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1. Introduction
Let R™ be n-dimensional Euclidean space, n € N and N the set of inte-
gers.

AssUMPTION 1. Let 2 C R", n > 2 be a bounded domain with boundary
I of class C?™, m € N and closure £2. Let ¢t € (0,T), T € Rt = (0, 00) and
let functions ¢,% : 2 — R and a,, : 2 x (0,T) — R be given, p, q are
multiindices

m m
P=(P1,P2,---apm), q=(Q1aQ2,---an), IPI:EPHIQI:E%
i=1 i=1

Let H*(£2) and H§(2) be Sobolev spaces with the norms ||.||a-,s € R.
Let Ao(t,z,D), t € {0,t), be a family linear elliptic operators [5] of order
2m,m € N, in the divergence form

(1) Ao(t,z, D)= > (-1)PID?(ap,(z,t)D).

Irl=1q|=0
ASSUMPTION 2. apy € C?™(2 % (0,T)), apg = agp, |p| < m, |g| < m.
AssuMPTION 3. The operators Ay(t,z, D), t € (0,T), are uniformly
strongly elliptic in f2, i.e. there is a constant ¢ > 0 that

m

> (—1)Playy(z,t)Erer > cléPm,

fpl=lq|=0
for every z € 2,t € (0,T), £ € R™.

Then the operators A(t, z, D) for t € (0, T) satisfy Garding’s inequality,
i.e. there exist constants C; > 0 such that
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a(v,9,t) > Cil|v|3m 0y = Collvll7 0

for any v € HJ*(2) and t € (0,T), where the bilinear form a(v, w,t) being
given by the formula

(2) a(v,w,t)= Z f apg(,t)DPv(z)DIw(z)dz, w,v€ H™(£).
lpl=lg|=0 2

If C; # 0 we can replace the operators A (%, z, D) by the operators A(t, z, D)

= Ao(t,z, D) + Al, where I — the identity operator, and A > C3. Then for

any v € W§(2) and t € (0,T)

(3) a(9,v,1) 2 C1l|9||}m()-
In this paper existence of solutions of the following equation
(E) uu+A(t,z,D)u = f(t,z,u,us, Du,...,D™ ), z€ 0, te(0,T),
with the initial conditions
(10) u(2,0) = (), uwi(z)=(e), s €,
and the boundary conditions
(BC) DPulp =0, for|f|<m—1,1te(0,T), = (bi,---,0n)

has been investigated.

Now the problem (E), (IC), (BC) will be set in an abstract form and the
theory of an evolution system U(t,s), 0 < s <t < T, on a certain Banach
space will be applied in order to find solutions. This provides us with the
existence and uniqueness of solutions in the sense of this Banach space [4],
(5].

With the elliptic operators A(t,z,D), t € (0,T), we associate linear
operators A(t), t € (0,T), in L2(£2). This is done as follows:

D(A(t))=D=H*™(2)n H(2) and A(t)u = A(t,z,D)u foru € D.
It is obvious that D is dense in L%(£2).

LEMMA 1. By Assumptions 1-3 and density of D in L?(12) we have:

(i) the operator A(t), for every t € (0,T), can be extended to self-adjoint
operator (proof [6], p. 126);

(ii) for any a € (0,1), the operator A%(t) is self-adjoint and D, =
D(A%(t)) is also independent of t (proof [5], p. 109); for a = 1/2, in our
case D1y = D(ALV2(t)) = HE ()

(i) at, v,w) = (AV*(t)o, AY2(tyw) (proof [5], p. 29).
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We can set the problem (E), (IC), (BC) as the abstract initial value
problem
(4) Uy + A(t)?t = fl (ta u, ut)a
(5) U(O) = ¢? ut(o) = ¢7
where fi(t,u,u:)(z) = f(t,,u,us, Du,..., D™ 1u).
Next, the problem (4), (5) can be written in the form

(6) ‘fi—‘: = A()w + F(t, w),
) wo = w(0) = (j)

e b= (i ) 700 = (0y)- 2= (1)
Let Hy = HI'(2) X L(92) and D(A(t)) = D := (H*™(2) n HF(2)) x

HM$2),fort € (0,T). The space Hj is the Hilbert space with scalar product
(w1, w2)m, = (A2 (t)vy, A2 (t)v2) + (21, 22),

of wy = (ZI),wgz (zz)
1 2

2. An evolution system

Let X be a Banach space with the norm ||.||. For every t € (0,T), let
A(t): D(A(t)) C X — X be alinear operatorin X and f: (0,7) X X —» X
be a function.

DerINITION 1. A two parameter family {U(t,s)} of bounded linear
operators U(%,s),0 < s <t <T,on X, is called an evolution system if the
following two conditions are satisfied:

(i) U(s,s) =L U(t,r)U(r,s) = U(t,s) for0<s<r<t<T,

(ii) (t,s) — U(t,s) is strongly continuous for 0 < s <t < T.

