w e C((0,T);(H2m(i2)nH^{i2))xH^(i2))nC\(0,T >; H^(f2)x L2(i2)). 

P r o o f . In a standard way we can prove existence of the mild solution 
w (E C((0,T); Y) which satisfies the integral equation 

t 

u(t) = U(t, 0)u;o + f U(t, s)F(s, ds 
o 

in Y and a fortiori in Ho for a given WQ G Y. 
Let g(s) = F(s,u(s)), s G (0,T). Then, by the assumptions of our the-

orem, it follows that g(s) € Y for s e (0 ,T ) and g € C((0,T); Y). Theorem 
5.2 ([4], p. 146) guarantees existence of a unique Y-valued solution w on 
(0 ,T ) for the linear problem 

(8) | ^ + = *(*), 
{ w(0) = w0 

for g 6 C((0,T);Y) and WQ 6 Y. This solution is then clearly also a mild 
solution of (8) and therefore 

t 

w(t) = U(t, 0)w0 + f U(t, s)g(s) ds = 
o 
t 

= U(t, 0)w0 + f U(t, s)F(s, w(s)) ds = u(t). 
o 

So w = w and u is a Y-valued solution of problem (6), (7) on (0,T). 

T H E O R E J J 5 . / / Assumptions 1 - 3 are satisfied and the function F : 
(0, T) x Y —>• Y is continuous in t,T £ R + , and locally Lipschitz contin-
uous in Y, uniformly in t on (0,T), then for every wo € Y the problem (6), 
(7) has a unique Y-valued solution 
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w € C((0,<max);(.ff2m(/2)n 

ntf0m(/2)) X H?(i2)) n C 1 ( ( o , I M A X ) ; J R 0 " W X ¿ 2 ( ^ ) ) 

on a maximal interval (0,fm a x) <max < T. Moreover, if im a x < T, then 

J i m [|K*)|k + ||A(0Mi)|k] = oo. 
' ''max 

P r o o f . The proof of this theorem is similar to that of Theorem 4. It has 
been also used the results of Theorem 3. 

R e m a r k 2. Similar results, as in Theorems 2-4, have been obtained in 
the papers [1], [3], under a little bit weaker assumptions. 

Due to Yamaguchi's Theorem ([7], Appendix) the following Lemma 
holds. 

LEMMA 4. Let f(t,x,a) be defined on (0 ,T) x i2 x RN+1, a = (a0,a i,... 
..., aN) e RN+1, N := • Let f(x, t,a) be of Csm+1-class in (x, a) <E 
Q x Rn+1 and D*Dlaf(x,t,a), 0 < k + I < sm + 1, be continuous in t on 
t 6 ( 0 , T ) , i 6 N ands> [ ^ j + 1. Let B(Q) = {a : a G E^+1;|ai| < Q,i = 
0 , 1 , 2 , . . . , N}, where Q is some positive real number. Set 

h,Q(t) = max sup \D^.Dlaf(t,x,a)\ and denote 
0<fc+/<Sm+l x(inaZB{Q) 

HQ = {ue c ( (o ,r) , J f f S T O (/2))nC 1 ( (o ,r) , i i ( i " 1 ) T O ) , 

IDpu(t,x)\<Q, \/3\<m-l, |«t(i,®)| < Q}. 

Then the following assertions hold: 
(LI) there exists a positive constant C\ and a function hQ : (0 ,T) —» (0 ,T) 
defined above such that for any u 6 HQ we have 

|| f(t,..., u(t,.), ut{t,.), Du(t,.),..., 2?m"1ti(i, .))||H.-i < 

< C I M O T L W * . - ) ! ! » ' - + I M * » - ) I I H < - * > « + ! ] > 

(L2) there exists a positive constant C2 such that for any u(t,.), u(t,.) € HQ 
satisfying the conditions 

[||5(i,-)l|H'» + < C3, 

for some positive constant C3, we have 

IIfit, .,u(t,.), ut(t,.), Du(t,.),..., Dmu(t,.))+ 
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- f ( t , .,u(t, .),««(<, .),Du(t,.),..., Dm~lu(t, 0)111!»-! < 

< C2hQ(t)[\\u(t,.) - «(t, .)||h- + I R i , •) - «*(*> OHtf-i)«]. 

R e m a r k 3. If we denote 

we obtain from Lemma 4 the following conditions 

(LI) \\F(t,w(t, 0)||h, = ||/||jf.-i)m < C i M 0 [ I K < , - ) l k + 1], 

( L 2 ) | | F ( t , w(t, 0 ) - 0 ) l k < C2hQ(t)\\w(t, 0 - w(<, 0 1 k , 

where H s = Hsm(i2) x tf^"1)™^). 
The condition (LI) means that, if 0 € H3 then F(t,w(t, 0) € Hs for 

i G (0,T). The condition (L2) means that the function F is locally Lipschitz 
continuous in w with respect to norm H s . 

THEOREM 6. Let 

(i) / 6 C 2 m + 1 , and a function f satisfies assumptions of Lemma 4 with 
5 = 2, 

(ii) for any x e d f 2 , t e ( 0 , T ) D*DlJ(x,t,0) = 0 for k + I < m - 1, 

(i i i) Assumptions 1 - 3 are satisfied, 

then for (<f>,ip) e ( H 2 m ( f 2 ) n H^(i2)) X there exists a unique local 
Y-valued solution of the problem (E), (IC), (BC), i.e. 

u € C((0 , i m a x ) ;# 2 m ( i2)n 

nff0
m(tf)) n c 1 ( (o , tm a x), )) n c2((o,*m a x) , L2(rt))). 

Xffmax < r , t/ien 

lim [!!«(*, .)ll«5»(i2+ 
+ ||A(OMi,0||L2 + ||«t(t,0llH»(O) + I M M I I w ) ] = <*>• 

P r o o f . The norm ||F(/,w)||y is equivalent to 11^(^,^)11^. Lemma 4 
with s = 2 (1 < n < 2m + 2) and condition (ii) guarantee that F : (0,T) x 
Y —• Y and it is locally Lipschitz continuous in Y, uniformly in t on (0,T). 
So all assertions of Theorem 5 are satisfied and this implies the thesis of our 
theorem. 
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