DEFINITION 2. A family {A(t)}, t € (0,T), of infinitesimal generators
of Cp semigroups on X is called stable if there are constants M > 1 and
w € R such that resolvent set satisfies conditions:

o(A(t)) D (0,00) forte{0,T)

and
” é R\ ()| < MO - w)*

for A > w and for every finite sequence 0 < t; < t3 < ... <t < T,
k=1,2,...; M and w are called the stability constants.
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Remark 1. Any family {A(t)}, ¢t € (0,T), of infinitesimal generators of
Cy semigroups of contractions is stable ([4], p. 131).

DEFINITION 3. Let X and Y be Banach spaces with norms ||.|| and
||l.|ly, respectively. Y is densely and continuously imbedded in X, if Y is
dense subspace of X and there is a constant C' > 0 such that |w|| < C||w||y
forweY.

DEFINITION 4. Let X be a Banach space and §: D(S) C X — X a
linear operator in X. The subspace Y of X is an invariant subspace of § if
S:D(S)NY -Y.

DEFINITION 5. Let A be a infinitesimal generator of Cy semigroup S(s),
s € Rt. A subspace Y of X is called A-admissible, if it is an invariant
subspace of §(s), s € Rt, and the restriction of §(s) to Y is a Cy semigroup
inY (i.e., it is strongly continuous in the norm ||.||y).

LEMMA 2. Let, for each t € (0,T), A(t) be the infinitesimal generator
of Co semigroup Si(s), s € R*, on X. The following conditions (H1)-(H3)
(usually referred to as the “hyperbolic” case):

(H1) {A(t)}, t € (0,T), is a stable family with stability constants M,w,

(H2) Y is A(t)-admissible, for t € (0,T), and the family {A(t)}, t €
(0,T), of the parts of A(t) inY, is a stable family inY with stability
constants M , @,

(H3) forte€ (0,T),Y C D(A(t)), A(t) is a bounded operator from'Y into
X andt — A(t) is continuous in B(Y, X) norm ||.||y=x; guarantee
ezistence of a unique evolution system U(t,s),0< s <t<T,in X

satisfying
(E1) U )| < Mexplw(t—s)] for0<s<t<T,
+ “
(E2) %{U(t,s)vlt=, =A(s)v forveY, 0<s<T,
(E3) %U(t, sv=-U(t,s)A(s)v forveY, 0<s<t<T,

where the right-hand derivative in (E2) and the derivative in (E3) are in the
strong sense in X (proof (4], p. 135).

LeEMMA 3. Let {A(t)}, t € (0,T), be a stable family of infinitesimal
generators of Cy semigroup on X. If D(A(t)) = D is independent of t and
A(t)v is continuously differentiable in X for v € D, then there ezists a
unique evolution system U(t,s), 0 < s <t < T, satisfying (E1)~(E3) and

(E4) U(t,s)Y CY for0<s<t<T,
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(E5) U(t,s)v is continuous inY for 0 < s <t <T andv €Y, whereY
is D equipped with the norm ||v||y = ||v||+ ||A(0)v]|, ferv €Y = D.
(proof [4], p. 145, see also [1], [3]).

THEOREM 1. If Assumptions 1-3 are satisfied, then the family {A(t)} of
operators A(t), t € (0,T), is generator of a unique evolution system on the
space Ho having the properties (E1)-(E5).

Proof. At first we will prove that A(t) is a dissipative operator for each
t € {0,T). By Lemma 1, we have

ot = (2 8) (2)- ()], =) ()], =

= (AY2(1)z, AV (t)v) + (—A(t)v, 2) = (2, A(t)v) - (A(t)v, 2) =
= (A(t)v,2) - (A(t)v,2z) = 0.

Thus A(t) is dissipative for each ¢ € (0,T).

Now we will prove that for any A > 0 the range of (AE — A(t)), for each
t€(0,T)is all of Hy, E = (1) (1)
A))w=F, F= [’;] ,W = [:] has a solution w € (H*>™(£2) N H*(2)) x

H(2) for any (h,g) € H(2) x L*(£2). This equation is equivalent to the
system of equations (A(t) + A’ I)v = g + Ak, z = Av — h. It is clear that
g+ A € L%(2). Due to (3) the bilinear form (2) is coercive for ¢t € (0, T)
with C; = 0. We may therefore apply the Lax-Milgram theorem and derive
the existence of a unique weak solution v € HJ*(f2) of boundary value
problem (A(t) + A2I)v = g + Ak for A > 0 ([2], p. 43). The coefficients
apq(z,t) of A(t,z, D) (Assumption 2) and the boundary I' (Assumption 1)
are smooth enough that we can apply regularization theory ([2], p. 67).
So we obtain v € H?™(£2) and finally v € H2™(£2) N H*(2). From the
equation z = Av — h and the condition h € HJ*(2) we have z € HJ*(12).
This means that A(t) is maximal operator for each ¢t € (0,T). It is also clear
that D(A(t)) = (H*™(2)n H*(2)) x HF*(R) is dense in Hy.

All assumptions of Lummer-Phillips Theorem ([4], p. 14) are satisfied, so
{A(t)},t € (0,T),is a family of the infinitesimal generators of Cyp semigroups
of contractions on Hy, i.e.,

ITe(s)]| <1 forseR* and te(0,T).

By Remark 1, the family {A(?)}, t € (0,T), is stable with stability constants
M =1 and w = 0. It is obvious that D(A(t)) are independent of ¢t € (0,T).
Assumption 2 implies that A(t)w is continuously differentiable in Hy for

. We have to prove that equation (A\E —
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w € D. All assumptions of Lemma 3 are satisfied, then there exists a unique
evolution system U(t,s), 0 < s <t < T, on Hy satisfying (E1)-(E5).

3. Existence of solutions
At first we recall some definitions.

DEFINITION 1. A function w : (0,T) — Hp is said to be a mild solution
of the problem (6), (7) if w € C((0,T),Hy) for any wy € Hy, and w satisfies
the following integral equation

w(t) = U(,0)wp + f U(t,s)F(s,w(s))ds, 0<t<T.

DEFINITION 2. A function w : (0,T) — Hp is said to be a Y-valued
solution of the problem (6), (7), if w € C({0,T);Y)n C*((0,T >;Hy) and
equation (6) is satisfied in Hy.

The set Y is domain D(A(t)) = D = (H?*™(2) N HF(N2)) x HF(£2) with
the norm ||w|ly = |w(lm, + ||A(0)||m, for w € D.

DEeFINITION 3. A function F': (0,T) X Ho — Hp is said to be Lipschitz
continuous in w, uniformly in ¢ € (0,T), with constant L > 0, if || F(¢, w2) —
F(t,w)|lm, < L|jws — wq||m, for every t € (0,T), w1, w; € Hy.

DErFINITION 4. A function F : (0,00) X Hy — Hy is said to be locally
Lipschitz continuous in w, uniformly in ¢ on bounded intervals, if for every
constants r > 0, 7 > 0 there exists a constant L(r,T) such that

| F (¢, w2) — F(t,wi)llmo < L(r, 7)||wz — walm,
for every t € (0,7) and wy,wy € Hy with ||w1|jm, <7, |Jwallm, <7

THEOREM 2. If Assumptions 1-3 are satisfied and the function F :
(0,T) x Hy — Hy is continuous in t € (0,T) and Lipschitz continuous
in w, uniformly in t € (0,T), then for every wy € Hy = HJ*(2) X Lo(12)
there erists a unique mild solution w € C({0,T); HJ*(12) x L2(12)) of the
problem (6), (7).

It has been proved in general case in [4], [5].

THEOREM 3. If Assumptions 1-3 are satisfied and function F : (0,00) X
Hy — Hg is continuous in t for t > 0 and locally Lipschitz continuous in
w, uniformly in t on bounded intervals, then for every wy € Hy there erists
a unique mild solution w € C({0,tmax), HJ'(12) x L2(12)) of the problem
(6), (7) with either tyax = 00 OF tmax < 00. Moreover, if tmax < 00 then
limt,,, lw(t)lm = .
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Proof. The proof is similar to that of Theorem 1.4 ([4], p. 185), but in
our case we have to put M,(to) = max{||U(¢,s)||; 0 < s <t <ty + 1} and
use integral equation

w(t) = U(t,to)wo+ [ U(t,s)F(s,w(s))ds.

to N

THEOREM 4. If Assumptions 1-3 are satisfied and function F : (0,T) x
Y — Y is Lipschitz continuous in Y, uniformly in t € (0,T) and for each
w € Y continuous from (0,T) into Y, then for wo € Y the problem (6), (7)
has a unique Y-values solution on (0,T), i.e.

w € C({0,T); (H*™(R)NHF(2)) x HS(2)NCH(0,T >; H'(£2) x L2(2))-

Proof. In a standard way we can prove existence of the mild solution
w € C((0,T); Y) which satisfies the integral equation

w(ty=U(t,0wo + [ U(t,s)F(s,w(s))ds
0

in Y and a fortiori in Hy for a given wg € Y.

Let g(s) = F(s,w(s)), s € (0,T). Then, by the assumptions of our the-
orem, it follows that g(s) € Y for s € (0,T) and g € C((0,T); Y). Theorem
5.2 ([4]), p. 146) guarantees existence of a unique Y-valued solution w on
(0,T) for the linear problem

- { W+ At = 5(1),
w(0) = wo

for g € C({0,T);Y) and wo € Y. This solution is then clearly also a mild
solution of (8) and therefore

w(t) = U(,0)wo + f U(t,s)g(s)ds =

=U(t,0wo+ [ U(t,s)F(s,w(s))ds = w(t).

So w = w and w is a Y-valued solution of problem (6), (7) on (0,T).

THEOREM 5. If Assumptions 1-3 are satisfied and the function F :
(0,T) x Y — Y is continuous in t,T € R*, and locally Lipschitz contin-
uous in Y, uniformly in t on (0,T), then for every wo € Y the problem (6),
(7) has a unique Y-valued solution
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NHG"(12)) x H3*(£2)) N CH((0, tmax); Hg"(£2) x L*(12))
on a mazimal interval (0,tmax) tmax < T. Moreover, if tmax < T, then

Jim (o)l + [1A0)w(t)] = oo.

Proof. The proof of this theorem is similar to that of Theorem 4. It has
been also used the results of Theorem 3.

Remark 2. Similar results, as in Theorems 2-4, have been obtained in
the papers [1], [3], under a little bit weaker assumptions.

Due to Yamaguchi’s Theorem ([7], Appendix) the following Lemma
holds.

LEMMA 4. Let f(t,z,a) be defined on (0,T) x 2 x RN+, a = (ao, ay, ...
c..,ay) € RN+ N .= (Am=l Lot f(2,t,a) be of C*™ ! -class in (2, a) €

ni(m-—1)!
2 x RN+ and DED! f(z,t,a), 0 < k+1 < sm + 1, be continuous in t on
t€(0,T),s € Nands > [2=2]+1. Let B(Q) = {a:a € RN*¥1;|a;| < Q,i=
0,1,2,...,N}, where Q is some positive real number. Set

ho(l) = Dle t dd :
Q() OSHI-IIlSa‘i(m+1 xeﬁsz:lepB(Q)l z af( ,a:,a)| an enole

Hq ={ue C(0,T),H*™(2))N Cl((O,T)’H(S—l)m),
lDﬁu(t, )| £Q, |B|<m—-1, |ut,2z)<Q})

Then the following assertions hold:
(L1) there ezists a positive constant Cy and a function hg : (0,T) — (0,T)
defined above such that for any u € Hy we have

Nf(2,-..,ult,.),ult,.), Du(t,.),..., D™ tu(t, .))|p-1 <
< Crh@)[lJu(t, Jllmem + lue(t, Hllme-vm + 1],

(L2) there ezists a positive constant Cy such that for any u(t,.), u(t,.) € Hg
satisfying the conditions

[llu(t, Mizsm + llue(t, M ae-1m] < Cs,
1, Naem + Jae(t, Ml ae-0m] < Cs,
for some positive constant C3, we have

NF (L, A, ), Telt, ), DL, ), . .., D™i(t, )+
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— f(t, ., ult,.), w2, .), Du(t,.), ..., D™ tu(t, ) |lgp-2 <
< Coh()(IIE(t, ) — ult, llmem + (|6, ) — we(t, Mae-m].
Remark 3. If we denote

F=(%), - (s)), s0= (257)

we obtain from Lemma 4 the following conditions

(?1) WE(t, w(t, D, = [ fllzs-vm < Crho(®)[lw(, ), + 1],
L2)  IFE @) - Ft,w(, ), < Cohe)|li(, ) — w(t, ),

where H, = H*™(2) x HE-)™ ().

The condition (L1) means that, if w(t,.) € H, then F(t,w(t,.)) € H, for
t € (0,T). The condition (L2) means that the function F is locally Lipschitz
continuous in w with respect to norm H;.

THEOREM 6. Let
(i) f € C*™+1) and a function f satisfies assumptions of Lemma 4 with
s =2,
(ii) for any z € 802, t € (0,T) DED! f(2,t,0) =0 fork+1<m -1,
(iii) Assumptions 1-3 are satisfied,
then for (¢,v) € (H*™(2) 0 HF(2)) x HF'(R) there erists a unique local
Y-valued solution of the problem (E), (IC), (BC), i.e.

u € C((0, tmax); HX™(2)N
NHF(12)) N C((0, tmax), Hg"(£2)) 0 C*((0, tmax), L2(£2)))-
If tmax < T, then
(Jdim (llu(t, Mg a+
HA0)u(t, Iz, + Huet, Mimp(a) + lluelt, Nyl = oo

Proof. The norm ||F(t, w)|ly is equivalent to ||F(¢,w)|n,.- Lemma 4
with s = 2 (1 < 7 < 2m + 2) and condition (ii) guarantee that F : (0,T) X
Y — Y and it is locally Lipschitz continuous in Y, uniformly in ¢ on (0,T).
So all assertions of Theorem 5 are satisfied and this implies the thesis of our
theorem.
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